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Abstract

We show that for group actions on locally connected spaces the maximal equicon-
tinuous factor map is always monotone, that is, the preimages of single points are
connected. As an application, we obtain that if the maximal continuous factor of a
homeomorphism of the two-torus is minimal, then it is either (i) an irrational transla-
tion of the two-torus, (ii) an irrational rotation on the circle or (iii) the identity on a
singleton.

1 Introduction

The notion of maximal equicontinuous factor (MEF) is a key concept in topological dynamics
and plays an significant role for the understanding, description and classification of many
important system classes, including Toeplitz flows and other almost automorphic minimal
subshifts in symbolic dynamics [Aus88, Dow05] or model sets and their associated Delone
dynamical systems in aperiodic order (e.g. Schlottmann [Sch00, BG13]). It is also closely
related to the notion of (continuous) dynamical eigenfunctions, since the latter can be viewed
as factor maps to a circle rotation and the MEF comprises all information about such
equicontinuous factors.

However, despite its significance, little attention has been given to additional structural
properties that the MEF and its associated factor map may inherit from the considered
dynamical system or the ambient space. One such property is monotonicity, in the sense that
the preimages of singletons under the factor map are connected subsets of the phase space.
This often plays an important role when it comes to using information about the factor to
obtain insight about the extension. A paradigmatic example in this context is Poincaré’s
classification of orientation-preserving circle homeomorphisms [Poi85], which ensures that if
the rotation number of such a map is irrational, then it has an irrational circle rotation as
a factor. In this setting, the factor map is known to be monotone, and this is crucial for
deriving further information such as the unique ergodicity or the uniqueness of the minimal
set of the considered circle homeomorphism (e.g. [KH97]).

Considerable efforts have been made over the last decades to extend Poincaré’s approach
to higher dimensions, and in particular to the two-dimensional torus [MZ89, Fra88, Fra89,
KT14, BdCH16]. In particular, several conditions in terms of rotation vectors and their
convergence properties have been established that ensure the existence of irrational circle
rotations or irrational torus translations as factors [Jäg09, JT16, JP15, JP15]. However, in
all these situations it has not been know whether these irrational factors coincide with the
MEF. Likewise, the monotonicity has only been known for factor maps to irrational circle
rotations, where it can be shown ‘by hand’ (see [JP15]), but not in the case where the factor
is an irrational translation of the torus.

It turns out that monotonicity of the maximal equicontinuous factor map can be estab-
lished in considerable generality.

Theorem A. Suppose that T is a topological group acting on a locally connected compact
Hausdorff space X. Then the factor map to the MEF of (X,T ) is monotone.
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The proof is based on a careful analysis the regionally proximal relation, which can be
used to define the maximal equicontinuous structure relation in a constructive. The classes
of the former are shown to be connected, and this carries over to the equivalence classes of
the latter.

As an application, we then turn to toral flows and obtain a classification of the possible
minimal equicontinuous factors.

Theorem B. Suppose that f is a homeomorphism of the two-torus. If the MEF of (T2, f)
is minimal, then it must be one of the following three:

(i) an irrational translation on the two-torus;

(ii) an irrational rotation on the circle;

(iii) the identity on a singleton.

Acknowledgement. TJ has been supported by a Heisenberg professorship of the German
Research Council (DFG grant OE 538/6-1).

2 Monotonicity of the maximal equicontinuous factor

2.1 Notions and preliminaries

A flow is a triple (X,T, f) where X is a topological space, T is a topological group and f is a
continuous map of X×T to X, such that f(·, e) is the identity on X (e is the identity element
of T ) and such that f(f(·, s), t) = f(·, st) for s, t ∈ T . Each t ∈ T defines a homeomorphism
f t : X → X by f t := f(·, t). To simplify notation we usually write (X,T ) instead of (X,T, f)
and denote the action of t ∈ T on X by f t. A flow (X,T ) is called discrete if T = Z.

Let X,Y be sets and R ⊆ X × Y . For x ∈ X and y ∈ Y define

[x]R := {y′ ∈ Y ; (x, y′) ∈ R} and R[y] := {x′ ∈ X; (x′, y) ∈ R}.

For M ⊆ X and N ⊆ Y define

[M ]R :=
⋃
x∈M

[x]R and R[N ] := R(N) :=
⋃
y∈N

R[y].

For S ⊆ Y × Z define

RS := S ◦R := {(x, z) ∈ X × Z; ∃y ∈ Y : (x, y) ∈ R and (y, z) ∈ S)}.

If X = Y define R−1 := {(y, x); (x, y) ∈ R}.
Note that (RS)Q = R(SQ), ([x]S)Q = [x](SQ) and (RS)[y] = R(S[y]) for setsW,X, Y, Z,

elements x ∈ X, y ∈ Y and relations R ⊆ W ×X, S ⊆ X × Y and Q ⊆ Y × Z. Thus we
usually omit the brackets and write shortly RSQ, [x]SQ, and RS[y] respectively.

During this paper we will identify a function f : X → Y with its graph {(f(x), x); x ∈ X}.
Note that this graph is considered to be a subset of Y × X. Under this identification we
obtain the usual notation

f(M) =
⋃
x∈M
{y ∈ Y ; (y, x) ∈ f} = {f(x); x ∈M}

for all M ⊆ X and

f−1(N) = [N ]f =
⋃
y∈N
{x ∈ X; (y, x) ∈ f} = {x ∈ X; f(x) ∈ N}

for all N ⊆ Y .
For a metric space (X, d) denote Bε := {(x, y) ∈ X2; d(x, y) < ε} and Bε = {(x, y) ∈

X2; d(x, y) ≤ ε} for ε > 0. With the above notation we have that Bε[x] is the open ball
around x with radius ε and Bε(M) =

⋃
{Bε[m]; m ∈M} for M ⊆ X.
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Let X be a compact Hausdorff space. Then the collection UX of all neighbourhoods of
the diagonal ∆ ⊆ X ×X is a uniformity which generates the topology of X. Furthermore
UX is the only uniformity that is compatible with the topological structure of X.

If S is an equivalence relation on a set X, denote by X
/
S the corresponding partition

by equivalence classes. If S is an equivalence relation on a topological space X, then the
quotient space X

/
S is equipped with the quotient topology, i.e. the finest topology on X

/
S

such that the factor map πS : X → P : x 7→ S[x] is continuous. The following lemma can
be found in [Dav07, Proposition 1].

Lemma 2.1. Let X be a topological space and S an equivalence relation on X such that all
elements of X

/
S are closed. The following statements are equivalent.

(i) For each M ∈ X
/
S and each open U ⊆ X with M ⊆ U there exists an open set V ⊆ X

with M ⊆ V and such that whenever N ∈ X
/
S satisfies N ∩ V 6= ∅ we have N ⊆ U .

(ii) For every open subset U ⊆ X the set U∗ :=
⋃
{M ∈ X

/
S; M ⊆ U} is open.

(iii) The projection mapping πS is a closed mapping, i.e. πS maps closed sets to closed
sets.

An equivalence relation S is called upper semicontinuous, if it satisfies one of the prop-
erties in Lemma 2.1 and if every M ∈ X

/
S is a compact subset of X. A binary relation

R on a topological space X is called closed, if it is closed as a subset of X ×X. The next
Proposition shows that on compact Hausdorff spaces the notions of closed equivalence rela-
tions and upper semi-continuous equivalence relations coincide. We include a proof for the
convenience of the reader.

Proposition 2.2. Let X be a compact Hausdorff space and S an equivalence relation on
X. The following statements are equivalent.

(i) S is a upper semicontinuous.

(ii) S is closed.

(iii) X
/
S is a compact Hausdorff space.

Proof. The equivalence of (ii) and (iii) is shown in in [Rot88, Theorem 8.2.]. To obtain that
(i) implies (iii) let S be upper semi-continuous. Let M,N ∈ X

/
S. Since X is Hausdorff

and M resp. N are compact in X, these sets are also closed in X. Since compact Hausdorff
spaces are normal1 there are disjoint open sets U and V in X such that M ⊆ U and N ⊆ V .
Let Ũ := {M ′ ∈ X

/
S; M ′ ⊆ U} and define Ṽ analogously. By property (ii) of Lemma

2.1 the sets π−1S (Ũ) = U∗ and π−1S (Ṽ ) = V ∗ are open in X. Thus Ũ and Ṽ are open in

X
/
S. Since Ũ and Ṽ are disjoint neighbourhoods of M resp. N we have proven X

/
S to be

Hausdorff.
To show the implication from (iii) to (i) assume X

/
S to be a compact Hausdorff space,

i.e. S to be closed, and note that by Lemma 2.1 it is sufficient to show that every M ∈ X
/
S is

compact and that πS is a closed map. EveryM ∈ X
/
S is of the form S[x] = π1(S∩(X×{x}))

for some x ∈M and therefore closed. Here π1 denotes the projection to the first coordinate.
Since X is compact we have shown X

/
S to consist of compact sets. Further πS is a closed

mapping as a continuous function from a compact Hausdorff space to a Hausdorff space.

If X and Y are topological spaces, we call R ⊆ X ×Y monotone, if [x]R is particular we
call a function f : X → Y to be monotone if f−1({y}) = [y]f is connected for every y ∈ Y .
Furthermore an equivalence relation S on a topological space X is monotone if and only if
πS is monotone, since π−1S ({x}) = S[x] = [x]S for every x ∈ X.

If S is an equivalence relation on a topological space X, then the collection of all M ⊆ X
such that M is a connected component of some N ∈ X

/
S is a partition of X into connected

sets. We call the corresponding equivalence relation Smon the monotone refinement relation

1A topological space X is called normal, if every two disjoint closed sets of X have disjoint open neigh-
borhoods.
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of S. In [Dav07, I.4.] it is shown, that the monotone refinement relation Smon of an an upper
semicontinuous equivalence relation S on a Hausdorff space X is upper semicontinuous.
Proposition 2.2 therefore implies the following.

Proposition 2.3. If X is a compact Hausdorff space and S is a closed equivalence relation
on X, then the monotone refinement relation of S is also closed.

If (X,T ) is a flow, a binary relation R on X is called T -invariant, if for all x ∈ X
and all t ∈ T we have f t([x]R) ⊆ [f t(x)]R. Note that this is the case if and only if
f t([x]R) = [f t(x)]R for all x ∈ X and all t ∈ T .

If π : X → Y is a factor map between the flows (X,T ) and (Y, T ). Then {π−1({y}); y ∈
Y } is a partition of X and the corresponding equivalence relation S is closed and T -invariant.
Furthermore X

/
S and Y are isomorphic. If S is a closed and T -invariant equivalence

relation, then (X
/
S, T ) is a factor of (X,T ). We will therefore write factors of a flow (X,T )

as (X
/
S, T ), where S is a closed and T -invariant equivalence relation.

2.2 Monotonicity of maximal equicontinuous factors

The regionally proximal relation is defined as Srp =
⋂
α∈UX αT , where αT :=

⋃
t∈T f

tαf (t
−1)

(see [Aus88]).

Theorem 2.4 ([Aus88, Chapter 9, Theorems 1 and 3]). If (X,T ) is a flow on a compact
Hausdorff space, there is a smallest closed T -invariant equivalence relation Seq such that the
quotient flow (X

/
Seq, T ) is equicontinuous. Furthermore Seq is the smallest closed and T -

invariant equivalence relation which contains the regionally proximal relation Srp.

We call Seq the equicontinuous structure relation of the flow (X,T ). Furthermore the
factor flow (X

/
Seq, T ) is called the maximal equicontinuous factor of (X,T ).

Remark 2.5. For a large class of minimal flows (which include those for which the acting
group is abelian, as well as point distal flows) the regionally proximal relation Srp is an
equivalence relation. Since it is always closed invariant, it coincides with the equicontinuous
structure relation Seq in these cases [Aus88, p.141].

In this section will show that Srp and Seq are monotone, whenever (X,T ) is a flow on
a compact and locally connected Hausdorff space. Hence, the respective factor map πSeq

is
monotone as well. As Srp is reflexive the following Proposition shows that it is sufficient to
prove that Srp is monotone.

Proposition 2.6. Let (X,T ) be a flow on a compact Hausdorff space and S a reflexive
and monotone binary relation on X. Let Ŝ be the smallest closed T -invariant equivalence
relation that contains S. Then Ŝ is monotone.

Proof. We will show that Ŝ equals its monotone refinement relation Ŝmon. Clearly Ŝmon ⊆ Ŝ.
Since Ŝ is the intersection over all closed and T -invariant equivalence relations R such that
S ⊆ R it is left to show that Ŝmon is closed, T -invariant and S ⊆ Ŝmon.

Since Ŝ is a closed equivalence relation, Proposition 2.3 implies that Ŝmon is closed. In
order to show Ŝmon to be T -invariant, let x ∈ X and t ∈ T . Since f t : Ŝ[x] → f t(Ŝ[x]) is a
homeomorphism and Ŝ is T -invariant we know that f t(Ŝmon[x]) is a connected component
of f t(Ŝ[x]) = Ŝ[f t(x)]. Note that Ŝmon[f t(x)] is the connected component of Ŝ[f t(x)] that
contains f t(x). Thus f t(Ŝmon[x]) = Ŝmon[f t(x)] and we have shown Ŝmon to be T -invariant.

To show S ⊆ Ŝmon let x ∈ X. The reflexivity of S implies x ∈ S[x] ⊆ Ŝ[x]. Since
Ŝmon[x] is the connected component of Ŝ[x] that contains x and S[x] is a connected subset
of Ŝ[x] that contains x, it follows that S[x] ⊆ Ŝmon[x].

We now split up the proof of the fact that the regionally proximal relation Srp of a flow
(X,T ) on a locally connected and compact Hausdorff space is monotone into several lemmas.

Lemma 2.7. Let X be a topological space and R ⊆ X ×X reflexive and monotone.

(i) If M is a nonempty and connected subset of X, then [M ]R is connected.
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(ii) If f : X → X is a homeomorphism, then fRf−1 is monotone.

(iii) If (Rι)ι∈I is a family of reflexive and monotone binary relations on X, then
⋃
ι∈I Rι

is monotone.

Proof. To show (i) let x ∈M . The set [x]R∪M is a union of connected sets with nonempty
intersection. Furthermore for each x ∈ M we have ∅ 6= M ⊆ [x]R ∪M . Thus [M ]R =⋃
x∈M [x]R =

⋃
x∈M ([x]R ∪M) is connected as an union of connected sets with nonempty

intersection.
To show (ii) let x ∈ X and note that [x]f = f−1({x}) is connected as the continuous

image of a connected set. Thus (i) implies [x](fR) = [[x]f ]R to be connected. As f is
continuous we obtain the image [x](fRf−1) = ([x](fR))f−1 = f([x](fR)) to be connected.

For x ∈ X and ι ∈ I we obtain x ∈ [x]Rι and that [x]Rι is connected. Thus [x](
⋃
ι∈I Rι) =⋃

ι∈I([x]Rι) is connected as a union of connected sets with non empty intersection. This
proves (iii).

Lemma 2.8. Let X be a locally connected and compact Hausdorff space and UX the unique
uniformity on X. Then every α ∈ UX contains a monotone β ∈ UX .

Proof. Let α ∈ UX . Note that UX is the set of all neighbourhoods of the diagonal ∆ ⊆ X×X.
Thus for x ∈ X there is an open neighbourhood Ux of x with Ux × Ux ⊆ α. Since X is
locally connected there is a connected neighbourhood Vx of x such that Vx ⊆ Ux. Let
β :=

⋃
x∈X Vx × Vx. Clearly β ⊆ α and β is a neighbourhood of ∆, i.e. β ∈ Ux. To show

that β is monotone let x ∈ X and note that

[x]β = {z ∈ X; ∃y ∈ X : x, z ∈ Vy} =
⋃
{Vy; y ∈ X and x ∈ Vy}

is a union of connected subsets of X whose intersection is nonempty since it contains x.

The following lemma is a straightforward generalisation of the Cantor intersection theo-
rem for countable intersections.

Lemma 2.9. Let X be a compact Hausdorff space and (Xα)α∈A be a decreasing net of
nonempty and closed subsets of X such that for each α ∈ A there is β ∈ A with β ≥ α and
such that Xβ is connected. Then

⋂
α∈AXα is nonempty and connected.

Applying the previous Lemma, we obtain the following results about the closure and the
intersection of monotone equivalence relations.

Lemma 2.10. Let X be a compact Hausdorff space.

(i) If X is locally connected and R is a monotone and reflexive relation on X, then the
closure R of R in X ×X is also monotone.

(ii) If (Rα)α∈A is a net of closed and reflexive binary relations on X such that for all
α ∈ A there is β ∈ A with α ≤ β and such that Rβ is monotone, then

⋂
α∈ARα is

monotone.

Proof. Note that R =
⋂

(α,β)∈U2
X
αRβ. For x ∈ X we obtain

[x]R =
⋂

(α,β)∈U2
X

([x]αRβ) =
⋂

α∈UX

[x]αR.

Set Xα = [x]αR and order UX by reversed set inclusion to obtain a decreasing net (Xα)α∈UX
of nonempty and closed subsets of X. For α ∈ UX there is a monotone γ ∈ UX such that
γ ⊆ α by Lemma 2.8. Thus [x]γ is connected and and we find Xγ = [x]γR = [[x]γ]R to be
connected by Lemma 2.7(i). Lemma 2.9 therefore applies to (Xα)α∈UX and we obtain that
[x]R =

⋂
α∈UX Xα is connected. This shows (i).

To see (ii) let x ∈ X and note that [x](
⋂
α∈ARα) =

⋂
α∈A([x]Rα). Set Xα := [x]Rα

for α ∈ A. This defines a decreasing net (Xα)α∈A of non empty and closed subsets of X.
For α ∈ A there is β ∈ A with α ≤ β and such that Rβ is monotone. Thus Xβ = [x]Rβ is
connected and Lemma 2.9 yields [x](

⋂
α∈ARα) =

⋂
α∈AXα to be connected.
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Proposition 2.11. Let (X,T ) be a flow on a compact and locally connected Hausdorff space.
Then the regionally proximal relation Srp is monotone.

Proof. Note that Srp =
⋂
α∈UX αT . Denote Rα = αT =

⋃
t∈T f

tαf (t−1) for α ∈ UX and
order UX by reversed inclusion to obtain a decreasing net (Rα)α∈UX of closed and reflexive
binary relations on X. For α ∈ UX there is a monotone β ∈ UX such that β ⊆ α. For
t ∈ T we know f t to be a homeomorphism. Lemma 2.7(ii) therefore implies f tβf (t

−1) to

be monotone. Note that f tβf (t
−1) is reflexive. Lemma 2.7(iii) and Lemma 2.10(i) therefore

yield Rβ =
⋃
t∈T f

tβf (t−1) to be monotone. We have shown that for α ∈ UX there is β ∈ UX
such that β ⊆ α and such that Rβ is monotone. Thus Lemma 2.10(ii) can be applied and
shows Srp to be monotone.

Combining Proposition 2.6 and Proposition 2.11 we obtain the following Theorem.

Theorem 2.12. The maximal equicontinuous factor (X
/
Seq, T ) of a flow (X,T ) on a com-

pact and locally connected Hausdorff space has a monotone factor map, i.e. the equicontin-
uous structure relation Seq is monotone.

3 On monotone factors of flows on the torus

Our main application of Theorem 2.12 is the following.

Theorem 3.1. If the maximal equicontinuous factor of a homeomorphism of T2 is minimal,
then it is either conjugate to a flow on T2, conjugate to an irrational circle rotation, or
conjugate to a flow on a single point.

3.1 Notions and preliminaries

A flow (X,T ) is called effective, if for all t ∈ T not being the identity element the mapping
f t is not the identity on X. A flow (X,T ) is said to be strongly effective, if for all t ∈ T
not being the identity element the mapping f t is fix point free. Note that every strongly
effective flow is effective and that the reverse is valid for minimal flows, as shown in [Aus88,
Chapter 1].

If (X,T ) is a flow, then the set F of all t ∈ T such that f t is the identity on X is a
closed and normal subgroup. Thus G := T

/
F defines an action on X by f [t](x) := f t(x)

for [t] ∈ G and x ∈ X. The resulting flow (X,G) is effective and G is called the effective
subgroup.

If (X,T ) is a flow and (Y, T ) is a factor with the factor map π : X → Y , then (Y, T )
is said to be relatively effective with respect to (X,T ), if for all t ∈ T we have that f t is
the identity on X, whenever f t is the identity on Y . Note that (Y, T ) is relatively effective
with respect to (X,T ) if and only if the effective subgroups of (X,T ) and (Y, T ) coincide,
i.e. t ∈ T acts as the identity on X, whenever t acts as the identity on Y . Thus if (Y, T )
is relatively effective with respect to (X,T ) these flows can be considered to be effective
simultaneously, by going over to the effective subgroup of T if necessary. Note furthermore,
that every effective factor of a flow is relatively effective.

Lemma 3.2. If (X
/
S, T ) is a strongly effective factor of a flow (X,T ), then (X,T ) is

strongly effective.

Proof. If t ∈ T and x is a fix point of f t in X, then S[x] is a fix point of f t in Y .

During this section denote by T2 = R2/Z2 the two-torus and by p : R2 → T2 the canonical
projection. A subset M ⊆ T2 is called bounded, if every connected component of p−1(M)
is bounded. Furthermore a subset M ⊆ T2 is called unbounded, if M is not bounded. An
open subset U ⊆ T2 is called doubly-essential, if U contains two homotopically non trivial
curves which are not homotopic to each other. An open subset U ⊆ T2 is called inessential,
if all curves in U are homotopically trivial. Furthermore an open subset U ⊆ T2 is called
essential, if U is not doubly essential and not inessential. Note that an open subset U ⊆ T2
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is essential, if and only if U contains a homotopically non trivial curve γ and every other
curve is either homotopically trivial or homotopic to γ. A closed subset M ⊆ T2 is called
inessential, if T2\M is doubly essential; essential, if T2\M is essential; and doubly essential,
if T2 \M is inessential. It is well-known that if M is a continuum2, then M is bounded if
and only if M is inessential.

A subset M ⊆ T2 is called a topological disc, if it is homeomorphic to the open disc D◦,
and a topological annulus, if it is homeomorphic to the open annulus R×S1. Furthermore a
continuum M ⊆ T2 is called an annular continuum, if its complement T2\M is a topological
annulus. It is a well known fact that a continuum M is an annular continuum if and only
if M is essential and non-separating3 and that every open and simply connected subset
U ⊆ T2 is a topological disc (as a consequence of the Riemann Mapping Theorem). The
following version of the classical Moore Theorem can be found in [JKP13, Section 3]. See
also [Dav07].

Theorem 3.3. (Moore) If S an upper semi-continuous and monotone equivalence relation
on the torus T2 such that each M ∈ X

/
S is non separating and inessential, then T2

/
S is

homeomorphic to T2.

If we assume S to be an upper semi-continuous and monotone equivalence relation,
we obtain X

/
S to be a compact and connected metric space. If each M ∈ T2

/
S is non

separating and essential, i.e. an annular continuum, then the connected components of T2 \
(M ∪N) are two topological annuli, whenever M,N ∈ T2

/
S with M 6= N . Thus (T2

/
S) \

{M,N} has two connected components. In [HoYo61, Theorem 2-28] it is shown that a
compact and connected metric space X is homeomorphic to S1 if and only if for all points
x, y ∈ X with x 6= y the complement X \ {x, y} has exactly two connected components.
This proves the following proposition.

Proposition 3.4. If S an upper semi-continuous and monotone equivalence relation on
the Torus T2 such that each M ∈ X

/
S is non separating and essential, then T2

/
S is

homeomorphic to S1.

The following version of Brouwers fix point theorem will be useful.

Lemma 3.5. If U ⊆ T2 is a topological disc and f : T2 → T2 a homeomorphism such that
f(U) ⊆ U , then f has a fixed point.

3.2 Monotone factors of toral flows

We will now show that if the quotient flow under a monotone and upper semi-continuous
equivalence relation is minimal, then either all equivalence classes are bounded, or all equiv-
alence classes are unbounded.

Lemma 3.6. Let S be a monotone upper semi-continuous equivalence relation on the torus
T2. Then B := {M ⊆ T2

/
S; M bounded} is open in T2

/
S.

Proof. Let π : R2 → T2 be the canonical lift of the torus. For M ∈ B denote by CM the set
of all connected components of π−1(M). Note that all sets in CM are bounded and closed,
hence compact in R2 as M is bounded in T2 and S is upper semi-continuous. For K ∈ CM
we have CM = {K + v; v ∈ Z2}, since M is connected in T2. Thus there is ε > 0 such that
Bε(K) and Bε(L) are disjoint for distinct K,L ∈ CM .

Let U := π(Bε(π
−1(M))) and V = {N ∈ T2

/
S; N ⊆ U}. Note that π−1(U) =

Bε(π
−1(M)) which implies that U is open. As S is upper semi-continuous, we obtain⋃

V ∈V V to be open in T2, i.e. V to be open in T2
/
S by Lemma 2.1(ii). Note that M ∈ V .

To show that V ⊆ B let N ∈ V . Then
⋃
L∈CN

L = π−1(N) ⊆ π−1(U) = Bε(π
−1(M)) =⋃

K∈CM
Bε(K). As each L ∈ CN is connected there is a unique K ∈ CM such that

L ⊆ Bε(K), which implies L to be bounded in R2. This proves N to be bounded in
T2.

2A continuum is a compact and connected topological space.
3A subset M of a topological space X is caled non-separating, if X \ M has at most one connected

component.
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Lemma 3.7. Let S be a monotone upper semi-continuous T -invariant equivalence relation
on the flow (T2, T ). If (T2

/
S, T ) is minimal and if there exists an inessential set M ∈ T2

/
,

then all sets in T2
/
S are inessential.

Proof. Note that a set is inessential if and only if it is bounded. As boundedness of subsets
of the torus is invariant under homeomorphisms from the torus to the torus we know U :=
{M ⊆ T2

/
S; M unbounded} to be T -invariant. Furthermore by Lemma 3.6 we know U

to be closed in T2
/
S. Thus the minimality shows that either U = ∅ or U = T2

/
S. If we

assume the existence of an inessential set in T2
/
S, then U 6= T2

/
S, hence U = ∅. Thus all

elements of T2
/
S are inessential.

Theorem 3.8. Let (T2, T ) be a strongly effective flow. Every monotone minimal factor
(T2
/
S, T ) of (T2, T ) is either conjugate to a flow on T2, conjugate to a flow on the circle

S1 or conjugate to a flow on a single point.

Proof. First assume that there exists a doubly essential set M ∈ T2/S. As no other element
of T2

/
S can be doubly essential we obtain M to be a fix point of f t for each t ∈ T . As

(T2
/
S, T ) is assumed to be minimal, this implies that M = T2, i.e. that T2

/
S = {T2} is the

flow on a single point.
As a second case, we assume the existence of an inessential set in T2

/
S. As shown in

Lemma 3.7, we obtain all sets in T2
/
S to be inessential. Let M ∈ T2

/
S. As M is inessential

we know one connected component of T2 \M to be doubly essential and all other connected
components to be inessential. Let U be an inessential connected component of T2 \M . As
U is inessential and open and M is connected, U is simply connected and thus a topological
disc. Let U∗ := {N ∈ X

/
S; N ⊆ U}. As S is monotone, we obtain U =

⋃
N∈U∗ N ,

hence U∗ 6= ∅. Since S is upper semi-continuous we have that U∗ is open in T2
/
S. Thus

the minimality of (T2
/
S, T ) implies the existence of t ∈ T such that f t(M) ∈ U∗, i.e.

f t(M) ⊆ U . Since f t(U) is inessential, it is mapped to an inessential connected component
of f t(M), hence f t(U) ⊆ U . As f t(U) ⊆ f t(M)∪f t(U) ⊆ U , Lemma 3.5 yields the existence
of a fix point of f t, which contradicts the assumption on (T2, T ) to be strongly effective.
Thus there are no inessential connected components of T2 \M and M is non separating. We
can now apply Moores Theorem (Theorem 3.3) to obtain a homeomorphism between T2

/
S

and T2.
For the remaining case assume that all sets in T2

/
S are essential. Let M ∈ T2

/
S.

As each connected component of T2 \ M is a union of essential sets, the complement of
M cannot contain any inessential connected components. By connectedness of M , T2 \M
cannot contain more than one essential connected component either, so M is non separating.
Thus Proposition 3.4 yields T2

/
S to be homeomorphic to S1.

Remark 3.9. Note that the argument in the proof of Theorem 3.8 shows that one can obtain
the homeomorphism class of T2

/
S by looking at some M ∈ T2

/
S. If M is inessential, then

T2
/
S is homeomorphic to T2 and all sets in T2

/
S are inessential. If M is essential, then we

obtain T2
/
S to be homeomorphic to S1 and all sets in T2

/
S are essential. If M is doubly

essential, then T2
/
S is homeomorphic to a point and M = T2.

If we assume the flow instead of the factor to be minimal we obtain the following.

Corollary 3.10. Every monotone factor (T2
/
S, T ) of a minimal flow (T2, T ) is either

conjugate to a flow on T2, conjugate to a flow on the circle S1 or conjugate to a flow on a
single point.

Proof. Let G be the effective subgroup of T with respect to the flow (T2, T ). Note that
(T2, G) is an effective and minimal flow, hence strongly effective. Since (T2

/
S,G) is a factor

of the minimal flow (T2, G) we obtain (T2
/
S,G) to be minimal. As the factor map πS is

monotone, the statement follows from Theorem 3.8.

Combining Theorem 2.12 with Corollary 3.10 yields the following.
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Corollary 3.11. Every maximal equicontinuous factor of a minimal flow on the torus T2

is either conjugate to an equicontinuous flow on T2, to an equicontinuous flow on the circle,
or the flow on a single point.

As another corollary of Theorem 3.8 we obtain the following.

Corollary 3.12. Every monotone minimal relatively effective factor (X
/
S, T ) of a flow

(T2, T ) is either conjugate to a flow on T2, conjugate to a flow on the circle or conjugate to
a flow on a single point.

Proof. Let G be the effective subgroup of T with respect to (T2
/
S, T ) and note that the

induced flows (T2, G) and (T2
/
S,G) are effective and (T2

/
S,G) is a monotone minimal factor

of (T2, G). As (T2
/
S,G) is minimal and effective, it is also strongly effective. Thus (T2, G)

is strongly effective by Lemma 3.2, and Theorem 3.8 implies T2
/
S to be homeomorphic

either to T2, to S1, or to a single point.

If the flow is a Z-action, then every minimal factor is effective as shown in the next
lemma.

Lemma 3.13. Every non trivial4 monotone minimal factor of a discrete flow (T2,Z) is
effective.

Proof. If (T2
/
S,Z) is a non trivial monotone minimal factor of (T2,Z) that is not effective,

then there is n ∈ N such that fn is the identity in T2
/
S, hence the orbit of any M ∈ X

/
S

has only finitely many elements. As T2
/
S is assumed to be minimal this implies T2

/
S to

have finitely many elements. But each of these elements is closed as a subset of the connected
set T2 and we obtain T2

/
S to consist of exactly one element, a contradiction.

As the minimal discrete flows on the circle are the irrational circle rotations we obtain
the following corollary from Lemma 3.13 and Corollary 3.12.

Corollary 3.14. Every monotone minimal factor of a discrete flow (T2,Z) is either con-
jugate to a discrete flow on T2, conjugate to an irrational circle rotation or conjugate to a
discrete flow on a singleton.

Remark 3.15. We note that an analogous result can be obtained for homeomorphisms of
the closed annulus. In this case, if the maximal equicontinuous factor is minimal, then it
can only be either an irrational rotation on the circle or the identity on a singleton.

Finally, we want to close with two consequences specifically concern the dynamics of
torus homeomorphisms and directly relate to current developments in this topic (compare
[Jäg09, JP15, KPS16, JT16]) . Equivalent conditions for the existence of a semiconjugacy
from an area-preserving torus homeomorphism to an irrational rotation of the two-torus have
been established [Jäg09]. However, whether the factor map needs to be monotone in this
situation has not been known so far. It now follows from Theorem 2.12 and Corollary 3.11.

Corollary 3.16. Suppose that a homeomorphism f of the two-torus is homotopic to the
identity and has an irrational translation ρ of the two-torus as a factor. Further, assume
that the factor map is homotopic to the identity. Then ρ is the maximal equicontinuous
factor and the factor map is monotone.

Proof. As f has a two-dimensional irrational rotation ρ as a factor, Corollary 3.11 implies
that the maximal equicontinuous factor of f is a two-dimensional irrational rotation ρ′ as
well. If both rotations are conjugate, so that ρ is the maximal equicontinuous factor (up to
conjugacy), then monotonicity follows from Theorem 2.12.

Hence, suppose for a contradiction that ρ and ρ′ are not conjugate. Suppose that ρ lifts
to a translation Rα : R2 → R2, x 7→ x + α and ρ′ lifts to a corresponding translation Rβ .
Let h be factor map to ρ and h′ the maximal equicontinuous factor map.

The fact that the map h is homotopic to the identity implies that the rotation number
of a suitable lift F : R2 → R2 equals α, that is, limn→∞(Fn(x) − x)/n = α for all x ∈ R2

4A factor (Y, T ) of a flow (X,T ) is considered to be trivial, if Y consists of one point.
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(e.g. ). Suppose that the action of h′ on the first homology group of T2, which is isomorphic
to Z2, is given by the two-by-two integer matrix A ∈M2×2(Z). Then a standard argument
as in [Kwa92, Jäg09] yields that β = Aα. However, if A is invertible, then this means that
ρ and ρ′ are conjugate by the induced linear torus automorphism TA induced by A. If A is
not invertible, then ρ′ is a factor of ρ, with factor map TA, but conversely ρ is not a factor
of ρ′. This contradicts the fact that ρ′ is the maximal equicontinuous factor.

If a torus homeomorphism f , homotopic to the identity, is semiconjugate to a one-
dimensional irrational rotation ρ : T1 → T1, then a construction in [BCJ15] shows that it is
possible that all fibres h−1(ξ) of the factor map h : T2 → T1 are hereditarily indecomposable
continua (so-called pseudo-circles [Bin48]) and hence have a ‘wild’ topological structure. If
the maximal equicontinous factor is two-dimensional, then this is not possible anymore.

Recall that a continuum K is decomposable if it is the union of two non-empty subcon-
tinua.

Corollary 3.17. Suppose that the maximal equicontinuous factor of a torus homeomorphism
f is (conjugate to) an irrational rotation ρ of the two-torus. Further, assume that h1 is a
factor map from f to a one-dimensional irrational rotation ρ1. Then the fibres of h1 are finite
unions of decomposable continua. Moreover, if the action Z2 → Z of h on homology is of
the form v 7→ 〈u, v〉 for some irreducible vector u ∈ Z2, then the fibres of h are decomposable
continua.

Note that due to the characterisation in [JP15], the above continua are all annular (the
complement of a topological annulus embedded in the torus).

Proof. Let h be the factor map from f to the maximal equicontinuous factor ρ. Then
h1 = h̃ ◦ h, where h̃ is a factor map from ρ to ρ1. However, any factor map from a two-
dimensional to a one-dimensional irrational rotation is of the form x 7→ 〈x, u〉 for some
integer vector u ∈ Z2 \ {0}. By performing a linear change of coordinates, we may assume
that u is horizontal, that is, u = (m, 0) for some m ∈ N. This means that h̃ is just the
composition of the projection to the first coordinate and the covering map ξ 7→ mξ mod 1
on the circle.

If m = 1, then it follows from the construction in [JP15, Proof of Theorem 1] that the
fibres of h̃ ◦ h = π1 ◦ h are essential annular continua. However, we have that

(π1 ◦ h)−1(ξ) = h−1({ξ} × T1) = h−1([0, 1/2]) ∪ h−1([1/2, 1])

and the two sets on the right are subcontinua of the fibre (π1 ◦ h)−1(ξ), since preimages of
connected sets under monotone maps are are connected.

If m > 1, then fibres of h1 = h̃ ◦ h are finite unions of fibres of π1 ◦ h. This completes
the proof.
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[Jäg09] T. Jäger. Linearisation of conservative toral homeomorphisms. Invent. Math., 176(3):601–616, 2009.
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