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ABSTRACT. Due to a result by Glasner and Downarowicz, it is known that a minimal system is
mean equicontinuous if and only if it is an isomorphic extension of its maximal equicontinuous
factor. The majority of known examples of this type are almost automorphic, that is, the factor
map to the maximal equicontinuous factor is almost one-to-one. The only cases of isomorphic
extensions which are not almost automorphic are again due to Glasner and Downarowicz,
who in the same article provide a construction of such systems in a rather general topological
setting.

Here, we use the Anosov-Katok method in order to provide an alternative route to such
examples and to show that these may be realised as smooth skew product diffeomorphisms
of the two-torus with an irrational rotation on the base. Moreover – and more importantly
– a modification of the construction allows to ensure that lifts of these diffeomorphism to
finite covering spaces provide novel examples of finite-to-one topomorphic extensions of irra-
tional rotations. These are still strictly ergodic and share the same dynamical eigenvalues as
the original system, but show an additional singular continuous component of the dynamical
spectrum.

2010 Mathematics Subject Classification. 37B05 (primary), 37C05 (secondary).

1. INTRODUCTION

The celebrated Halmos-von Neumann Theorem provides a classification, up to isomor-
phism, of ergodic measure-preserving dynamical systems with discrete dynamical spectrum.
Moreover, any such system can be realised as a rotation on some compact abelian group
[vN32, HvN42]. From the measure-theoretic viewpoint, this provides a rather complete
picture for the class of dynamical systems with discrete spectrum. However, topological re-
alisations of such systems can still show a surprising variety of different behaviours. One
particular subclass that has recently attracted considerable attention are mean equicontinu-
ous systems [LTY15, GRM15, LYY21, HLY11, GRLZ19]. In the minimal case, Downarowicz
and Glasner showed that these are exactly those topological dynamical systems which are
measure-theoretically isomorphic to their maximal equicontinuous factor (MEF) via the re-
spective continuous factor map [DG16]. Such systems are called isomorphic extensions (of
the MEF). Equivalently, these systems are characterised by discrete spectrum with contin-
uous eigenfunctions. A generalisation of these results to the non-minimal case and more
general group actions is provided in [FGL22]. Subsequent work has concentrated on char-
acterising different types of mean equicontinuous systems in terms of invertibility properties
of the factor map to the MEF. For instance, the fact that almost all points of a strictly ergodic
system are injectivity points of the factor map, which implies mean equicontinuity, is equiv-
alent to the stronger property of diam mean equicontinuity [GR17, GRJY21].

Examples of mean equicontinuous systems in the literature are abundant. In particular,
these include the classes of regular Toeplitz flows [JK69, Wil84, MP79, Dow05] and regu-
lar model sets arising from Meyer’s cut and project method [Mey72, Sch00, Sch00, Moo00,
BLM07]. In both cases, the factor map is almost surely injective, so that the dynamics are
diam mean equicontinuous. Examples of mean equicontinuous systems whose factor maps
are not almost surely injective are given by certain irregular Toeplitz flows (e.g. [Wil84])
and irregular models sets [FGJO21]. In these cases, the systems are almost automorphic,
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meaning that the factor maps are almost one-to-one, i.e. the set of injectivity points is resid-
ual.

Mean equicontinuous systems for which the factor map to the MEF has no singular fibres
are much more difficult to find. In fact, to the best of our knowledge, the only non-trivial
examples1 were so far given by Glasner and Downarowicz in [DG16], who showed that
homeomorphisms with these properties are generic in certain spaces of extensions of mini-
mal group rotations. One aim of this note is to provide an alternative construction of such
examples based on the well-known Anosov-Katok method [AK70, FK04]. As a byproduct,
we also obtain the smoothness of the resulting diffeomorphisms.

Theorem 1.1. There exist C∞-diffeomorphisms ϕ of the two-torus with the following proper-
ties.

(a) ϕ is a skew product over some irrational rotation Rα ∶ T1 → T1, x↦ x + α mod 1.

(b) ϕ is totally strictly ergodic2 and mean equicontinuous, with the rotation Rα as its
maximal equicontinuous factor and the projection to the first coordinate as the factor
map.

(c) The unique ϕ-invariant measure µ is the projection of the Lebesgue measure λ on
T1 onto some measurable graph, that is, it is of the form µ = (IdT1 × γ)∗λ, where
γ ∶ T1 → T1 is measurable.

Note that since the projection to the first coordinate is the factor map to the MEF, all fibres
are circles. In particular, there exist no injectivity points. A genericity statement similar to
that in [DG16] can also be obtained (see Remark 4.1(a)), but we will not focus on this issue.

The price we have to pay for the smoothness of the examples is that of a more restricted
setting. While the construction in [DG16] allows to choose an arbitrary strictly ergodic sys-
tems as factor, our examples are always extensions of irrational rotations with Liouvillean
rotation number. However, on the positive side, the Anosov-Katok construction allows to
exert additional control over the lifts of the resulting torus diffeomorphisms to finite cover-
ing spaces, and also of all iterates. We can thus ensure that all these mappings are uniquely
ergodic. This entails that the finite lifts do not have additional dynamical eigenvalues, so
that their discrete spectrum coincides with that of the original system and there has to be a
continuous part of the dynamical spectrum. A classical result of Katok and Stepin on cyclic
approximations [KS67], combined with further modifications of the construction, allows to
ensure that this new part of the spectrum is singular continuous. Altogether, we obtain the
following.

Theorem 1.2. For any m ∈ N with m ⩾ 2, there exist C∞-diffeomorphisms ϕ of the two-torus
with the following properties.

(a) ϕ is a skew product over some irrational rotation Rα ∶ T1 → T1, x↦ x + α mod 1.
(b) ϕ is totally strictly ergodic and a measure-theoreticm to 1 extension of the irrational
rotation Rα, which is the maximal equicontinuous factor of the system.

(c) The unique ϕ-invariant measure µ is the projection of the Lebesgue measure λ on T1

onto some m-valued measurable graph, that is, it is of the form µ = ∑mj=1(IdT1 ×γj)∗λ,
where γj ∶ T1 → T1 are measurable functions for j = 1, . . . ,m and γi(x) ≠ γj(x)
λ-almost surely for all i ≠ j.3

1A ‘trivial’ example would be a homeomorphism of the circle with a unique fixed point. In this case, the MEF is
just a single point.

2All iterates of ϕ are strictly ergodic.
3We call such systems m:1-topomorphic extensions (of the MEF) in analogy to the notion of topoisomorphic

extensions, for which the topological factor map to the MEF is measure-theoretically one-to-one and hence measure-
theoretic isomorphism.
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(d) The dynamical spectrum of ϕ is given by the (discrete) dynamical spectrum of Rα
and a singular continuous component.

In the casem = 2, these examples are measure-theoretically similar to (generalised) Thue-
Morse subshifts [Kea68], and also to strictly ergodic irregular Toeplitz flows constructed by
Iwanik and Lacroix in [IL94]. In both cases, the systems are also measure-theoretically finite-
to-one extensions of their MEF, exhibit the same discrete spectrum as the MEF and equally
show an additional singular continuous part of the spectrum. However, the topological
structure of these examples is quite different, since Toeplitz flows always have a residual set
of injectivity points for the projection to the MEF, whereas almost all fibres over the MEF of
the generalised Thue-Morse subshift contain exactly two points.

Note that as measure theoretically finite-to-one extensions of equicontinuous systems,
the examples provided by Theorem 1.1 and 1.2 have zero entropy. An interesting question,
which we have to leave open here, is to understand if their complexity can be adequately
described by some notion of slow entropy on a suitable scale or other topological invariants
(see [KT97, Pet16, FGJ16]).

Structure of the article: In Section 2, we provide all the required preliminaries on topological
dynamics, spectral theory, mean equicontinuity and the Anosov Katok method. In Section 3,
we show that mean equicontinuity is a Gδ-property. This observation has been made already
in [DG16], but in order to simplify the Anosov Katok construction carried out in Section 4 we
provide a different Gδ-characterisation of mean equicontinuity here. Finally, in Section 5,
we discuss how to modify the construction in order to ensure that all iterates of all finite lifts
will still be strictly ergodic, no new dynamical eigenvalues occur and the additional spectral
component is singular continuous.

2. PRELIMINARIES

2.1. TOPOLOGICAL AND MEASURE-PRESERVING DYNAMICS. We refer to standard textbooks
such as [Aus88, BS02, Wal82, KH97] for the following basic facts on topological dynamics
and ergodic theory. Throughout this article, a topological dynamical system (tds) is a pair
(X,ϕ), where X is a compact metric space and ϕ is a homeomorphism of X. We say
ϕ (or (X,ϕ)) is minimal if there exists no non-empty ϕ-invariant compact subset of X.
Equivalently, ϕ is minimal if for all x ∈ X the ϕ-orbit Oϕ(x) = {ϕn(x) ∣ n ∈ Z} of x is dense
in X. The tds (X,ϕ) is called equicontinuous if for any ε > 0 there exists δ > 0 such that
dX(x, y) < δ implies dX(ϕn(x), ϕn(y)) < ε for all n ∈ N. In this case, there is an equivalent
metric on X such that ϕ becomes an isometry. When (X,ϕ) is both equicontinuous and
minimal, thenX can be given the structure of a compact abelian group with group operation
⊕ such that ϕ is just the rotation by some element from X, that is, there exists α ∈ X such
that ϕ(x) = x ⊕ α for all x ∈ X. We write x ⊖ y for x ⊕ (⊖y) in this situation, where ⊖y is
the inverse of y. Since minimal rotations on compact abelian groups are always uniquely
ergodic, the same holds for minimal equicontinuous systems.

Another tds (Y,ψ) is called a factor of (X,ϕ) with factor map π ∶X → Y if π is continuous
and onto and satisfies π ○ ϕ = ψ ○ π. If in addition π is a homeomorphism, we say (X,ϕ)
and (Y,ψ) are conjugate. Note that both minimality and equicontinuity are inherited by
factors. Since factor maps are in general not unique, we will sometimes also refer to the
triple (Y,ψ, π) as a factor in order to specify the factor map. We call such a triple a maximal
equicontinuous factor (MEF) of (X,ϕ) if (Y,ψ) is equicontinuous and for any other equicon-
tinuous factor (Z,ρ, p) there exists a unique factor map q between (Y,ψ) and (Z,ρ) such
that p = q ○ π. The existence of a MEF is ensured by the following statement, which also
addresses the question of uniqueness.

Theorem 2.1 ([Aus88, Theorem 9.1, p. 125]). Every topological dynamical system (X,ϕ)
has a MEF (Y,ψ, π). If (Ŷ , ψ̂, π̂) is another MEF, then there is a unique conjugacy h ∶ (Y,ψ) →
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(Ŷ , ψ̂) such that π̂ = h ○ π. In particular, the systems (Y,ψ) and (Ŷ , ψ̂) are conjugate in this
case.

Remark 2.2. (a) Despite the lack of uniqueness, we will often refer to a MEF (Y,ψ)
of (X,ϕ) as ‘the MEF’, in particular in situations where we are only interested in
conjugacy-invariant properties.

(b) Note also that once we have fixed an equicontinuous tds (Y,ψ) as the MEF of
a minimal system (X,ϕ), the corresponding factor map π is unique modulo post-
composition with a rotation on Y (where we refer to the above-mentioned group
structure of minimal equicontinuous systems). The reason is the fact that in this
case, given two different factor maps π1, π2 ∶ X → Y , the Y -valued function π1 ⊖ π2
is continuous and ϕ-invariant, and therefore constant by minimality.

A measure-preserving dynamical system (mpds) is a quadruple (X,A, µ,ϕ) consisting of
a probability space (X,A, µ) and a measurable transformation ϕ ∶ X → X that preserves
the measure µ, that is, ϕ∗µ = µ, where ϕ∗µ(A) = µ(ϕ−1(A)). An mpds is ergodic if every
ϕ-invariant set A ∈ A has measure 0 or 1. This is equivalent to the validity of the assertion
of the Birkhoff Ergodic Theorem: for any f ∈ L1(µ), there holds

lim
n→∞

1

n

n−1
∑
i=0

f ○ ϕi(x) = ∫
X
f dµ (1)

for µ-almost every x ∈X. Given two mpds (X,A, µ,ϕ) and (Y,B, ν, ψ), we call a measurable
map h ∶ X → Y a measure-theoretic isomorphism if there exist sets A ∈ A, B ∈ B such that
µ(A) = ν(B) = 1, h ∶ A→ B is a bi-measurable bijection, h∗µ = ν and ϕ ○ h = ψ ○ h on A.

The mpds we consider will mostly be topological, that is, X will be a compact metric
space, A = B(X) the Borel σ-algebra on X, µ a Borel measure and ϕ a homeomorphism. In
particular, this means that ϕ is a bi-measurable bijection. For any tds (X,ϕ), the existence of
at least one ϕ-invariant probability measure is ensured by the Krylov-Bogolyubov Theorem.
If there exists exactly one invariant measure – which is necessarily ergodic in this case –
we call a tds uniquely ergodic. In this case, the Uniform Ergodic Theorem states that the
convergence of the ergodic averages in (1) is uniform for any continuous function f on X.
Actually, the same holds if ϕ admits multiple invariant measures, but the integral of the
function f is the same with respect to all of them. This a more or less direct consequence of
the Krylov-Bogolyubov procedure and can be extended, to families of continuous functions
that are compact in the uniform topology, in the following way.

Theorem 2.3 (Simultaneous Uniform Ergodic Theorem). Suppose that (X,ϕ) is uniquely
ergodic with invariant measure µ. For any compact family F ⊆ C(X, [0,1]) of continuous
functions and x ∈X, the simultaneous ergodic averages

An ∶X ×F Ð→ R , (x, f)z→ 1

n

n−1
∑
i=0

f (ϕi(⋅))

converge uniformly to the function (x, f)↦ ∫ f dµ.

We omit the proof, which is a straightforward adaptation of the standard argument for
the Uniform Ergodic Theorem (see e.g. [Wal82, Theorem 6.19]).

2.2. SPECTRAL THEORY OF DYNAMICAL SYSTEMS. Given an mpds (X,A, µ,ϕ), the associated
Koopman operator is given by

Uϕ ∶ L2
µ(X)→ L2

µ(X) , f ↦ f ○ ϕ .
Since µ is ϕ-invariant, Uϕ is a unitary operator, so that σ(Uϕ) ⊆ S1. It is well-known that
spectral properties of Uϕ are closely related to dynamical properties of the system. For
instance, ergodicity of ϕ is equivalent to the simplicity of 1 as an eigenvalue, and weak
mixing of the system is equivalent the absence of any further eigenvalues.
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For any continuous function f ∶ σ(Uϕ) → C, the continuous functional calculus yields the
existence of a bounded linear operator f(Uϕ) on L2

µ(X) such that the mapping

C(σ(Uϕ),C)→ C∗(Uϕ) = {f(Uϕ) ∣ f ∈ C(σ(Uϕ),C)} , f ↦ f(Uϕ)

is an isomorphism of C∗-algebras. Given g ∈ L2
µ(X), this further allows to define a bounded

linear functional

`g ∶ C(σ(Uϕ),C)→ C , f ↦ ⟨f(Uϕ)g, g⟩
and thus, by virtue of the Riesz Representation Theorem, a Borel measure µg on σ(Uϕ) ⊆ S1
such that

⟨f(Uϕ)g, g⟩ = ∫
σ(Uϕ)

f dµg .

The measure µg is called the spectral measure associated to g. Moreover, there exists an
orthogonal decomposition

L2
µ(X) = L2

µ(X)pp ⊕L2
µ(X)sc ⊕L2

µ(X)ac

of L2
µ(X), where

L2
µ(X)pp = {g ∈ L2

µ(X) ∣ µg is pure point} ,
L2
µ(X)sc = {g ∈ L2

µ(X) ∣ µg is singular continuous } ,
L2
µ(X)ac = {g ∈ L2

µ(X) ∣ µg is absolutely continuous} .

In our setting the reference measure with respect to which the singularity and absoluteness
(of continuity) is defined is the Lebesgue measure on the circle.

The spectra σpp(Uϕ), σsc(Uϕ) and σac(Uϕ) obtained from the restriction of Uϕ to these
subspaces are called the discrete/pure point, singular continuous and absolutely continuous
part, or component, of the dynamical spectrum of Uϕ. Note that the different spectral parts
need not be disjoint.

In the case of purely discrete spectrum, it turns out that a system is uniquely charac-
terised, up to isomorphism, by the group of its dynamical eigenvalues.

Theorem 2.4 (Halmos–von Neumann, [vN32, HvN42]). An ergodic mpds (X,A, µ,ϕ) has
purely discrete spectrum if and only if it is measure-theoretically isomorphic to a minimal ro-
tation of a compact abelian group equipped with its Haar measure. Moreover, two mpds with
purely discrete spectrum are are isomorphic if and only if they have the same group of eigenval-
ues.

In order to prove the existence of a singular continuous spectral component, we will use
a classical result from the theory of approximations by periodic transformations presented
in [KS67]. An mpds (X,A, µ,ϕ) admits cyclic approximation by periodic transformations
(capt) with speed s ∶ N → R+

0 if there exists a sequence (ϕn)n∈N of bijective bi-measurable
transformations on X and a sequence (Pn)n∈N of finite measurable partitions of X, Pn =
{Pn,1, . . . , Pn,Kn}, such that for all n ∈ N

(P1) ϕn cyclically permutes the elements of Pn;
(P2) for each A ∈ A, there exist An ∈ σ(Pn) such that µ(A∆An)

n→∞Ð→ 0;
(P3) ∑Kni=1 µ(ϕ(Pn,i)∆ϕn(Pn,i)) ≤ s(Kn).

Here, σ(Pn) denotes the σ-algebra generated by Pn.

Theorem 2.5 ([KS67, Corollary 3.1]). If an mpds (X,A, µ,ϕ) admits cyclic approximation
by periodic transformations (capt) with speed s ∶ N → R+

0 and limn→∞ ns(n) = 0, then Uϕ has
no absolutely continuous spectral component, that is, σac(Uϕ) = ∅.
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2.3. MEAN EQUICONTINUITY. A tds (X,ϕ) is called mean equicontinuous if for all ε > 0
there is δ > 0 such that dX(x, y) < δ implies

dB(x, y) = lim
n→∞

1

n

n−1
∑
i=0

d(ϕi(x), ϕi(y)) < ε (2)

It turns out that in the minimal case, mean equicontinuity implies unique ergodicity and
is moreover equivalent to a certain invertibility property of the factor map onto the MEF.

Theorem 2.6 ([DG16, Thm. 2.1]). Suppose (X,ϕ) is minimal and (Y,ψ, π) is a MEF. Denote
by ν the unique invariant measure of (Y,ψ). Then the following are equivalent.

(1) (X,ϕ) is mean equicontinuous.
(2) (X,ψ) is uniquely ergodic with unique invariant measure µ and π is a measure-

theoretic isomorphism between the mpds (X,B(X), µ,ϕ) and (Y,B(Y ), ν, ψ).
Given a uniquely ergodic tds (X,ϕ) and a factor (Y,ψ, π) (which is automatically uniquely

ergodic as well), we say (X,ϕ) is an isomorphic extension of (Y,ψ) if π is a measure-
theoretic isomorphism between the two mpds (X,B(X), µ,ϕ) and (Y,B(Y ), ν, ψ), where µ
and ν are the unique invariant measures for ϕ and ψ, respectively. Hence, condition (2)
above can be rephrased by saying that (X,ϕ) is an isomorphic extension of (Y,ψ).

Note that the above statement implies, in particular, that the dynamical spectrum of mean
equicontinuous systems coincides with that of the MEF and is therefore purely discrete.

The mapping dB ∶X ×X → R+
0 defined in (2) is always a pseudo-metric on X. It is called

the Besicovitch pseudo-metric. For mean equicontinuous systems, it provides a way to directly
define a MEF of the system.

Proposition 2.7 ([DG16]). Suppose (X,ϕ) is mean equicontinuous. Define an equivalence
relation on X by

x ∼ y ⇔ dB(x, y) = 0 .

Then the quotient system (X/∼, ϕ/∼) together with the canonical projection as a factor map is
a MEF.

The proof of this fact in [DG16] is implicit – it is contained in the proof of [DG16, Theorem
2.1].

2.4. THE ANOSOV-KATOK METHOD. The Anosov-Katok method is arguably one of the best-
known and most widely used constructions in smooth dynamics and allows to obtain a broad
scope of examples with particular combinations of dynamical properties. Although many
readers will already be familiar with the general method, we provide a brief introduction
in order to fix notation and comment on some specific issues that will be relevant in our
context. The construction of mean equicontinuous diffeomorphism of the two-torus will
then be carried out in Section 4, while the modification required to obtain the finite-to-one
extensions in Theorem 1.2 will be discussed in Section 5.

We restrict to the case of tori Td = Rd/Zd and denote by Homeo (Td) the space of home-
omorphisms of the d-dimensional torus, by Ck (Td) the space of k-times differentiable torus
endomorphisms (including the cases k = ∞ and k = ω, were the later stands for ‘real-
analytic’) and let

Diffeok (Td) = {ϕ ∈ Homeo(Td) ∣ ϕ,ϕ−1 ∈ Ck (Td)} .

We will identify Diffeo0 (Td) and Homeo (Td). Further, we denote the supremum metric on
C0 (Td) by dsup and let

dk(ϕ,ψ) = k
max
i=0

max{dsup (ϕ(i), ψ(i)) , dsup ((ϕ−1)(i) , (ψ−1)(i))} .

be the standard metric on the space of torus diffeomorphisms. By Bkε (ψ), we denote the
ε-ball around ψ in Diffeok(Td).
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Our aim is to recursively construct a sequence (ϕn)n∈N of torus diffeomorphisms accord-
ing to the following scheme.

● Each ϕn will be of the form Hn ○Rρn ○H−1
n , where Rρ ∶ Td → Td, x↦ x + ρ denotes

the rotation with rotation vector ρ ∈ Td and Hn ∈ Diffeo∞ (Td).
● TheHn will be of the formHn = h1○. . .○hn, where each hn ∈ Diffeo∞ (Td) commutes

with the rotation Rρn−1 , that is, hn ○Rρn−1 = Rρn−1 ○ hn. Note that consequently we
have that Hn ○ Rρn−1 ○H−1

n = ϕn−1. Hence, at this stage, we have introduced the
new conjugating map hn, but the system has not changed yet.

● When going from step n−1 to n in the construction, we choose hn first and only pick
the new rotation vector ρn afterwards. Therefore, the continuity of the mapping
ρ↦Hn ○Rρ ○H−1

n (with respect to the metric dk for any k ∈ N) allows to control the
difference between ϕn−1 and ϕn in the respective metric.

● As a consequence, we can ensure that the resulting sequence (ϕn)n∈N is Cauchy in
Diffeok (Td) for any k ∈ N, simply by recursively choosing ρn sufficiently close to
ρn−1 with respect to dn in the n-th step of the construction. This ensures that the
ϕn converge to some limit ϕ ∈ Diffeo∞ (Td).

So far, the above items explain how to ensure the convergence of the constructed sequence
(ϕn)n∈N, but they do not yet specify how to obtain any particular dynamical properties. It
turns out, however, that the method is tailor-made to realise any Gδ-properties in the space
Homeo(Td). Suppose we want to ensure that our limit diffeomorphism ϕ belongs to a set
of torus homeomorphism A ⊆ Homeo (Td) which is Gδ, that is, it is of the form A = ⋂n∈NUn
with Un ⊆ Homeo (Td) open. As discussed below, both minimal and uniquely ergodic torus
homeomorphisms can be characterised in this way. We then proceed as follows.

i) By choosing hn and ρn accordingly, we ensure that ϕn ∈ Un. How this is done ex-
actly depends on the property that defines A. This is actually the crucial step in the
construction, and we will provide details further below.

ii) Since Un is open, there exists ηn > 0 such that B0
ηn(ϕn) ⊆ Un. By ensuring that the

distance between ϕj and ϕj+1 is small and decays sufficiently fast for all j ≥ n, this
yields ϕ = limj→∞ ϕj ∈ B0

ηn(ϕn) ⊆ Un as well. Since this works for all n ∈ N, we obtain
ϕ ∈ A.

iii) In order to ensure ϕn ∈ Un, it will often be convenient not to go from ϕn−1 to ϕn directly,
but to pass through some intermediate map ϕ̂n−1 instead. This is, for example, useful to
ensure that the limit system is minimal and/or uniquely ergodic. For instance, we may
first choose a totally irrational rotation number ρ̂n−1 and define ϕ̂n−1 =Hn○Rρ̂n−1 ○H−1

n .
Then ϕ̂n−1 is minimal and uniquely ergodic, since this is true for the irrational rotation
Rρ̂n−1 . If Un is defined in such a way that it contains all minimal/uniquely ergodic torus
homeomorphisms, then ϕ̂n−1 ∈ Un is automatic. If ϕn is then chosen sufficiently close
to ϕ̂n−1 (by choosing ρn close to ρ̂n−1), we obtain ϕn ∈ Un as required. Further, if both
ρ̂n−1 and ρn are close enough to ρn−1, then ϕn will also be close to ϕn−1 in Diffeok(Td).

iv) In Section 4, we will actually use a further modification of the above scheme and pass
through an additional third map ϕ̃n−1 = Hn ○Rρ̃n−1 ○H−1

n , where ρ̃n−1 is irrational, but
not totally irrational (so the entries of the rotation vector are rationally related).

The following works in high generality for any compact metric space X. Using a very
similar argument as made in ii) we obtain

Proposition 2.8. Let A = ⋂n∈NUn ⊆ Homeo(X) =∶ Z where the Un are open w.r.t. d0. There
exists a sequence (ηAn )

n∈N of functions ηAn ∶ Zn Ð→ R+ such that if a sequence (ϕn)n∈N ∈ ZN

satisfies

d0 (ϕn, ϕn+1) < ηAn (ϕ1, . . . , ϕn) and ϕn ∈ Un (3)

for all n ∈ N, then it converges with limit ϕ = limn→∞ ϕn ∈ A .
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Sketch of proof. If we set ηAn < 2−n any sequence satisfying (3) will be Cauchy and converge
to some ϕ ∈ Z as Z is complete. The idea is now to choose ηA small enough such that (3)
implies ϕn ∈ Uk for n ⩾ k. This can be done by fixing some δk > 0 such that Bδk(ϕk) ⊆ Uk
and then make sure that (3) implies d0(ϕn, ϕk) < δk, i.e. ϕn ∈ Bδk(ϕk). One way to do that
and to encode all the previously imposed conditions into ηAn is to recursively ensure that

ηAn (ϕ1, . . . , ϕn) < min(δn
2
,
n−1
min
k=1

(ηAk (ϕ1, . . . , ϕk) − d0(ϕk, ϕn))) . (4)

Now we argue that if (ϕn)n∈N satisfies (3) then (4) inductively implies

ηAk (ϕ1, . . . , ϕk) > d0(ϕk, ϕn) (5)

for any n > k and thus both ηAn > 0 and ϕn ∈ Bδk(ϕk) (as ηAk (ϕ1, . . . , ϕk) < δk). For n = k + 1
(5) holds trivially. Now for the induction step n→ n + 1 we have that

d0 (ϕn+1, ϕn) < ηAn (ϕ1, . . . , ϕn) < ηAk (ϕ1, . . . , ϕk) − d0(ϕk, ϕn) .
The triangle inequality now implies (5).

In total ϕm ∈ Bη(ϕn) ⊆ Bη(ϕn) for all m > n. So ϕ ∈ Bη(ϕn) ⊆ Un for all n ∈ N and thus
ϕ ∈ ⋂n∈NUn = A. �

2.5. Gδ -CHARACTERISATION OF STRICT ERGODICITY. It is well-known that the set Homeose(X)
of strictly ergodic homeomorphisms of X is Gδ in Homeo(X). For the convenience of the
reader, we include a short proof of this folklore result.

We first show that minimality is Gδ. Let ε > 0. A set A ⊆X is called ε-dense if Bε(A) =X.
Observe that the mapping ξ is minimal if and only if for any ε > 0 there is M ∈ N such
that {x,ϕ(x), . . . , ϕM(x)} is ε-dense for any x ∈ X. Furthermore, the k-th iterate of a
homeomorphism depends continuously on that homeomorphism. Therefore

Umin
M,ε = {ψ ∈ Homeo(X,X) ∣∀x ∈X ∶ {x,ψ(x), . . . , ψM(x)} is ε-dense}

is open in the supremum norm. If Homeomin(X) denotes the set of all minimal homeomor-
phisms of X, the above yields

Homeomin(X) = ⋂
ε∈Q+

⋃
M∈N

Umin
M,ε .

This means in particular that Homeomin(X) is Gδ.
Now, we turn to unique ergodicity. Fix a dense set {sn ∣n ∈ N} ⊂ C(X,R). Given n ∈ N and

a continuous map ξ ∶X →X, we can assign to any g ∈ C(X,R) its n-step ergodic average

Aξng =
1

n

n−1
∑
i=0

g ○ ξi .

It is well known (e.g. [EW10, Thm. 4.10, p. 105]) that ξ is uniquely ergodic if and only if
for every k ∈ N the sequence of functions (Aξnsk)n∈N converges pointwise to a constant. For
g ∈ C(X,R) we denote by V (g) its variation over X, that is

V (g) ∶= sup
x∈X

g(x) − inf
y∈X

g(y) .

Given any ψ-invariant probability measure µ, we have ∫ Aψng dµ = ∫ g dµ. This implies that
if V (Aψng)

n→∞ÐÐÐ→ 0, then Aψng
n→∞ÐÐÐ→ ∫ g dµ.

As Aξkg depends continuously on ξ and V (f) depends continously on f , we see that

Uue
n,K,β ∶= {ψ ∈ Homeo(X,X) ∣V (AψKsn) < β}

is open in the supremum metric. In particular, the set of those transformations for which the
ergodic average of sn eventually stabilises at a variation below β, given by

Uue
n,β = ⋃

K∈N
⋂
k>K

Uue
n,k,β
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is Gδ. We notice that ψ ∈ ⋂k∈N⋂β∈Q+ Uue
k,β if and only if Aψnsn converges to ∫ sn dµ for any

n ∈ N if and only if ψ is uniquely ergodic. This yields that the set Homeoue(X) of uniquely
ergodic homeomorphisms of X is Gδ.

Altogether, this shows that Homeose(X) = Homeomin(X) ∩ Homeoue(X) is a Gδ-set as
claimed.

3. Gδ -CHARACTERISATION OF MEAN EQUICONTINUITY FOR SKEW PRODUCTS

As discussed in the previous section, in order to construct mean equicontinuous systems
via the Anosov Katok method, it is instrumental to have an explicit Gδ-characterisation of
mean equicontinuity available. In principle, such a characterisation is already contained
in [DG16]. However, the latter uses the fact that mean equicontinuity is equivalent to the
existence of a unique self-joining on the product space X ×X over the MEF as a common
factor. Since we want to avoid working in the product space, as this would rather complicate
the construction in the next section, we provide an alternative characterisation here. As in
[DG16], we make use of the fact that we are in a skew product setting and the factor map
is given a priori (by the projection to the first coordinate). We formulate the statement in
abstract terms, as it might be useful in other situations as well.

Proposition 3.1. Let (X,ϕ) be a tds and (Y,ψ, π) an equicontinuous factor. Then (Y,ψ, π)
is a MEF of (X,ϕ) and (X,ϕ) is an isomorphic extension of (Y,ψ) if and only if for all ε > 0
there exists some K ∈ N such that, for all x, y ∈X, we have

π(x) = π(y) Ô⇒ 1

K

K

∑
i=0
dX(ϕi(x), ϕi(y)) < ε . (6)

Remark 3.2. (a) Denote by Homeoeq(Y ) the space of equicontinuous homeomor-
phisms of Y . Consider the space

E(π) = {ϕ ∈ Homeo(X) ∣ ∃ψ ∈ Homeoeq(Y ) ∶ π ○ ϕ = ψ ○ π}

with the subspace

E iso(π) = {ϕ ∈ E(π) ∣
∃ψ ∈ Homeo(Y ) ∶ (Y,ψ, π) is the MEF of (X,ϕ)

and (X,ϕ) is its isomorphic extension
} .

Let

U iso
n (π) = {ϕ ∈ E(π) ∣ ∃K ∈ N ∶ (6) holds with ε = 1/n} .

Then, by the above statement, we have E iso(π) = ⋂n∈NU iso
n (π). As the sets U iso

n (π)
are open, this implies that E iso(π) is a Gδ-set in E(π).

Note here that property (6) only depends on the factor map π, but not on the
map ψ acting on the factor space.

(b) A similar characterisation could be given with a fixed factor system (Y,ψ) on the
base. However, in the context of the Anosov Katok construction, where the base
systems of the approximating diffeomorphisms will be circle rotations with varying
rotation numbers, the independence of ψ in the above characterisation is crucial.

(c) According to Proposition 2.8, there are mappings

ηme
n ∶ Homeo(Td)n Ð→ [0,2−n]

such that if a sequence (ϕ̃n)n∈N in E(π) satisfies ϕ̃n ∈ U iso
n (π) and

d0 (ϕ̃n, ϕ̃n+1) < ηme
n (ϕ̃1, . . . , ϕ̃n)

for all n ∈ N, then its limit ϕ = limn→∞ ϕ̃n exists and belongs to E iso(π).
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Proof of Proposition 3.1. First, assume that (Y,ψ, π) is a MEF and (X,ϕ) is an isomorphic
extension of (Y,ψ). Then, by Theorem 2.7, π(x) = π(y) implies dB(x, y) = 0. Let

Jπ (X) = {(x, y) ∈X ×X ∣ π(x) = π(y)} .

Then dB(x, y) is the ergodic average of the function dX for the action of ϕ × ϕ on X ×X.
Since these ergodic averages are identically zero on the compact invariant set Jπ (X), we
have that ∫Jπ(X) dX(x, y) dγ(x, y) = 0 for all ϕ × ϕ-invariant measures γ on Jπ (X) (in
fact, by [DG16, Proposition 2.5], there is only one such measure when (X,ϕ) is mean
equicontinuous). The Uniform Ergodic Theorem therefore implies that the functions

aK(x, y) = 1

K

K

∑
i=0
dX (ϕi(x), ϕi(y))

uniformly converge to zero as K → ∞. Hence, we have aK < ε for sufficiently large K ∈ N,
which is just an equivalent reformulation of (6).

Conversely, suppose that for all ε > 0 there exists K ∈ N such that (6) holds. We assume
without loss of generality that ψ is an isometry. Denote by ∆Y and ∆X the diagonals in the
respective product spaces Y × Y and X ×X. Note that thus Jπ (X) = (π × π)−1 (∆Y ).

Now, fix ε > 0 and choose K ∈ N according to (6). This means that the function aK is
strictly smaller than ε on Jπ (X). By compactness of Jπ (X) and continuity of aK , there
exists δ1 > 0 such that aK < ε onBδ1 (Jπ (X)). Due to the continuity of π×π, there exists η > 0

such that A = (π × π)−1 (Bη (∆Y )) ⊆ Bδ1 (Jπ (X)). Further, as π is uniformly continuous,
there exists δ > 0 such that π × π (Bδ (Jπ(X))) ⊆ Bη (∆Y ).

As ψ is an isometry, the set A is ϕ × ϕ-invariant. Since dB is equal to the ergodic average
of aK for the action of (ϕ × ϕ)K and aK < ε on A, this yields dB < ε on A. However, by the
above choices, dX(x, y) < δ implies dY (π(x), π(y)) < η and therefore (x, y) ∈ A. Hence, we
obtain that dX(x, y) < δ implies dB(x, y) < ε. As ε > 0 was arbitrary, this means that (X,ϕ)
is mean equicontinuous.

Therefore Theorem 2.6 implies that (X,ϕ) is an isomorphic extension of its MEF, which
we denote by (Ŷ , ψ̂, π̂). By definition, we know that (Y,ψ) is a factor of the MEF, so the
fibres of π̂ are contained in the fibres of π. However, since the Besicovitch distance dB
between two points is zero on each fibre of π, and as this property characterises the fibres
of the MEF due to Proposition 2.7 (note here that the fibres do not depend on the particular
choice of the MEF), the fibres of π are also contained in the fibres of π̂. Thus, π and π̂
have the same fibres, which implies that (Y,ψ, π) is also a MEF and (X,ϕ) is an isomorphic
extension of (Y,ψ). �

4. MEAN EQUICONTINUOUS SKEW PRODUCTS ON THE TORUS: PROOF OF THEOREM 1.1

We are going to construct a mean equicontinuous diffeomorphisms of the two-torus which
have skew product form

ϕ ∶ T2 → T2 , (x, y)↦ (x + α,ϕx(y)) (7)

and are such that the underlying irrational rotation Rα ∶ T1 → T1, x ↦ x + α is the MEF
and the factor map is given by the projection π ∶ T2 → T1, (x, y) ↦ x to the first coordinate.
In order to do so, we employ the Anosov Katok method as described in Section 2.4 and
recursively define sequences of skew product diffeomorphism (ϕn)n∈N, (ϕ̃n)n∈N and (ϕ̂n)n∈N
whose common limit ϕ will satisfy the assertions of Theorem 1.1. The general scheme of
our inductive construction will be as follows.

● The mappings ϕn, ϕ̃n and ϕ̂n will be of the form

ϕn =Hn ○Rρn ○H−1
n , ϕ̃n =Hn+1 ○Rρ̃n ○H−1

n+1 and ϕ̂n =Hn+1 ○Rρ̂n ○H−1
n+1 ,
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where ρn is rational, ρ̃n = αρn with α ∈ R ∖Q and ρ̂n is totally irrational. Further,
for technical reasons, we require that

ρn = (pn
qn
,
p′n
qn

) with pn, p′n, qn ∈ N relatively prime . (8)

● The conjugating diffeomorphisms Hn will be of the form Hn = h1 ○ . . . ○ hn, where
hn+1 always commutes with the rotation Rρn . Moreover, all hn have skew product
structure hn ∶ (x, y)↦ (x,hn,x(y)), with fibre maps hn,x ∶ T1 → T1.

● We choose the functions ηsen and ηme
n and the sets U iso

n (π) according to Proposi-
tion 2.8 and Remark 3.2(c).

● The approximating torus diffeomorphisms ϕn, ϕ̃n, ϕ̂n will be chosen such that for
each n ≥ 2 they satisfy

dn (ϕn, ϕ̃n) ≤ 1

3
min{ηsen−1 (ϕ̂1, . . . , ϕ̂n−1) , ηme

n−1 (ϕ̃1, . . . , ϕ̃n−1)} (9)

dn (ϕ̃n, ϕ̂n) ≤ 1

3
min{ηsen−1 (ϕ̂1, . . . , ϕ̂n−1) , ηme

n (ϕ̃1, . . . , ϕ̃n)} (10)

dn (ϕ̂n, ϕn+1) ≤ 1

3
min{ηsen (ϕ̂1, . . . , ϕ̂n) , ηme

n (ϕ̃1, . . . , ϕ̃n)} (11)

ϕ̃n ∈ U iso
n (π) . (12)

Note that these conditions together imply that

dn (ϕ̃n, ϕ̃n+1) ≤ ηme
n (ϕ̃1, . . . , ϕ̃n) (13)

dn (ϕ̂n, ϕ̂n+1) ≤ ηsen (ϕ̂1, . . . , ϕ̂n) (14)

for all n ∈ N, which together with (12) means that the conditions of Proposi-
tion 2.8 and Remark 3.2(c) are met, where Proposition 2.8 is applied to the se-
quence (ϕ̂n)n∈N and Remark 3.2(c) is applied to (ϕ̃n)n∈N. Note here that the diffeo-
morphisms ϕ̂n are all strictly ergodic, since they are conjugate to a totally irrational
torus rotation. Consequently, the common limit ϕ of all the sequences, whose ex-
istence is also guaranteed by (9)–(11) (note that ηme

n , ηsen ≤ 2−n), is both strictly
ergodic and mean equicontinuous, with π as the factor map to the MEF. The MEF is
then given by (T1,Rα, π), where α = limn→∞ π(ρn).

● Note that conditions (9)–(11) can always be ensured by choosing the rotation vec-
tors ρn, ρ̃n, ρ̂n and ρn+1 sufficiently close to each other. The reason is the fact that
we have ϕn = Hn+1 ○Rρn ○H−1

n+1 due to the commutativity between hn+1 and Rρn
combined with the continuity of ρ ↦ Hn+1 ○ Rρ ○H−1

n+1. Therefore, the only issue
that remains to be addressed is to ensure that the intermediate maps ϕ̃n are indeed
contained in U iso

n (π).
In order to start the induction, we let H1 = h1 = IdT2 and choose ϕ1 to be an arbitrary ra-

tional rotation on T2 whose rotation vector satisfies (8). Note that the inductive assumptions
(9)–(11) are all still empty at this point.

Now, suppose that ϕ1, . . . , ϕN , ϕ̃1, . . . , ϕ̃N−1 and ϕ̂1, . . . , ϕ̂N−1 have been constructed such
that (9)–(12) hold for all n = 1, . . . ,N − 1. We have ρn = (pn

qn
,
p′n
qn

), where pn, p′n, qn ∈ N are

relatively prime. The aim is to choose hn+1 and ρ̃n in such a way that ϕ̃n ∈ U iso
n (π), that is,

ϕ̃n satisfies (6) with ε = 1/n.
To that end, we note that orbits of Rρn move along closed curves of the form

L(ρn, t) = {(xpn/qn, t + xp′n/qn) ∣ x ∈ [0, qn)} ,

which are parametrised by the functions

`ρn,t ∶ T1 → L(t, ρn) , x↦ (xpn, t + xp′n) .
We now dwell on this insight a bit further in order to see how we need to choose hn+1.
First, observe that the mapping `ρn,t conjugates the one-dimensional rotation r1/qn on T1
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and the restriction of Rρn to L(t, ρn), that is, Rρn ○ `ρn,t = `ρn,t ○ r1/qn . Consequently, the
orbits of ϕn = Hn+1 ○ Rρn ○ H−1

n+1 move along the curves Hn+1(L(ρn, t)), and Hn+1 ○ `ρn,t
provides a conjugacy between the action of ϕn on these curves and the rational rotation
r1/qn . Moreover, if we change the rotation vector ρn to ρ̃n = αρn, where α is an irrational
real number, then the orbits of ϕ̃n still move along the same curves, but now the action of
ϕ̃n on these curves is conjugate to the irrational rotation rα/qn on T1 (again with conjugacy
Hn+1 ○ `ρn,t).

Given two points z, z′ ∈ T2 with π(z) = π(z′) we may choose x, tz, tz′ ∈ T1 such that
z = Hn+1 (`ρn,tz(x)) and z′ = Hn+1 (`ρn,tz′ (x)). For the average distance of the iterates of
these two points along their orbits, we obtain

1

n

n−1
∑
i=0

d (ϕ̃in(z), ϕ̃in(z′)) =
1

n

n−1
∑
i=0

d (ϕ̃in (`ρn,tz(x)) , ϕ̃in (`ρn,tz′ (x)))

= 1

n

n−1
∑
i=0

Fn,tz,t′z ○ r
i
α/qn(x) ,

(15)

where
Fn,t,t′ ∶ T1 → R+ , x↦ d (Hn+1 ○ `ρn,t(x),Hn+1 ○ `ρn,t′(x)) .

By unique ergodicity of the irrational rotation rα/qn , the averages in (15) converge uniformly
to ∫T1 Fn,t,t′(x) dx. As the family {Fn,t,t′ ∣ t, t′ ∈ T1} is compact, the Simultaneous Uniform
Ergodic Theorem 2.3 implies that this convergence is even uniform in the parameters t, t′ ∈
T1. This means that for any κ > 0 there exists K ∈ N such that

∣ 1

K

K−1
∑
i=0

d (ϕ̃in(z), ϕ̃in(z′)) − ∫T1
Fn,tz,tz′ (x) ds∣ < κ

holds for all z, z′ ∈ T1 with π(z) = π(z′). Hence, in order to ensure the validity of (12), it
suffices to let κ = 1/2n and to choose hn+1 in such a way that

∫
T1
Fn,t,t′(x) dx ≤ 1

2n
(16)

holds for all t, t′ ∈ T1.
Now, constructing such a mapping hn+1 is not difficult, albeit somewhat technical. We

first define hn+1 on the vertical strip S = I ×T1, where I = [0,1/qn]. We fix δ > 0 and choose
some circle diffeomorphism g, homotopic to the identity, such that g (T1 ∖Bδ(1/2)) ⊆ Bδ(0).
For instance, g could be the projective action of a diagonal matrix (λ 0

0 1/λ) with sufficiently

large λ > 0. Then we choose a smooth homotopy G ∶ [0,1] × T1 → T1, (x, y) ↦ Gx(y)
between G0 = IdT1 and G1 = g such that Gx = IdT1 for all x in some neighbourhood of zero.
We assume δ ∈ [0,1/4qn], let Î = [δ,1/qn − δ] and choose a smooth mapping T ∶ S → S such
that T (x, y) = (x,Tx(y)) where Tx(y) = y + x

1/qn−2δ for all (x, y) ∈ Î and Tx = IdT1 for all x

in a neighbourhood of zero. Thus, the image of a horizontal line segment Î × {y} under T
‘wraps’ around the torus exactly once in the vertical direction.

Using these auxiliary mappings, we let

hn+1 ∶ S → S , (x, y)↦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Gx/δ ○ T (x, y) 0 ≤ x ≤ δ
g ○ T (x, y) δ < x < 1/qn − δ
G(1−x)/δ ○ T (x, y) 1/qn − δ ≤ x ≤ 1/qn

. (17)

Then hn+1 is smooth on S and coincides with the identity on a neighbourhood of ∂S.
Now, we first focus on that segment of a curve L(ρn, t) passing through S, which is

parametrised by the mapping p−1n I → T1, x ↦ `ρn,t(x). Note that there are pn such pieces,
which all differ by an additive constant that is a multiple of 1/pn. On p−1n Î, this function has
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constant slope 1
1/qn−2c +

pn
qn

. As a consequence, it passes through the set Î ×Bδ(1/2) at most

twice over the interval Ŝ and we obtain that

LebT1 ({x ∈ p−1n I ∣ Tx ○ `ρn,t(x) ∈ Bδ(1/2)}) ≤ 2δ + δ

pnqn
. (18)

Since g maps the complement of the interval Bδ(1/2) into the interval Bδ(0) and (18) holds
for all t ∈ T1, the images of respective segments of two different curves L(qn, t), L(qn, t′)
under T will be 2δ-close to each other most of the time. More precisely, we obtain

LebT1 ({x ∈ p−1n I ∣ ∣hn+1,s ○ `ρn,t(x) − hn+t,s ○ `ρn,t′(x)∣ ≥ 2δ}) ≤ 4δ + 2δ

pnqn
. (19)

So far, we have only defined hn+1 on S and only considered the restriction of the curves `ρn,t
to the interval p−1n I, which only parametrises the 1/pnqn-th part of the whole curves L(ρn, t).
However, if we extend the definition of hn+1 by commutativity to all of T2, i.e. by setting
hn+1∣Rkρn(S)

= Rkρn ○hn+1∣S ○R
−k
ρn , k = 1, . . . , qn − 1, then the behaviour of all pnqn segments of

pairs of curves hn+1(L(qn, t)) and hn+1(L(qn, t′)) will be the same – we are simply looking
at a rotated version of the same situation. Therefore, we obtain the estimate

LebT1 ({x ∈ T1 ∣ ∣hn+1,x ○ `ρn,t(x) − hn+1,x ○ `ρn,t′(x)∣ ≥ 2δ}) ≤ 6δpnqn . (20)

Since Hn is uniformly continuous, we may choose δ in such a way that d(x, y) < 2δ implies
d(Hn(x),Hn(y)) < 1

4n
. Then (20) implies

LebT1 ({s ∈ T1 ∣ ∣Hn+1,s ○ `ρn,t(s) −Hn+t,s ○ `ρn,t′(s)∣ ≥ 1/4n}) ≤ 6δpnqn . (21)

When δ is sufficiently small (say δ < 1/24npnqn), this finally yields (16).
In order to complete the induction step, we now choose ρ̃n = αρn, where α ∈ R ∖ Q is

sufficiently close to 1 such that (9) holds. After that, we can take ρ̂n to be any totally irra-
tional rotation vector, close enough to ρ̃n to ensure (10), and finally choose a new rational
rotation vector ρn+1 that is close enough to ρ̂n to ensure (11) and satisfies (8) holds. This
completes the inductive construction and therefore the proof of Theorem 1.1.

Remark 4.1. (a) The above construction starts with an arbitrary rational rotation
Rρ1 and allows to ensure that the resulting limit diffeomorphism ϕ is arbitrarily
close to Rρ1 . Together with the Gδ-property of mean equicontinuity and strict er-
godicity, this implies that the set of skew product diffeomorphisms which satisfy the
assertions of Theorem 1.1 form a residual subset of the space

Cob(T2, π) = {H ○Rρ ○H−1 ∣ ρ ∈ T2, H ∈ Diffeok(T2), π ○H = π} ,

where k ∈ N0 ∪ {∞} is arbitrary. The analogous observation has been made in
[DG16].

(b) All the torus maps in the above construction, and hence also the resulting dif-
feomorphisms ϕ, may be chosen as the projective actions of quasiperiodic SL(2,R)-
cocycles (compare [HP06]).

5. TOTAL STRICT ERGODICITY FOR LIFTS AND NON-EXISTENCE OF ADDITIONAL EIGENVALUES

Given any l,m ∈ N, T(l,m) = R/lZ ×R/mZ is a canonical finite covering space of the torus
T2. For any torus homeomorphism ψ homotopic to the identity, there exist lifts Lψ(l,m;s) ∶
T(l,m) → T(l,m) with s ∈ A(l,m) = (Z/lZ) × (Z/mZ), which are uniquely determined by the
requirement that Lψ(l,m;s)(0) ∈ [s1, s1 + 1) × [s2, s2 + 1). Note that two different lifts Lψ(l,m;s)

and Lψ(l,m;s) are conjugate by the integer translation (x, y)↦ (x + (s′1 − s1), y + (s′2 − ss)) on

T(l,m) and thus share the same dynamical properties.

We denote the iterates of these lifts by Lψ,j(l,m;s) = (Lψ(l,m;s))
j
. Note that Lψ,j(l,m;s) may

differ from Lψ
j

(l,m;s) by an integer translation. For any rotation Rρ on T2, its lift LRρ(l,m;s)
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is conjugate to the torus rotation R((ρ1+s1)/l,(ρ2+s2)/m), where a conjugacy h(l,m) is simply
given by rescaling, that is, h(l,m)(x, y) = (x/l, y/m). Obviously, this does not affect the
arithmetical properties of the rotation vector (rational, irrational or totally irrational). We
can also rescale the lifts Lψ(l,m;s) to obtain homeomorphisms `ψ(l,m;s) = h(l,m) ○L

ψ
(l,m;s) ○h

−1
(l,m)

of the standard torus T2. Further, given torus homeomorphisms ϕ,ψ homotopic to the
identity, we have

dk(ϕ,ψ) = min
s∈A(l,m)

dk (Lϕ(l,m;0), L
ψ
(l,m;s)) ≥ min

s∈A(l,m)
dk (`ϕ(l,m;0), `

ψ
(l,m;s)) (22)

5.1. TOTAL STRICT ERGODICITY OF THE LIFTS. In order to ensure that all iterates of all lifts
of the diffeomorphism ϕ from Theorem 1.1 are strictly ergodic as well, we may now modify
the construction in Section 4 by replacing conditions (9)–(11) with the following stronger
assumptions: we recursively choose sequences s(l,m)n , s̃

(l,m)
n , ŝ

(l,m)
n such that

dn (Lϕn
(l,m,s(l,m)n )

, Lϕ̃n
(l,m,s̃(l,m)n )

) = dn (ϕn, ϕ̃n) ,

dn (Lϕ̃n
(l,m,s̃(l,m)n )

, Lϕ̂n
(l,m,ŝ(l,m)n )

) = dn(ϕ̃n, ϕ̂n) ,

dn (Lϕ̂n
(l,m,ŝ(l,m)n )

, Lϕn+1
(l,m,s(l,m)n+1 )

) = dn(ϕ̂n, ϕn+1)

hold for all n ∈ N. Then, in the n-th step of the induction, we exert control over the speed of
convergence not only for the original maps ϕn, ϕ̂n, ϕ̃n, but also for all iterates of all lifts up
to level n. To that end, we require that for all l,m, j = 1, . . . , n we have

dn (`ϕn,j
(l,m;s

(l,m)
n )

, `ϕ̃n,j
(l,m;s̃

(l,m)
n )

)

≤ 1

3
min{ηsen−1 (`ϕ̂1,j

(l,m;ŝ
(l,m)
1 )

, . . . , `ϕ̂n−1,j
(l,m;ŝ

(l,m)
n−1 )

) , ηme
n−1 (`ϕ̃1,j

(l,m;s̃
(l,m)
1 )

, . . . , `ϕ̃n−1,j
(l,m;s̃

(l,m)
n−1 )

)} (23)

dn (`ϕ̃n,j
(l,m;s̃

(l,m)
n )

, `ϕ̂n,j
(l,m;ŝ

(l,m)
n )

)

≤ 1

3
min{ηsen−1 (`ϕ̂1,j

(l,m;ŝ
(l,m)
1 )

, . . . , `ϕ̂n−1,l
(l,m;ŝ

(l,m)
n−1 )

) , ηme
n (`ϕ̃1,l

(l,m;s̃
(l,m)
1 )

, . . . , `ϕ̃n,j
(l,m;s̃

(l,m)
n )

)} (24)

dn (`ϕ̂n,j
(l,m;ŝ

(l,m)
n )

, `ϕn+1,j
(l,m;s

(l,m)
n+1 )

)

≤ 1

3
min{ηsen (`ϕ̂1,j

(l,m;ŝ
(l,m)
1 )

, . . . , `ϕ̂n,j
(l,m;ŝ

(l,m)
n )

) , ηme
n (`ϕ̃1,j

(l,m;s̃
(l,m)
1 )

, . . . , `ϕ̃n,j
(l,m;s̃

(l,m)
n )

)} (25)

With the same reasoning as in Section 4, we now obtain that for any (l,m) ∈ N2 and j ∈ N
the sequence `ϕ̂n,j

(l,m,ŝ(l,m)n )
converges to a strictly ergodic diffeomorphism, which is a rescaled

lift `ϕ,j(l,m,s) of an iterate of ϕ = limn→∞ ϕ̂n.
Let ψ = `ϕ(1,m;0). The invariant measure of ϕ is of the form µ = (IdT1 × γ)∗LebT1 , where

γ ∶ T1 → T1 is the measurable function whose graph supports µ. Consequently, if we let

γj ∶ T1 → T1 , x↦ γ(x) + j − 1

m
, j = 1, . . . ,m, (26)

then

µψ = 1

m

m

∑
j=1

(IdT1 × γj)∗LebT1 (27)

defines an invariant measure for the rescaled lift ψ. By unique ergodicity, it is the only
ψ-invariant measure. This proves assertions (a)–(c) of Theorem 1.2.
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5.2. NON-EXISTENCE OF ADDITIONAL EIGENVALUES. We consider a torus diffeomorphism ϕ
that satisfies the assertions (a)–(c) of Theorem 1.2. Fix m ∈ N and let ψ = `ϕ(1,m;0) as above.
Recall that both mappings are skew products over the irrational rotation rα ∶ x↦ x+α. Our
aim is to show that ψ has the same discrete dynamical spectrum as ϕ, that is, there exist no
additional dynamical eigenvalues for ψ.

Suppose that γ ∶ T1 → T1 is the measurable function whose graph supports the unique ϕ-
invariant measure µ, that is, µ = (IdT1×γ)∗LebT1 . Then, as discussed in the previous section,
the unique ψ-invariant measure µψ is given by (27). Now, suppose for a contradiction that
f ∈ L2

µψ(T
2) is an eigenfunction of Uψ with a new eigenvalue λ that is not contained in the

group of eigenvalues M(α) = {exp(2πikα) ∣ k ∈ Z} of Uϕ. Then f cannot be constant in the
fibres (that is, independent of the second coordinate y), since in this case x↦ f(x,0) would
define an eigenfunction of rα with eigenvalue λ, contradicting the fact that the eigenvalue
group of rα is M(α) as well. Further, the function

g ∶ T1 → T1 , x↦
m

∏
j=1

f(x, γj(x))

is an eigenfunction of rα with eigenvalue λm, since we have

ψ({(x, γ1(x)), . . . , (x, γm(x))}) = {(x + α, γ1(x + α)), . . . , (x + α, γm(x + α))}
and therefore

g(x + α) =
m

∏
j=1

f ○ ψ(x, γj(x)) = λm
m

∏
j=1

f(x, γj(x)) = λmg(x)

LebT1 -almost surely on T1. Hence, g is an eigenfunction of rα. This implies λm = exp(2πikα)
for some k ∈ Z, so that λ must be of the form

λ = exp(2πi(kα + p
m

))

for some (k, p) ∈ (Z × {0, . . . ,m − 1}) ∖ (mZ × {0}).
We first assume that k = 0. In this case, f is an eigenfunction of ψm with eigenvalue

λm = 1. As f is non-constant, this contradicts the ergodicity of ψm.
Secondly, assume that p = 0. In this case, we consider the rescaled lift ψ̃ = `ψ(1,m,0) of ψ,

which is now a skew product over the rotation rα/m. The eigenfunction f transforms to an
eigenfunction

f̃(x, y) = f(mx,y)
of Uψ̃, which still has the same eigenvalue λ = exp(2πikα/m). However, this is now an
eigenvalue of the underlying rotation rα/m, which corresponds to the eigenfunction g(x, y) =
exp(2πikx/m) of Uψ̃. As g is constant in y for ν-almost every x, but f̃ is not, the two
eigenfunctions cannot coincide. Since they have the same eigenvalue, this contradicts the
unique ergodicity of ψ̃ (note that ψ̃ is still a lift of the original map ϕ and is therefore
uniquely ergodic).

Finally, we consider the case where k ≠ 0 ≠ p. In this case, f is an eigenfunction of
ψm, with eigenvalue exp(2πikα). However, ψm is a rescaled lift of ϕm, which has the
same properties as ϕ (it satisfies the assertions of Theorem 1.1), but has underlying rotation
number mα. This means that we are in exactly the same situation as in the case p = 0 above,
and again arrive at a contradiction.

Altogether, this shows that ψ has exactly the same dynamical eigenvalues as ϕ. However,
the two systems cannot be isomorphic, as measure-theoretic factor maps into group rotations
are uniquely determined up to post-composition with a rotation and the canonical factor
map from ψ to ϕ is m:1. Due to the Halmos-von Neumann Theorem, ψ and ϕ cannot have
the same (purely discrete) dynamical spectrum. This means that the spectrum of Uψ must
have a continuous component.
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5.3. SINGULARITY OF THE CONTINUOUS SPECTRAL COMPONENT. In order to complete the
proof of Theorem 1.2, our aim now is to show that the Anosov-Katok construction of ϕ
can be modified such that the map ψ defined in the last section has a singular continuous
spectral component. To that end, we need to show that ϕ and all its lifts admit cyclic
approximation by periodic transformations with speed o(1/n), in the sense of Theorem 2.5.
The main problem here lies in the fact that – unlike in Anosov-Katok construction in an area-
preserving setting – the unique invariant measure µ of the transformation ϕ is not known
a priori. Therefore, it is necessary to control both the size of the symmetric differences
between the images of partition elements under ϕn and the eventual limit ϕ and also the
limit measure of these sets at the same time. Recall that, in the end, we need to show
that there exist suitable partitions Pn that satisfy conditions (P1)–(P3) from Section 2.2.
This will exclude the existence of an absolutely continuous spectral component and thus
complete the proof.

We adopt the notation from the main construction in Section 4. In particular, qn is the
denominator of the rotation vector ρn of the n-th approximating diffeomorphism ϕn. Note
that ρn was chosen only after the n-th conjugating diffeomorphism Hn was defined. Hence,
we can require that

d(x, y) < 2/qn ⇒ d(Hn(x),Hn(y)) < 1/n . (28)

We define the partition Pn as Pn = {Pn,i,j ∣ i, j = 0, . . . , qn − 1}, where

Pn,i,j =Hn ([i/qn, (i + 1)/qn) × [j/qn, (j + 1)/qn)) .

Note that ϕn = Hn ○Rρn ○H−1
n cyclically permutes the elements of Pn due to the fact that

ρn = (pn/qn, p′n/qn) with pn, p′n, qn relatively prime (8). Moreover, due to (28), the maximal
diameter of an element of Pn is at most 1/n, which implies (P2) due to the regularity of the
measure µ. Hence, both (P1) and (P2) are satisfied.

It remains to show (P3) with sufficiently fast speed of convergence. We choose an ar-
bitrary function s ∶ N → R+ which satisfies limn→∞ ns(n) = 0, so that Theorem 2.5 will be
applicable. As Kn = ♯Pn = q2n, we have to ensure that

qn−1
∑
i,j=0

µ (ϕn (Pn,i,j)△ ϕ (Pn,i,j)) ≤ s(q2n) . (29)

In order to do so, we need to introduce further inductive assumptions into the construction
carried out in Section 4 that we already modified by (23)–(25) above.

Suppose that n ∈ N and Hn+1 has already been chosen, but not the rotation vectors
ρ̃n, ρ̂n and ρn+1 (which then define ϕ̃n, ϕ̂n and ϕn+1). Let µn = (Hn+1)∗ LebT2 and note
that independent of the choice ρ̂n (assuming total irrationality), this is the unique invariant
measure of ϕ̂n = Hn+1 ○ Rρn ○ H−1

n+1. For i, j = 1, . . . , qn, we choose continuous functions
fn,i,j ∶ T2 → [0,1] such that

∂ (ϕn (Pn,i,j)) ⊆ int (f−1n,i,j(1))

and

∫
T2
fn,i,jdµn < s(q2n)/q2n .

For the latter condition, note that since ϕn simply permutes the elements of Pn, the set
∂ (ϕn (Pn,i,j)) is simply the boundary of another partition element, and therefore a smooth
curve that has measure zero with respect to µn (which has smooth density with respect to
Lebesgue, since it is the image of the Lebesgue measure under the smooth diffeomorphism
Hn).

If ρ̃n and subsequently ρ̂n are chosen sufficiently close to ρn, so that ϕ̃n and ϕ̂n are close
to ϕn, then we have

ϕ̂n (Pn,i,j)∆ϕn (Pn,i,j) ⊆ int (f−1n,i,j(1)) (30)
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By unique ergodicity, there exists Mn ∈ N such that

sup
x∈T2

1

Mn

Mn

∑
l=1

fn,i,j ○ ϕ̂ln(x) < s(q2n)/q2n . (31)

Since both (30) and (31) are open conditions, we may now choose δn > 0 such that, for all
ψ ∈ Bδn(ϕ̂n), the following conditions hold.

ψ (Pn,i,j)∆ϕn (Pn,i,j) ⊆ int (f−1n,i,j(1)) (32)

sup
x∈T2

1

Mn

Mn

∑
l=1

fn,i,j ○ ψl(x) < s(q2n)/q2n . (33)

We can now require, throughout the inductive construction in Section 4, that for all n ∈ N
we have

d0 (ϕ̂n, ϕ̂m) ≤ δm for all m = 1, . . . , n − 1 . (34)

For this, when going from n to n + 1, it suffices to ensure that

max{d0 (ϕ̂n, ϕn+1) , d0 (ϕn+1, ϕ̃n+1) , d0 (ϕ̃n+1, ϕ̂n+1)} < 1

3

n
min
m=1

δm − d0 (ϕ̂n, ϕ̂m) .

This, in turn, is simply achieved by a sufficiently small variation of the rotation vectors
when choosing ρn+1, ρ̃n+1 and ρ̂n+1. In particular, it does not contradict any other recursive
assumptions that we have made elsewhere during the construction.

As a consequence, the resulting limit ϕ will still satisfy (32) and (33) (with ψ replaced by
ϕ). However, if µ denotes the unique ϕ-invariant measure, then the above conditions imply
that, for all n ∈ N,

µ (ϕ (Pn,i,j)∆ϕn (Pn,i,j))
(32)
≤ ∫

T2
fn,i,jdµ

(33)
≤ s(q2n)/q2n .

This proves (29), so that Theorem 2.5 yields the absence of singular continuous spectrum
for Uϕ. Hence, assertion (d) of Theorem 1.2 holds, which completes the proof.
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[FGJO21] Gabriel Fuhrmann, Eli Glasner, Tobias Jäger, and Christian Oertel. Irregular model sets and tame dy-

namics. Trans. Amer. Math. Soc., 374(5):3703–3734, 2021.
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[GR17] Felipe Garćıa-Ramos. Weak forms of topological and measure-theoretical equicontinuity: relationships

with discrete spectrum and sequence entropy. Ergodic Theory Dynam. Systems, 37(4):1211–1237, 2017.
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