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Abstract

Inspired by an example of Grebogi et al [1], we study a class of model systems which exhibit
the full two-step scenario for the nonautonomous Hopf bifurcation, as proposed by Arnold [2]. The
specific structure of these models allows a rigorous and thorough analysis of the bifurcation pattern.
In particular, we show the existence of an invariant ‘generalised torus’ splitting off a previously stable
central manifold after the second bifurcation point.

The scenario is described in two different settings. First, we consider deterministically forced
models, which can be treated as continuous skew product systems on a compact product space.
Secondly, we treat randomly forced systems, which lead to skew products over a measure-preserving
base transformation. In the random case, a semiuniform ergodic theorem for random dynamical
systems is required, to make up for the lack of compactness.
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1 Introduction

External forcing often leads to important changes in the bifurcation pattern of dynamical systems.
Yet, despite the relevance of this issue in many applications and significant progress over the last
decades (see [2, 4, 5] for an overview and [6, 7, 8, 9] for some recent advances), our understanding
of non-autonomous bifurcations is still limited. Maybe the most prominent example for this is the
non-autonomous Hopf bifurcation [2, 10, 11]. Here, external forcing can lead to the separation of the
complex-conjugate eigenvalues [12]. This gives rise to a two-step bifurcation scenario, in which an
invariant ‘torus’ splits off a previously stable central manifold [2, Chapter 9.4]. However, so far this
phenomenological description is mainly based on numerical evidence, and up to date there exist no
non-trivial examples for which this bifurcation pattern can be described analytically. In particular,
it is an open problem to describe the structure of the split-off ‘torus’. Earlier simulations suggested
that this structure is simple, in the sense that the intersection with each fibre of the product space
is a topological circle [12].1 However, later numerical studies based on refined algorithms indicate
that more complicated structures may appear as well [13] .

The aim of this article is to give a description of the non-autonomous Hopf bifurcation in a
class of model systems which is accessible to a rigorous analysis, but at the same time allows for
highly non-trivial dynamics. For the sake of a simpler exposition we focus on discrete-time systems,
although continuous-time analogues are easy to derive (see Section 6). In the situation we consider,
the split-off ‘torus’ consists of a topological circle in each fibre and hence belongs to the simpler
case described above, but this should not be taken as an indication for the general case.

1In the simple case where the driving process is an irrational rotation on the circle, this means that the
considered invariant set is homeomorphic to the two-dimensional torus. This explains our terminology.
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We study parametrised families of skew products

(1.1) fβ : Θ × R
2 → Θ × R

2 , (θ, v) 7→ (γ(θ), fβ,θ(v))

with fibre maps

(1.2) fβ,θ(v) =

8
<
:

h(β‖v‖)A(θ) v
‖v‖ if v 6= 0

0 if v = 0

,

where ‖ · ‖ denotes the Euclidean norm on R
2 and β ∈ R

+ is the bifurcation parameter. Maps of
this type were introduced by Grebogi et al [1] as examples for the existence of strange non-chaotic
attractors. A first step in their rigorous analysis was made in [14], and our results on continuous
systems can be seen as an extension of this work (see Theorem 1.1 and Section 4).

We consider two different settings. For modelling deterministic forcing, we assume that

(D1) Θ is a compact metric space and γ is a homeomorphism;

(D2) h : R
+ → R

+ is C2, strictly increasing, strictly concave, bounded and satisfies h(0) = 0 and
h′(0) = 1;

(D3) A : Θ → SL(2,R) is continuous.

In order to give a concise description of the bifurcation pattern in this setting, we concentrate
on the behaviour of the global attractor of fβ. By rescaling if necessary, we may and will assume

(1.3) sup
x≥0

h(x) ≤
„

max
θ∈Θ

‖A(θ)‖
«−1

.

Consequently fβ(Θ × R
2) ⊆ Θ ×B1(0), so that the global attractor can be defined as

(1.4) Aβ =
\

n∈N

fnβ

“
Θ ×B1(0)

”
.

We let Aβ(θ) = {x ∈ R
2 | (θ, x) ∈ Aβ} and use the analogous notation for other subsets of product

spaces. As we will see, the particular structure of (1.1) implies that Aβ has the form

(1.5) Aβ = {(θ, rv(α)) | θ ∈ Θ, α ∈ [0, 1), r ∈ [0, rβ(θ, α)]} ,

where v(α) = (cos(2πα), sin(2πα))t and rβ : Θ × R → [0, 1] is an upper semi-continuous function
which is 1

2
-periodic in the second variable. The bifurcation parameters in the above system are

determined by the maximal exponential expansion rate of the cocycle (γ,A). The latter is given by
the maximal Lyapunov exponent of A,

(1.6) λmax(A) = sup
θ∈Θ

lim sup
n→∞

1

n
log ‖An(θ)‖ ,

where An(θ) = A(γn−1θ) ◦ . . . ◦A(θ).

Theorem 1.1. Suppose (fβ)β∈R+ is of the form (1.1) and satisfies conditions (D1)–(D3). Let

β1 := e−λmax and β2 := eλmax .

Then the following hold.

(a) If β < β1, then the global attractor Aβ is equal to Θ × {0}.
(b) If β1 < β < β2, then there exists at least one θ∗ ∈ Θ such that Aβ(θ

∗) is a line segment of
positive length.

(c) If β > β2, then for all θ ∈ Θ the set Aβ(θ) is a closed topological disk2 and depends
continuously on θ. In other words, the function rβ is strictly positive and continuous.

Further, the compact fβ-invariant set

(1.7) Tβ = ∂Aβ = {(θ, rβ(θ, α)v(α)) | θ ∈ Θ, α ∈ [0, 1)}
is the global attractor outside Θ × {0}, in the sense that

Tβ =
\

n∈N

fnβ

“
Θ ×

“
B1(0) \ Bδ(0)

””

for all sufficiently small δ > 0.

2That is, homeomorphic to the closed unit disk D = {z ∈ C | |z| ≤ 1}.
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Remark 1.2. (a) Note that if λmax(A) = 0, case (b) in the theorem is void since then β1 = β2.

(b) In the intermediate region β1 < β < β2, as well as for the critical cases β = β1 and β = β2, a
great variety of dynamical behaviour is possible. In particular this behaviour is not uniform
for all orbits, and given two γ-invariant measures m1 and m2 on Θ the typical dynamics
with respect to m1 and m2 may be very different. Therefore, the feasible approach in this
parameter regime is to fix a γ-invariant ergodic measure m on the base Θ and to describe
the structure of Aβ(θ) and other relevant properties of the system for m-almost every θ ∈ Θ.

However, it turns out that for such an m-dependent description the topological structure
on Θ provides no additional information whatsoever. Hence, all the related questions can
directly be addressed in the purely measure-theoretic setting of random dynamical systems.
In our context, this means that we can apply the random analogue to Theorem 1.1, which is
given by Theorem 1.3 below, to obtain further information about the m-typical behaviour.
See Remark 1.4(d) for details. In a similar way, further information on the critical parameters
is provided by Proposition 1.5 below.

(c) The focus on the global attractor Aβ and the sets Aβ(θ) in the above statement corre-
sponds to the concept of pullback attractors in random dynamical systems. It describes the
behaviour of trajectories coming from −∞ in time. The complementary point of view is
to study forward dynamics, meaning the asymptotic behaviour of trajectories fnβ (θ, v) as n
goes to +∞. In situations (a) and (c) of the above theorem, information about the forward
dynamics can be derived easily. In part (a), we have

(1.8) lim
n→∞

fnβ,θ(v) = 0 for all (θ, v) ∈ Θ × R
2 ,

whereas in part (c) we have

(1.9) lim
n→∞

d
`
fnβ (θ, v), Tβ

´
= 0 for all (θ, v) ∈ Θ × (R2 \ {0}) .

In particular, all accumulation points of trajectories outside of Θ×{0} are contained in Tβ .
In the intermediate region β1 < β < β2, as well as for the critical parameters, the situation is
more intricate and some differences appear between forward and pullback dynamics. Again,
the picture may depend on a γ-invariant measure in the base which serves as a reference. If
the cocycle is hyperbolic with respect to this measure, a random two-point attractor appears
in the intermediate parameter regime. This attractor also survives the second bifurcation.
Consequently, for β > β2 the forward dynamics do not ‘see’ the whole ‘torus’ Tβ, but only
the two-point attractor which is embedded in Tβ. We refer to Theorem 1.3 on random
forcing below for further details.

(d) The most important property of the models in (1.1) is the fact that the fibre maps send lines
passing through the origin to such lines again. As a consequence, the map written in polar
coordinates becomes a double skew product (see Section 3.1), a fact which will be crucial
for our analysis. Yet, the fact that the cocycle A can be chosen arbitrarily allows for a great
variety of dynamical behaviour when β > β2. On the one hand, A could simply be a constant
rotation matrix with angle ρ. In this case β1 = β2 and the projective action of A, which is
equivalent to the action of fβ on Tβ is typically minimal. On the other hand, we can choose A
to be a uniformly hyperbolic SL(2,R)-cocycle, which leads to β1 < β2 and attractor-repeller
dynamics on Tβ. A mixture of these two types occurs when A has non-uniformly hyperbolic
dynamics and the projective action is minimal (see [15] for examples of this type). Then the
dynamics on Tβ are minimal, and thus resemble an irrational rotation from the topological
point of view, but they are of attractor-repeller type from the measurable point of view.

As indicated by the preceding remark, the second main goal of this article is to derive a random
analogue of Theorem 1.1 in the context of random dynamical systems. The motivation for this is two-
fold. First, there is the obvious intrinsic interest in random forcing processes, which are modelled
in a purely measure-theoretic setting. Secondly, as mentioned above, even in the topological setting
the description of the typical dynamical behaviour at intermediate or critical parameters depends
on the choice of a reference measure on the base. Hence, the consideration of measure-preserving
driving processes is required as well, in order to gain a better understanding of deterministic forcing.

In order to model random forcing, we make the following assumptions.
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(R1) (Θ,B, m, γ) is a measure preserving dynamical system, i.e. γ : Θ → Θ is a bi-measurable
bijection and m is an ergodic γ-invariant probability measure;

(R2) h : R
+ → R

+ is C2, strictly increasing, strictly concave, bounded and satisfies h(0) = 0 and
h′(0) = 1.

(R3) A : Θ → SL(2,R) is measurable and bounded.

Since in this setting there is no topological structure on Θ, and consequently Aβ has no global
topological structure either, we concentrate on the structure of Aβ on typical fibres. Note that Aβ

again has the form given by (1.5), where now rβ : Θ × R → R
+ is a measurable function which is

1
2
-periodic and upper semi-continuous in the second variable. This time, the bifurcation parameters

are determined by the Lyapunov exponent of the cocycle (γ,A) with respect to m, which is defined
as

(1.10) λm(A) = lim
n→∞

1

n

Z

T1

log ‖An(θ)‖ dm(θ) .

Note that the limit exists by subadditivity.
Our second main result provides a description of the nonautonomous Hopf bifurcation in this

random setting, where it is also possible to give more details on the intermediate parameter region.
For the application to the deterministic models we refer to Remark 1.4(d) below. In contrast to
Theorem 1.1, we now provide details on both forward and pullback dynamics. The reason is that
there are important differences between the two viewpoints, in particular when β1 6= β2.

Theorem 1.3. Suppose (fβ)β∈R+ is of the form (1.1) and satisfies conditions (R1)–(R3). Let

βm1 := e−λm(A) and βm2 := eλm(A) .

Then there exists a γ-invariant set Θ0 ⊆ Θ of full measure, such that for all θ ∈ Θ0 the following
hold.

(a) If β < βm1 , then Aβ(θ) = {0} and

(1.11) lim
n→∞

fnβ,θ(v) = 0 for all v ∈ R
2 .

(b) If βm1 < β < βm2 , then the set Aβ(θ) is a line segment of positive length. More precisely, there
exist measurable functions αu, αs : Θ0 → [0, 1

2
), not depending on β, such that rβ(θ, α) > 0

if and only if α = αu(θ) and we have

(1.12) Aβ(θ) = {rv(αu(θ)) | |r| ≤ rβ(θ, αu(θ))} ,

and the graph of the set-valued function

(1.13) Ψβ(θ) = {±rβ(θ, αu(θ))v(αu(θ))}

is a random two-point forward attractor with domain of attraction

D = {(θ, v) | θ ∈ Θ0, v ∈ R
2 \ (Rv(αs(θ))} ,

in the sense that

(1.14) lim
n→∞

d
`
fnβ,θ(v),Ψβ(γ

nθ)
´

= 0

for all (θ, α) ∈ D.

(c) If β > βm2 , then the map α 7→ rβ(θ, α) is strictly positive and continuous. The set Tβ defined
by

(1.15) Tβ(θ) = ∂Aβ(θ) = {rβ(θ, α)v(α) |α ∈ [0, 1)}

is the global pullback attractor outside Θ × {0}. More precisely, for all δ > 0 there exists

an fβ-forward invariant random compact set Kβ,δ which contains Θ0 ×
“
B1(0) \Bδ(0)

”
and

satisfies

Tβ(θ) =
\

n∈N

fnβ,γ−nθ

`
Kβ,δ(γ−nθ)

´
.

When λm(A) > 0, the random forward attractor Ψβ given by (1.13) still exists, with Ψβ(θ) ⊆
Tβ(θ), and (1.14) remains true.
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Remark 1.4. (a) As before, case (b) of the theorem is void if βm1 = βm2 .

(b) Note that for βm1 < β < βm2 , the attractor Ψβ given by (1.13) consists exactly of the
endpoints of the segment Aβ(θ) on each fibre.

(c) If βm1 < βm2 , then the statements on Ψβ can be interpreted in the way that this attractor
persists throughout the whole parameter range (if β < βm1 it coincides with Θ × {0} by
definition) and attracts almost all initial conditions with respect to m and the Lebesgue
measure on R

2.

(d) When γ is a homeomorphism of a compact metric space Θ as in Theorem 1.1, we denote
by M(γ) the set of γ-invariant ergodic probability measures on Θ. As mentioned, we can
apply Theorem 1.3 and Proposition 1.5 below for any fixed reference measure m ∈ M(γ) on
the base. As a straightforward consequence of the semiuniform sub-multiplicative ergodic
theorem (see Theorem 2.5), we have

(1.16) λmax(A) = sup
m∈M(γ)

λm(A) .

Therefore β1 ≤ βm1 ≤ βm2 ≤ β2. However, due to compactness of M(γ), there always exists
at least one m̂ ∈ M(γ) with λm̂(A) = λmax(A) and thus βm̂1 = β1 and βm̂2 = β2. When
β1 < β < β2, then this means in particular that m̂-typical fibres are line segments of positive
length and the typical dynamics with respect to m̂ are governed by a two-point attractor
Ψβ given by (1.13). Theorem 1.1(b) is a direct consequence of this.

(e) Note that the full measure set Θ0 ⊆ Θ in the above statement is fixed and does not depend
on the parameter β. Obtaining this β-independence will require some additional work, but
since the parameter set is uncountable this is clearly stronger than just showing that all
statements hold m-a.s. for all parameters β, but allowing the exceptional set to change with
β.

For the three non-critical parameter regions described above, the picture provided by Theo-
rem 1.3 can be considered rather complete. In contrast to this, the two critical parameters βm1 and
βm2 are more difficult to treat, and there are some questions which we have to leave open here (see
Questions 1.6). Nevertheless, the following proposition provides at least some information, both on
pullback and forward dynamics.

Proposition 1.5. Under the assumptions of Theorem 1.3, the set Θ0 can be chosen such that for
all θ ∈ Θ0 the following hold.

(a) If β = βm1 < βm2 , then Aβ(θ) = {0} and there exists a set J = J(θ) ⊆ N of asymptotic
density 0 such that

(1.17) lim
n→∞
n/∈J(θ)

‖fnβ,θ(v)‖ = 0 for all v ∈ R
2 .

(b) If β = βm1 = βm2 , then Aβ(θ) is not a topological disk. More precisely, there exists α = α(θ)
such that rβ(θ, α(θ)) = 0. Further,

(1.18) lim
n→∞

1

n

n−1X

i=0

‖f iβ,θ(v)‖ = 0 for all v ∈ R
2 .

(c) If βm1 < β = βm2 , then the statement of Theorem 1.3(b) holds without any modifications.

Questions 1.6. (a) In the situation of Theorem 1.1, does Aβ = Θ × {0} still hold if β = β1?
If not, is this always true when γ is uniquely ergodic?

(b) If the answer to (a) is negative, is it at least true that for γ uniquely ergodic and β = β1 we
have Aβ(θ) = 0 m-a.s. and limn→∞ ‖fnβ,θ(v)‖ = 0 for m-a.e. θ and all v ∈ R

2?

(c) In the situation of Proposition 1.5(a), is it true that limn→∞ ‖fnβ,θ(v)‖ = 0 for m-a.e. θ ∈ Θ
and all v ∈ R

2? In other words, does Proposition 1.5(a) hold with J(θ) = ∅?
(d) In the situation of Proposition 1.5(b), is it true that Aβ(θ) = {0}m-a.s. and limn→∞ ‖fnβ,θ(v)‖ =

0 for m-a.e. θ and all v ∈ R
2?

The paper is organised as follows. Section 2 provides some basic notation and preliminary
results on skew product systems with one-dimensional fibres. In Section 3 we introduce a change
of coordinates which transforms our system into a double skew product. This observation will
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be crucial for the further analysis. The proof of Theorem 1.1 on deterministic forcing is given in
Section 4, whereas Section 5 deals with the random setting and contains the proofs of Theorem 1.3
and Proposition 1.5. We close with some remarks concerning continuous-time systems generated
by non-autonomous planar vector fields in Section 6 and an explicit example illustrated by some
simulations in Section 7.

Acknowledgements. V. Anagnostopoulou and T. Jäger were supported by the German Research
Council (Emmy-Noether-Project Ja 1721/2-1), G. Keller was supported by the German Research
Council (DFG-grant Ke 514/8-1).

2 Notation and preliminaries

Given a measure-preserving dynamical system (mpds) (Θ,B, m, γ) in the sense of Arnold [2] and a
Polish space M , we say f : Θ ×M → Θ ×M is a continuous random map with base γ if it is a
measurable skew product map

(2.1) f : Θ ×M → Θ ×M , (θ, x) 7→ (γθ, fθ(x))

and x 7→ fθ(x) is continuous for all θ ∈ Θ. Note that we write γθ instead of γ(θ). The maps
fθ : X → X are called fibre maps. By fnθ = (fn)θ = fγn−1θ ◦ . . . fθ we denote the fibre maps
of the iterates of f (and not the iterates of the fibre maps), that is fnθ (x) = π2 ◦ fn(θ, x). Here
π2 : Θ ×M → M is the projection to the second coordinate. When Θ is a metric space and γ is
continuous, such that f is a continuous skew product map, we also call f a γ-forced map. When M
is a smooth manifold and all fibre maps fθ are Cr, we call f a random or γ-forced Cr-map. When M
is a real interval, we say f is a random or γ-forced Cr-interval map. If all fibre maps are in addition
(strictly) increasing, we say f is a random of γ-forced monotone Cr-interval map.

In the context of random maps, fixed points of unperturbed maps are replaced by invariant
graphs. If m is a γ-invariant measure, then we call a measurable function ϕ : Θ → M an (f,m)-
invariant graph if it satisfies

(2.2) fθ(ϕ(θ)) = ϕ(γθ) for m-a.e. θ ∈ Θ .

When (2.2) holds for all θ ∈ Θ, we say ϕ is an f-invariant graph. However, this notion usually only
makes sense if Θ is a topological space and ϕ has some topological property, like continuity or at
least semi-continuity. Note that any f -invariant graph is an (f,m)-invariant graph for all γ-invariant
measures m. Usually, we will only require that (f,m)-invariant graphs are defined m-almost surely,
which means that implicitly we always speak of equivalence classes. Conversely, f -invariant graphs
are defined everywhere, and in this case we write graph(ϕ) = {(θ, ϕ(θ)) | θ ∈ Θ}.

The (vertical) Lyapunov exponent of an (f,m)-invariant graph ϕ is given by

(2.3) λm(ϕ) =

Z

Θ

log f ′
θ(ϕ(θ)) dm(θ) .

In some cases, we will also write λm(f, ϕ), in order to avoid ambiguities. Apart from the analogy
to fixed points of unperturbed maps, an important reason for concentrating on invariant graphs is
the fact that there is a one-to-one correspondence between invariant graphs and invariant ergodic
measures of forced monotone interval maps. If m is a γ-invariant ergodic measure and ϕ is an
(f,m)-invariant graph, then an f -invariant ergodic measure mϕ can be defined by

(2.4) mϕ(A) = m ({θ ∈ Θ | (θ, ϕ(θ)) ∈ A}) .

Conversely, we have the following.

Theorem 2.1 (Theorem 1.8.4 in [2]). Suppose (Θ,B, m, γ) is an ergodic mpds and f is a random
monotone C0-interval map with base γ. Further, assume that µ is an f-invariant ergodic measure
which projects to m in the first coordinate. Then µ = mϕ for some (f,m)-invariant graph ϕ.

Note that any probability measure µ on Θ × M that projects to m can be disintegrated
into a family of probability measures (µθ)θ∈Θ on the fibres, in the sense that

R
Θ×M Φ dµ =R

Θ

R
M

Φ(θ, x) dµθ(x)dm(θ) for all measurable functions Φ : Θ × M → R [2, Proposition 1.4.3].
Let δx denote the Dirac measure in the point x. Then, if µ = mϕ we obtain µθ = δϕ(θ). Conse-
quently, an ergodic measure associated to an invariant graph can also be called a random Dirac
measure. Invariant measures associated to n-valued invariant graphs are called random n-point
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measures. Theorem 2.1 can then be rephrased by saying that all ergodic measures of random
monotone interval maps are random Dirac measures.

When the fibre maps of a random monotone C2-interval map are all concave, the following result
allows to control the number of invariant graphs and their Lyapunov exponents.

Theorem 2.2 ([17]). Suppose (Θ,B, m, γ) is a mpds and f is a γ-forced monotone C2-interval map
whose fibre maps are all strictly concave. Further, assume that the function η(θ) = infx∈I(θ) log f ′

θ(x)
has an integrable minorant. Then there exist at most two (f,m)-invariant graphs, and if there exist
two distinct (f,m)-invariant graphs ψ− ≤ ψ+ then λm(ψ−) > 0 and λm(ψ+) < 0.

Implicitly, this result is contained in [17]. A proof for quasiperiodic forcing can be found in [18],
which also remains valid in the more general case stated above.

Another situation where information on the Lyapunov exponent of an invariant graph is available
is the following.

Lemma 2.3. Let (Θ,B,m, γ) be a mpds and f be a γ-forced monotone C1-interval map with com-
pact fibres M = [a, b] ⊆ R. Suppose that the function η(θ) = infx∈M log f ′

θ(x) has an integrable
minorant and let

ψ+(θ) = lim
n→∞

fnγ−nθ(b) .

Then ψ+ is an invariant graph and λm(ψ+) ≤ 0.

This result is contained in [19, Lemma 3.5] for the case of quasiperiodic forcing, but again the
proof given there remains valid in the more general version stated above.

The following lemma from [20] is a variation of a result by Sturman and Stark [16].

Lemma 2.4 ([20]). Suppose γ is a homeomorphism of a compact metric space Θ, f is a γ-forced
C1-interval map and K is a compact f-invariant set that intersects every fibre {θ} ×X in a single
interval. Further, assume that for all γ-invariant measures m and all (f,m)-invariant graphs ψ
contained in K we have λm(ψ) < 0. Then K is a continuous f-invariant curve.

Now suppose that T : Y → Y is a measurable transformation of a measurable space Y and
(Φn)n∈N is a subadditive sequence of measureable functions Φn : Y → R.3 Let µ be a T -invariant
measure and assume that the Φn are integrable with respect to µ. We write µ(Φn) =

R
Φndµ. Then

subadditivity yields µ(Φn+m) ≤ µ(Φn) + µ(Φm), and hence Fekete’s Subadditivity Lemma implies
that

Φµ := lim
n→∞

1

n
µ(Φn) = inf

n≥0

1

n
µ(Φn)

is well defined. In addition, if µ is ergodic then limn→∞
1
n
Φn = Φµ µ-almost surely by Kingman’s

Ergodic Theorem. The following semi-uniform ergodic theorem from [16] will be used frequently in
the discussion of deterministic forcing in Section 4.

Theorem 2.5 (Corollary 1.11 in [16]). Suppose that T : Y → Y is a continuous map on a compact
metrizable space Y and (Φn)n∈N is a sub-additive sequence of continuous functions Φn : Y → R.
Let λ ∈ R be a constant such that Φµ < λ for every T -invariant measure µ. Then there exist ε > 0
and n0 ∈ N such that for all n ≥ n0 we have

1

n
Φn(y) ≤ λ− ε ∀y ∈ Y.

For the case of random forcing, we need a random analogue of this result. In order to state
it, we need some more notation. Assume (Θ,B) is a measurable space, γ : Θ → Θ a measurable
transformation and T : Θ×M → Θ×M is a continuous random map with base γ. Given m ∈ M(γ),
denote the set of all T -invariant probability measures which project to m by Mm(T ). Following
[2, 21] we say K ⊆ Θ ×M is a random compact set if

(i) K(θ) = {x ∈M | (θ, x) ∈ K} is compact for m-a.e. θ ∈ Θ;

(ii) the functions θ 7→ d(x,K(θ)) are measurable for all x ∈M .

K is called forward T -invariant if Tθ(K(θ)) ⊆ K(γθ) for m-a.e. θ ∈ Θ. Given any forward T -
invariant random compact set K, we denote the set of µ ∈ Mm(T ) which are supported on K by
MK

m(T ). Further, we assume that (Φn)n∈N is a subadditive sequence of functions Φn : Θ×M → R

which are continuous in the second variable and let

Φabs
n (θ) = max{|Φn(θ, x)| | x ∈ K(θ)} .

3Recall that a sequence Φn : Y → R is subadditive if Φm+n(y) ≤ Φn(y) + Φm(Tn(y)) for all y ∈ Y .



8

We call a random variable C : Θ → R adjusted with respect to γ, if it satisfies limn→∞
1
n
C(γnθ) = 0

for m-a.e. θ ∈ Θ.

Theorem 2.6 ([22]). Let T : Θ×M → Θ×M be a continuous random map over the ergodic mpds
(Θ,B, m, γ). Suppose that (Φn)n∈N is a subadditive sequence of functions Φn : Θ ×M → R which
are continuous in the second variable. Further, assume that K is a forward T -invariant random
compact set, Φabs

n ∈ L1(m) for all n ∈ N and λ ∈ R satisfies Φµ < λ for all µ ∈ MK
m(T ). Then

there exists λ′ < λ and a tempered random variable C : Θ → R such that

(2.5) Φn(θ, x) ≤ C(θ) + nλ′ for m-a.e.θ ∈ Θ and all x ∈ K(θ).

In particular, there exists ε > 0 such that for m-a.e. θ ∈ Θ there is an integer n(θ) ∈ N with

(2.6)
1

n
Φn(θ, x) < λ for all n ≥ n(θ) and x ∈ K(θ).

3 Double skew product structure

3.1 Polar coordinates

In order to understand and analyse the dynamics of fβ, it is convenient to use projective polar
coordinates. Let R

2
∗ = R

2 \ {0} and consider the maps

p : R
2
∗ → T

1 , p(v) =
1

π
arctan

„
v2
v1

«
mod 1 ,

P : R
2
∗ → T

1 × (0,∞) , P (v) = (p(v), ‖v‖) .

P is two-to-one, and if we let

H+ = {(x1, x2) ∈ R
2
∗ | v2 ≥ 0 and v2 > 0 if v1 < 0}

and H− = R
2
∗ \ H+, then P has two inverse branches Q+ =

`
P|H+

´−1
and Q− =

`
P|H−

´−1
, where

Q±(α, r) = ±(r cos(πα), r sin(πα)).

Let P̂ (θ, v) = (θ, P (v)) and Q̂±(θ, α, r) = (θ,Q±(α, r)). Then the action of fβ on polar coordi-
nates is given by

(3.1)

F̃β : Θ × T
1 × (0,∞) → Θ × T

1 × (0,∞)

(θ, α, r) 7→ P̂ ◦ fβ|Θ×R2
∗

◦ Q̂+(θ, α, r) .

As fβ,θ(−v) = −fβ,θ(v), we may equally have used Q̂− instead of Q̂+. For the same reason F̃β is
continuous, as the discontinuity of Q̂+ is cancelled by P̂ . We have

Lemma 3.1. (i) P̂ is a two-to-one factor map from fβ|Θ×R2
∗

to F̃β.

(ii) The map F̃β extends to an injective skew product map

(3.2)
Fβ : Θ × T

1 × [0,∞) → Θ × T
1 × [0,∞)

(θ, α, r) 7→ (g(θ,α), Fβ,θ,α(r))

such that (α, r) 7→ Fβ,θ,α(r) is continuous for all θ ∈ Θ.

(iii) The base map g is given by

g(θ, α) = (γθ, gθ(α)) =

„
γθ,

1

π
arctan

„
cθ + dθ tan πα

aθ + bθ tanπα

«
mod 1

«
,

the fibre maps by

Fβ,θ,α(r) = h(βr)Ω(θ, α) ,

where Ω(θ, α) = ‖A(θ)(cosπα, sin πα)‖.
(iv) If Θ is a metric space and γ is continuous, then Fβ is a continuous map.
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Proof. By the definition of F̃β , P̂ is a two-to-one factor map between F̃β and fβ|Θ×R2
∗

. Then,

Fβ(θ, α, r) = P̂

„
γθ, h(βr)

A(θ)

r
(r cos πα, r sin πα)

«

=

„
γθ,

1

π
arctan

„
cθ + dθ tanπα

aθ + bθ tan πα

«
mod 1, h(βr)‖A(θ)(cos πα, sin πα)‖

«
.

If we now define Fβ,θ,α(0) = (g(θ,α), 0), then the injectivity and the claimed continuity properties
of Fβ are easy to verify and the formulae for g and Fβ,θ,α follow immediately.

For later use we note that

(3.3) ‖An(θ)(cos πα, sin πα)‖ =

n−1Y

k=0

Ω ◦ gk(θ, α) .

3.2 Lyapunov exponents

The above transformation makes it possible to apply existing results on skew product maps with one-
dimensional fibres to study the dynamics of Fβ and, subsequently, the dynamics of fβ. An important
issue in this are the relations between Lyapunov exponents of the original and the transformed
system. We start with a corollary of Oseledets’s Multiplicative Ergodic Theorem.

Theorem 3.2. Let A : Θ → SL(2,R) be measurable.
If λm(A) > 0, then there exists a splitting R

2 = Es(θ) ⊕ Eu(θ) such that A(θ) · Ei(θ) =
Ei(γθ) for i = s, u. For i = s, u we have Ei(θ) = R · vi(θ) for vectors vs(θ), vu(θ) ∈ R

2 and

limn→∞
1
n

log ‖An(θ)·v‖
‖v‖ = λi for all non-zero v ∈ Ei(θ), where λu = λm(A) and λs = −λm(A).

If λm(A) = 0, then limn→∞
1
n

log ‖An(θ)·v‖
‖v‖ = 0 for m-a.e. θ ∈ Θ and all v ∈ R

2.

Now, first assume λm(A) > 0. Consider the function

p : R
2
∗ → T

1 , p(v) =
1

π
arctan

„
v2
v1

«
mod 1 .

Then define functions φi : Θ → T
1, by φi(θ) = p(vi(θ)), i = u, s, where the vi : Θ → R

2
∗ are

as in Theorem 3.2. Obviously, since these graphs correspond to the directions of the invariant
splitting and g is the projective action of the cocycle (γ,A), they are (g,m)-invariant. Further, φu
is attracting and φs is repelling. We summarise these observations in the following folklore lemma.

Lemma 3.3. Let m ∈ M(γ) and λm(A) > 0. Then the functions φi, i = s, u, are (g,m)-invariant
graphs and for m-a.e. θ ∈ Θ and all α 6= φs(θ) we have

(3.4) lim
n→∞

d (gnθ (α), φu(γ
nθ)) = 0 ,

with exponential speed of convergence. In particular, no other (g,m)-invariant graphs except φu and
φs exist.

Furthermore, the associated random Dirac measures mφi
(B) := m({θ ∈ Θ | (θ, φi(θ)) ∈ B),

i = s, u, are the only g-invariant and ergodic measures which project to m. This follows from an
old result by Furstenberg. In order to state it, we denote the set of g-invariant ergodic measures
which project to m ∈ M(γ) by Mm(g).

Lemma 3.4 (Furstenberg [23]). Suppose (Θ,B, m, γ) is an ergodic mpds and g : Θ×T
1 → Θ×T

1

is a random map whose fibre maps gθ are all circle homeomorphisms. Then, if there exists a (g,m)-
invariant graph, all µ ∈ Mm(g) are of the form µ = mφ for some (g,m)-invariant graph φ.

The crucial observation of this section is the following.

Proposition 3.5. Suppose (fβ)β∈[0,1] satisfies (D1)–(D3). Let β1 = e−λmax and β2 = eλmax . Then

β1 = sup
˘
β ∈ R

+ | λµ(Fβ, 0) < 0 ∀ µ ∈ M(g)
¯

and

β2 = inf
˘
β ∈ R

+ | λµ(Fβ , 0) > 0 ∀ µ ∈ M(g)
¯
,

where λµ(Fβ , 0) =
R
Θ×T1 logF ′

β,θ,α(0)dµ(θ, α).

In order to prove this, we show the following more general statement. Note that when λm(A) > 0,
then Lemma 3.3 and the subsequent remark imply Mm(g) = {mφu ,mφs}.
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Lemma 3.6. Let µ ∈ Mm(g). If λm(A) > 0, then λµ(Fβ , 0) = λm(A) + log β if µ = mφu and
λµ(Fβ, 0) = −λm(A) + log β if µ = mφs . If λm(A) = 0, then λµ(Fβ , 0) = log β.

Proof. First, let λm(A) > 0. By Lemmas 3.3 and 3.4, µ = mφi
with i ∈ {s, u}. Fix θ ∈ Θ and

let α = p(vi(θ)), where vu(θ) and vs(θ) are chosen as in Theorem 3.2. We have that F ′
β,θ,α(r) =

βh′(βr)Ω(θ, α) and thus F ′
β,θ,α(0) = βΩ(θ, α). Hence

λµ(Fβ , 0) =

Z

Θ×T1

log(β · Ω(θ, α))dµ(θ, α) = log β +

Z

Θ×T1

log Ω(θ, α)dµ(θ, α)

= log β +

Z

Θ

log Ω(θ, φi(θ))dm(θ) .(3.5)

Now, by Theorem 3.2 and equation (3.3),

λi = lim
n→∞

1

n
log

‖An(θ)vi(θ)‖
‖vi(θ)‖ = lim

n→∞
1

n
log

n−1Y

k=0

Ω ◦ gk(θ, φi(θ))

= lim
n→∞

1

n

n−1X

k=0

log Ω(γkθ, φi(γ
kθ))) =

Z
log Ω(θ, φi(θ))dm(θ)(3.6)

for m-a.e. θ ∈ Θ by Birkhoff’s Ergodic Theorem. Therefore, equation (3.5) becomes:

λµ(Fβ , 0) = log β + λi =


log β + λm(A) for i = u
log β − λm(A) for i = s

which proves the lemma for λm(A) > 0.

Now, assume λm(A) = 0. For µ-a.e. (θ, α) we have

λµ(Fβ, 0) = lim
n→∞

1

n
log(Fnβ,θ,α)′(0) .

Let v = (cos(πα), sin(πα)) and Ω(θ, v) = ‖A(θ)v‖
‖v‖ . Similar to above, we obtain

lim
n→∞

1

n
log
`
Fnβ,θ,α

´′
(0) = lim

n→∞

1

n

n−1X

k=0

logF ′
β,gk(θ,α)(0)

= log β + lim
n→∞

1

n

n−1X

k=0

log b ◦ gk(θ, α) = log β + lim
n→∞

1

n
log

‖An(θ)v‖
‖v‖ = log β .

Hence, λµ(Fβ , 0) = log β as claimed.

We are now in position to prove Proposition 3.5.

Proof of Proposition 3.5. Observing Lemma 3.6 and equation (1.16), we have

sup{β ∈ R
+ | λµ(Fβ, 0) < 0 ∀ µ ∈ M(g)} = sup{β ∈ R

+ | log β + λm(A) < 0 ∀ m ∈ M(γ)}
= sup{β ∈ R

+ | log β + λmax(A) < 0}
= e−λmax(A) = β1 .

4 Deterministic forcing: Proof of Theorem 1.1

We first analyse the skew product system Fβ in the two parameter regimes β < β1 and β > β2.
Application of the results to the original system fβ will then be straightforward. As mentioned in
Remark 1.4(d), statement (b) of Theorem 1.1 on the intermediate parameter region β1 < β < β2

is a direct consequence of the results on random forcing, such that we do not need to consider this
case here.

Throughout this section, we assume that (fβ)β∈R+ satisfies (D1)–(D3). In particular, Θ is a
compact metric space and γ : Θ → Θ is a homeomorphism. Since due to (1.3) we have Fβ,θ,α(1) ≤ 1
for all β, θ and α, the global attractor of Fβ is given by

(4.1) Ãβ =
\

n∈N

Fnβ
`
Θ × T

1 × [0, 1]
´
.
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Due to the monotonicity of the fibre maps Fβ,θ,α, an invariant graph ψ+
β can be defined as

(4.2) ψ+
β (θ, α) = sup Ãβ(θ, α) = lim

n→∞
Fnβ,g−n(θ,α)(1) .

We call ψ+
β the upper bounding graph of Fβ . Note that Ãβ =

n
(θ, α, r) | r ∈

h
0, ψ+

β (θ, α)
io

. Inde-

pendent of β, a second invariant graph is always given by ψ−(θ, α) = 0. Depending on β, we may
or may not have ψ+

β = ψ−.

The case β < β1. This is the simpler of the two cases, where, as it will be shown, ψ− = ψ+
β is

the only invariant graph of the system.

Proposition 4.1. Suppose β < β1. Then the global attractor Ãβ is equal to Θ × T
1 × {0}. In

particular, ψ− is the unique invariant graph of the system, all invariant measures are supported on
Θ × T

1 × {0} and

lim
n→∞

Fnβ,θ,α(r) = 0 for all (θ, α, r) ∈ Θ × T
1 × [0,∞) .

Proof. From the concavity of the fibre maps Fβ,θ,α and the Mean Value Theorem we obtain that
Fnβ,θ,α(r) ≤ (Fnβ,θ,α)′(0) · r for all r ∈ R

+. We claim that (Fnβ,θ,α)′(0) → 0 as n → ∞. Consider the
additive sequence of continuous functions Φn : Θ × T

1 → R, defined by

Φn(θ, α) =

n−1X

i=0

logF ′
β,gi(θ,α)(0) = log(Fnβ,θ,α)′(0) .

Φn satisfies the assumptions of Theorem 2.5 for T = g and λ = 0, since
R
Θ×T1 Φ1 dµ = λ(Fβ, 0) < 0

for all µ ∈ M(g) by Proposition 3.5. Hence, there exists ε > 0 and n0 ∈ N such that for all n ≥ n0

and all (θ, α) ∈ Θ×T
1 we have 1

n
log(Fnβ,θ,α)′(0) ≤ −ε, that is, (Fnβ,θ,α)′(0) ≤ e−ε·n → 0 as n→ ∞.

As this convergence is uniform in θ and α, the statements of the proposition follow immediately.

The case β > β2. Here, the aim is to prove the continuity and strict positivity of ψ+
β , whose

preimage under the projection P̂ then defines the split-off torus for the original system fβ . We start
with an auxiliary lemma.

Lemma 4.2. There exists δ0 > 0 such that for all 0 < δ < δ0 there exists an Fβ-forward invariant
compact set K with

Θ × T
1 × [δ, 1] ⊆ K ⊆ Θ × T

1 × (0, 1] ,

and such that K(θ, α) = {r ∈ R
+ | (θ, α, r) ∈ K} is an interval for all θ ∈ Θ.

Proof. The function ψ−(θ, α) = 0 is invariant graph for Fβ . Since β > β2, we have that λµ(ψ
−) =

λµ(Fβ, 0) > 0 for all µ ∈ M(g) by Proposition 3.5. Hence, as the set Θ × T
1 × {0} is compact and

invariant under Fβ , Theorem 2.5 applied to T = g, Φn(θ, α) = − log
`
Fnβ,θ,α

´′
(0) and λ = 0 implies

that for some ε > 0 and n0 ∈ N we have log
`
Fnβ,θ,α

´′
(0) > nε for all θ ∈ Θ, α ∈ T

1 and n ≥ n0.
Thus, the set Θ × T

1 × {0} is uniformly repelling for Fnβ in the vertical direction.
Let D := Θ × T

1 × [δ, 1] for some δ > 0. We claim that when δ is sufficiently small, this set is
forward invariant under Fnβ for large n. More precisely, there exists n0 ∈ N such that

(4.3) Fnβ (D) ⊆ D ∀n ≥ n0.

The uniform repulsion of Θ×T
1 ×{0} implies that for all n ≥ n0, there exist δ(n) > 0 such that

log
`
Fnβ,θ,α

´′
(r) >

ε

2
> 0 ∀ (θ, α, r) ∈ Θ × T

1 × [0, δ(n)].

Now let δ0 = min{δ(n0), . . . , δ(2n0 − 1)} and δ ∈ (0, δ0). We have that

Fnβ,θ,α(r) ≥ Fnβ,θ,α(δ) ≥ δ ·
`
Fnβ,θ,α

´′
(δ) ≥ δ

for all δ ∈ [0, δ0], n ∈ {n0, . . . , 2n0 − 1} and (θ, α, r) ∈ Θ× T
1 × [δ, 1]. Inductively, Fnβ,θ,α(r) ≥ δ for

all n ≥ n0 and all (θ, α, r) ∈ Θ × T
1 × [δ, 1]. This proves claim (4.3).

We define the set K :=
Sn0−1
m=0 F

m
β (D). Then

Fβ(K) =

n0[

m=1

Fmβ (D) = Fn0
β (D) ∪

 
n0−1[

m=1

Fmβ (D)

!
⊆ D ∪

 
n0−1[

m=1

Fmβ (D)

!
= K.
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Therefore K is compact and Fβ-forward invariant, and clearly Θ × T
1 × [δ, 1] = D ⊆ K ⊆ Θ ×

T
1 × (0, 1]. If K(θ, α) is not an interval for all (θ, α) ∈ Θ × T

1, then we can replace K with the set
K̃ = {(θ, α, r) | ∃r1, r2 ∈ K(θ, α) : r1 ≤ r ≤ r2}. Due to the monotonicity of the fibre maps Fβ,θ,α,
this set K̃ is still Fβ-forward invariant and therefore has all the required properties.

Proposition 4.3. The set K̂ :=
T
n∈N

Fnβ (K) is Fβ-invariant and equals graph(ψ+
β ). In particular,

ψ+
β : Θ × T

1 → [0, 1] is continuous and strictly positive.

Proof. As K is compact and Fβ-forward invariant, K̂ is compact and Fβ-invariant. By Theorem
2.1, all Fβ-invariant measures are of the form ν = µψ for some µ ∈ M(g) and some (Fβ , µ)-invariant
graph ψ. The graph ψ−(θ, α) = 0 is always invariant and λµ(ψ

−) = λµ(Fβ, 0) > 0 for all µ ∈ M(g).
Therefore, Theorem 2.2 yields that for all µ ∈ M(g) the only other possible (Fβ , µ)-invariant graph
is ψ+

β , which is µ-a.s. strictly positive.

Hence ψ = ψ+
β , and again by Theorem 2.2 we have λµ(ψ

+
β ) < 0. Thus, Lemma 2.4 yields that

K̂ is a continuous Fβ-invariant curve. Consequently, ψ+
β has to be the unique continuous function

Θ × T
1 → R

+ such that K̂ = graph(ψ+
β ).

Corollary 4.4. The upper bounding graph ψ+
β is attracting, in the sense that

lim
n→∞

(Fnβ,θ,α(r) − ψ+
β (gn(θ, α))) = 0 ∀ (θ, α, r) ∈ Θ × T

1 × (0,∞).

Proof. Due to the definition of ψ+
β and the monotonicity of the fibre maps, it is enough to show

that for all δ ∈ (0, δ0), with δ0 from Lemma 4.2, we have limn→∞(Fnβ,θ,α(1) − Fnβ,θ,α(δ)) = 0 for all
(θ, α) ∈ Θ × T

1. Fixing δ < δ0 and choosing K as in Lemma 4.2, we have that

(4.4) Fnβ,θ,α(1) − Fnβ,θ,α(δ) ≤ (1 − δ) · sup
(θ,α,r)∈K

(Fnβ,θ,α)′(r)

Consider Φn(θ, α, r) = log(Fnβ,θ,α)′(r). Φn is an additive sequence and by invoking Theorem 2.1

and 2.2 as in the preceding proof, we obtain that Φν̃ < 0 for all measures ν̃ ∈ M(Fβ) supported
on K. Thus, by Theorem 2.5 there exists ε > 0 and n0 ∈ N such that for all n ≥ n0 we have
1
n

log(Fnβ,θ,α)′(r) ≤ −ε, which means that (Fnβ,θ,α)′(r) ≤ e−ε·n. Consequently, sup(θ,α,r)∈K(Fnβ,θ,α)′(r) ≤
e−ε·n

n→∞−→ 0, which completes the proof.

Proof of Theorem 1.1. Since

(4.5) Aβ = P̂−1
“
Ãβ \ Θ × T

1 × {0}
”

and ‖fnβ,θ(v)‖ = Fnβ,θ,p(v)(r), statement (a) of the theorem follows immediately from Proposition 4.1.
Further, as mentioned in Remark 1.4(d), statement (b) is a direct consequence of Theorem 1.3,
whose proof is independent of Theorem 1.1.

It remains to prove statement (c) on the parameters β > β2. However, due to (4.5) this follows

directly from Proposition 4.3 and Corollary 4.4. Note that, thus, Tβ = P̂−1
“
graph

“
ψ+
β

””
and

rβ(θ, α) = ψ+
β (θ, 2α mod 1).

5 Random forcing

Throughout this section, we assume that (fβ)β∈R+ satisfies (R1)–(R3). In particular (Θ,B, m) is a
probability space and γ : Θ → Θ is a measure-preserving bijection. As before, the global attractor
is given by (4.1) and we have

(5.1) Ãβ =
˘
(θ, α, r) ∈ Θ × T

1 × R
+ | 0 ≤ r ≤ ψ+

β (θ, α)
¯
,

where the upper bounding graph ψ+
β is given by (4.2) as before. We start again by analysing the

double skew product Fβ in the different parameter regimes β < β2, β1 < β < β2 and β > β2, and
then apply the results to the original system fβ . In each case, we have to take particular care to
ensure that the exceptional set of measure zero in the statements can be chosen independent of the
parameter β.
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5.1 The non-critical parameter regions: Proof of Theorem 1.3

The case β < βm1 . Again, this is the simplest case, where the global attractor equals Θ×T
1×{0}.

Lemma 5.1. There exists a set Θ1 ⊆ Θ of full measure, such that for all β < βm1 and all θ ∈ Θ1

we have Ãβ(θ) = T
1 × {0} and

(5.2) lim
n→∞

Fnβ,θ,α(r) = 0 for all (α, r) ∈ T
1 × [0,∞) .

Proof. Since Ãβ(θ) = T
1 × {0} is equivalent to ψ+

β (θ, α) = 0 for all α ∈ T
1, we first want to show

that

(5.3) ψ+
β (θ, α) = 0 for m-a.e. θ ∈ Θ and all α ∈ T

1.

However, we have

ψ+
β (θ, α) = lim

n→∞
Fnβ,g−n(θ,α)(1)

≤ lim sup
n→∞

“
Fnβ,g−n(θ,α)

”′
(0)

≤ lim sup
n→∞

βn · ‖An(γ−nθ)‖ = 0 m-a.s.

since limn→∞
1
n

log ‖An(γ−nθ)‖ = limn→∞ log ‖A−n(θ)‖ = λmax(A) m-a.s. by Kingmans Subaddi-

tive Ergodic Theorem and β < βm1 = e−λmax(A).
The fact that (5.2) also holds m-a.s. is proved exactly in the same way, replacing the pullback

iteration by forward iteration. Hence, for every fixed β < βm1 , the set

Θ(β) =
n
θ ∈ Θ | ψ+

β (θ, α) = 0 and lim
n→∞

Fnβ,θ,α(r) = 0 ∀α, r
o

has full measure. However, since the fibre maps Fβ,θ,α and the upper bounding graph ψ+
β are

increasing in β, the set Θ(β) is decreasing in β. Therefore

Θ1 :=
\

β<β1

Θ(β) =
\

n∈N

Θ((1 − 1/n)βm1 )

has full measure and satisfies the assertions of the lemma.

The case βm1 < β < βm2 . In this case, we split the proof into several lemmas.

Lemma 5.2. There exists a set Θ2 ⊆ Θ of full measure such that for all β ∈ (βm1 , β
m
2 ) and θ ∈ Θ2

we have
ψ+
β (θ, φu(θ)) > 0 and ψ+

β (θ, α) = 0 for all α ∈ T
1 \ {φu(θ)} .

Proof. For the inverse action g−1, which is the projective action of the inverse cocycle (γ−1, A−1),
the roles of φu and φs exchange, and φs becomes the attractor. Hence, due to Lemma 3.3 we have
that for m-a.e. θ and all α 6= φu(θ)

lim
n→∞

d(g−nθ (α), φs(γ
−nθ)) = 0 .

As a consequence, we obtain that

lim
n→∞

1

n
log
“
Fnβ,g−n(θ,α)

”′
(0) = lim

n→∞

1

n
log
“
Fnβ,γ−nθ,φs(γ−nθ)

”′
(0)

= lim
n→∞

− 1

n
log
“
F−n
β,θ,φs(θ)

”′
(0) = λmφs

(Fβ , 0) = −λm(A) + log β < 0 .

Therefore

ψ+
β (θ, α) = lim

n→∞
Fnβ,g−n(θ,α)(1)

≤ lim
n→∞

“
Fnβ,g−n(θ,α)

”′
(0) = lim

n→∞

“
βe−λm(A)

”n
= 0 .

On the other hand, we have λmφu
(ψ−) = λm(A) + log β > 0. By Lemma 2.3, we therefore have

ψ+
β (θ, α) 6= ψ−(θ, α) mφu -a.s., which means that ψ+

β (θ, φu(θ)) > 0 m-a.s. . Finally, using the
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monotonicity of ψ+
β in β as in the proof of Lemma 5.1, it is easy to check that the exceptional set

of measure zero in all the statements can be chosen independent of β. For this, we have to use
that the set of θ where ψ+

β (θ, α) = 0 for all α 6= φu(θ) is decreasing in β, whereas the set of θ with

ψ+
β (θ, φu(θ)) > 0 is increasing with β.

Now, let

(5.4) ψ+
β,u(θ) =

`
φu(θ), ψ

+
β (θ, φu(θ))

´
.

We have Fβ(θ, ψ
+
β,u(θ)) = (γθ, ψ+

β,u(θ)) m-a.s., such that ψ+
β,u is an (Fβ, m)-invariant graph when

Fβ is viewed as a skew product with base γ and two-dimensional fibres T
1 × R

+. In order to show
that ψ+

β,u is a random attractor with domain of attraction D̃ = {(θ, α, r) | α 6= φs(θ), r 6= 0}, which
is the equivalent to (1.14), we first need some preliminary statements. We start by fixing some more
notation.

Given θ, α and r, we let (θn, αn, rn) = Fnβ (θ, α, r) and

Ωn(θ, α) =
n−1Y

i=1

Ω ◦ gi(θ, α) = ‖An(θ)(cosπα, sin πα)‖ ,

see equation (3.3). Further, given a, b ∈ (0, 1], we let

Γ(a, b) = inf
a6x61

inf
0<q6b

h(qx)

qh(x)
.

Lemma 5.3. Γ(a, b) ≥ 1 and Γ(a, b) > 1 if b < 1.

Proof. As h is strictly concave, h(qx)
qh(x)

> 1 for each x > 0 and each q ∈ (0, 1). Furthermore, for

xn ∈ [a, 1] and qn → 0,

(5.5) lim inf
n→∞

h(qnxn)

qnh(xn)
= lim inf

n→∞

xnh
′(0)

h(xn)
≥ h′(0)

h(a)/a
> 1 .

Now the claim follows from continuity of h and compactness of [a, 1] × [0, b].

The next statement allows to compare orbits with the same θ-coordinate.

Lemma 5.4 (Forward comparison lemma). Let α, α′ ∈ T
1 and r, r′ ∈ R

+ \ {0} and set qk :=
r′k
rk

and q̂k := min{qk, 1}. If k < n and qk+1, . . . , qn−1 ≤ 1, then

(5.6) qn ≥ q̂k · Ωn−k(θk, α
′
k)

Ωn−k(θk, αk)
·
n−1Y

j=k+1

Γ(βrj , qj) .

Proof. We have

(5.7)
h(βr′j)

h(βrj)
≥ h(q̂jβrj)

h(βrj)
≥ q̂j · Γ(βrj , q̂j)

so that

(5.8) qn =
Ω(θn−1, α

′
n−1)

Ω(θn−1, αn−1)
· h(βr

′
n−1)

h(βrn−1)
≥ q̂n−1 · Ω(θn−1, α

′
n−1)

Ω(θn−1, αn−1)
· Γ(βrn−1, q̂n−1) .

If qk+1, . . . , qn−1 ≤ 1, then qj = q̂j for j = k + 1, . . . , n− 1, and an easy induction yields

qn ≥ q̂k ·
n−1Y

j=k

Ω(θj , α
′
j)

Ω(θj , αj)
·
n−1Y

j=k

Γ(βrj , q̂j)

≥ q̂k ·
Ωn−k(θk, α

′
k)

Ωn−k(θk, αk)
·
n−1Y

j=k+1

Γ(βrj , qj) .

(5.9)

We can now turn to the attractor property of ψ+
β,u.
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Lemma 5.5. Suppose λm(A) > 0. Then there exists a set Θ3 ⊆ Θ of full measure such that for all
β > βm1 and θ ∈ Θ3 we have ψ+

β (θ, φu(θ)) > 0 and

lim
n→∞

d
`
Fnβ,θ(α, r), ψ

+
β,u (γnθ)

´
= 0 for all α ∈ T

1 \ {φs(θ)}, r > 0 .

In particular, for the skew product Fβ with base γ the invariant graph ψ+
β,u is a random one-point

attractor with domain of attraction D̃ =
˘
(θ, α, r) ∈ Θ3 × T

1 × R
+ | α 6= φs(θ), r > 0

¯
.

Proof. We will prove the equivalent assertion

(5.10) lim
n→∞

d
``
gnβ,θ(α), Fnβ,θ,α(r)

´
, ψ+

β,u(γ
nθ)
´

= 0 .

In view of Lemma 3.3, d(gnβ,θ(α), φu(γ
nθ)) tends to zero exponentially fast for all θ in a set Λ1 ⊆ Θ

of full measure. So it remains to estimate d
“
Fnβ,θ,α(r), ψ+

β (γnθ, φu(γ
nθ))

”
.

Let µ = mφu . If β > βm1 , then λµ(Fβ, 0) = λm(A) + log β > 0, so that ψ+
β (θ, φu(θ)) > 0 for

m-a.e. θ. Since ψ+
β is monotonically increasing in β, we can fix a γ-invariant set Λ2 ⊆ Λ1 of full

measure such that
ψ+
β (θ, φu(θ)) > 0 for all β > βm1 , θ ∈ Λ2 .

Now, let β > βm1 , θ ∈ Λ2, α = φu(θ) and r = ψ+
β (θ, α) and choose α′ ∈ T

1 with α′ 6= φs(θ) and
r′ > 0. We have to prove that limn→∞ |r′n − rn| = 0, which will follow from the stronger assertion

limn→∞
r′n
rn

= 1. (Observe that since Fβ,θ,α(R+) ⊆ [0, 1], we may assume without loss of generality

that rn and r′n are bounded by 1.)

We first show lim infn→∞
r′n
rn

≥ 1. Let δ > 0. For given n ∈ N let

(5.11) ℓ = ℓ(n) =

(
max {k ≤ n : r′k ≥ (1 − δ)rk} if such a k exists

0 otherwise.

If ℓ = n, then
r′n
rn

> 1 − δ. For ℓ < n, Lemma 5.4 implies

(5.12)
r′n
rn

≥ min


r′ℓ
rℓ
, 1

ff
· Ωn−ℓ(θℓ, α

′
ℓ)

Ωn−ℓ(θℓ, αℓ)
·
n−1Y

j=ℓ+1

Γ(βrj , qj) .

Assume for a contradiction that there is ℓ0 ∈ N such that ℓ(n) = ℓ0 for infinitely many n. Then

(5.13) lim sup
n→∞

r′n
rn

≥ min


r′ℓ0
rℓ0

, 1

ff
· lim sup
n→∞

n−1Y

j=ℓ0+1

Γ
“
β ψ+

β (γjθ, φu(γ
jθ)), qj

”
· κ(θ, ℓ0)

where κ(θ, ℓ0) = limn→∞ Ωn−ℓ0(θℓ0 , α
′
ℓ0

)/Ωn−ℓ0(θℓ0 , αℓ0) > 0 is the coefficient of the unstable
direction in the unique decomposition of v(α′

ℓ0
) = (cos πα′

ℓ0
, sin πα′

ℓ0
) with respect to the Oseledets

splitting at θℓ0 . As ψ+
β (θ, φu(θ)) > 0 m-a.s. and as qj =

r′j
rj

≤ 1 − δ for j > ℓ(n) = ℓ0 due to

(5.11), Lemma 5.3 implies that this product diverges as n → ∞ for m-a.e. θ. Moreover, since ψ+
β

is monotonically increasing in β, so is the product. For this reason, we can fix a set Λ3 ⊆ Λ2 of full
measure such that the product diverges for all θ ∈ Λ3 and β > βm1 .

However, this divergence contradicts the fact that r′n < (1−δ)rn. Hence, if θ ∈ Λ3 then ℓ(n) → ∞
as n → ∞. As d(α′

j , αj) → 0 exponentially fast, which also means |Ω(θj , α
′
j) − Ω(θj , αj)| → 0

exponentially fast, we obtain

(5.14) lim
n→∞

Ωn−ℓ(n)(θℓ(n), α
′
ℓ(n))

Ωn−ℓ(n)(θℓ(n), αℓ(n))
= lim

n→∞

n−1Y

j=ℓ(n)

Ω(θj , α
′
j)

Ω(θj , αj)
= 1 .

Therefore (5.12) and Lemma 5.3 imply that

(5.15) lim inf
n→∞

r′n
rn

≥ (1 − δ) .

As this is true for each δ > 0, we have indeed that lim infn→∞
r′n
rn

≥ 1.
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In order to show that lim sup
r′n
rn

=
“
lim inf rn

r′n

”−1

≤ 1, we can apply essentially the same

reasoning with interchanged roles of (α, r) and (α′, r′). The only difference is that the product in
(5.13) is replaced by

Qn−1
j=ℓ0+1 Γ

`
βr′j , qj

´
. But in view of the estimate proved above, r′n ≥ 1

2
rn for

all sufficiently large n so that

(5.16)

n−1Y

j=ℓ0+1

Γ
`
βr′j , qj

´
≥

n−1Y

j=ℓ0+1

Γ

„
β

2
rj , qj

«
=

n−1Y

j=ℓ0+1

Γ

„
β

2
ψ+
β (γjθ, φu(γ

jθ)), qj

«
.

Again, this product diverges for all θ in a set Θ3 ⊆ Λ3 of full measure and we conclude that

ℓ(n) → ∞. Similar to before, this yields that lim infn→∞
rn

r′n
≥ 1. This proves limn→∞

r′n
rn

= 1, and

thus completes the proof.

The case β > βm2 . The following lemma describes the detachment of the attractor from the central
manifold Θ × T

1 × {0} of the double skew product system.

Lemma 5.6. If β > βm2 , then there exists a random variable ∆β : Θ × T
1 → (0, 1] such that

(5.17) Fβ,θ,α(∆β(θ, α)) ≥ ∆β(g(θ,α)) for all θ ∈ Θ, α ∈ T
1 .

Furthermore, the set

(5.18) Θ(β) = {θ ∈ Θ | α 7→ ∆β(θ, α) is continuous and strictly positive}

has full measure.

Proof. Suppose β > βm2 . For some δ > 0 specified below, we define ∆β for all (θ, α) ∈ Θ × T
1 by

∆β,δ(θ, α) := inf
n≥0

Fnβ,g−n(θ,α)(δ) .

Then

∆β,δ(g(θ,α)) = inf
n≥0

Fnβ,g−(n−1)(θ,α)(δ)

= min


δ, inf
n≥1

Fβ,θ,α
“
Fn−1

β,g−(n−1)(θ,α)
(δ)
”ff

= min {δ, Fβ,θ,α(∆β,δ(θ, α))} ≤ Fβ,θ,α(∆β,δ(θ, α)) .

It remains to show that for sufficiently small δ > 0 the set Θ(β) has full measure. To that end, let

Φηn(θ) = inf
α∈T1

log
`
Fnβ,γ−nθ,α

´′
(η) .

Note that since h is concave and A : Θ → SL(2,R) is bounded, we have uniform and monotonically
increasing convergence

Φηn(θ)
η→0−→ Φn(θ) := inf

α∈T1
log
`
Fnβ,γ−nθ,α

´′
(0)

= − log
‚‚Dfnβ,γ−nθ(0)

−1
‚‚ = n log β − log ‖A−n(θ)‖ .

on Θ for all n ∈ N. As A is an SL(2,R)-cocycle, forward and backward Lyapunov exponent coincide
and we have

inf
n∈N

1

n

Z

Θ

Φn dm = log β − λm(A) =: λ̃ .

Since β > βm2 we have λ̃ > 0, and we can fix k ∈ N with
R
θ
Φk dm > λ̃/2. By choosing η > 0

sufficiently small we can further ensure that
Z

Θ

Φηk dm > λ̃/2 > 0

as well. Since γ is ergodic, Birkhoff’s Ergodic Theorem implies that for m-a.e. θ ∈ Θ we can choose
an integer n(θ) such that for all n ≥ n(θ) we have

(5.19)

n−1X

i=0

Φηk ◦ γ−n+i(θ) > nλ̃/2 + 2k sup
θ∈Θ

Φηk(θ) .
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If n ≥ n(θ) and m is the largest integer such that mk ≤ n, then this implies
Pmk−1
i=k Φηk ◦γ−n+i(θ) ≥

mkλ̃/2, and consequently there exists at least one j ∈ {0, . . . , k − 1} such that

(5.20)

m−1X

i=1

Φηk ◦ γ−n+ik+j(θ) ≥ mλ̃/2 .

If F iβ,g−n(θ,α)(δ) ≤ η for all i = 0, . . . , n− 1, then due to the concavity of the fibre maps we obtain

log
“
Fnβ,g−n(θ,α)

”′
(δ) ≥ mλ̃/2 + log

“
F j
β,g−n(θ,α)

”′
(δ)

+ log
“
F
n−(m−1)k−j
β,g−n+(m−1)k+j(θ,α)

”′ “
F

(m−1)k+j

β,g−n(θ,α)
(δ)
”

By choosing n(θ) large enough and using the fact that logF ′
β,θ,α(r) is uniformly bounded on

Θ × T
1 × [0, η], we can therefore ensure the following:

(5.21) If n ≥ n(θ) and F iβ,g−n(θ,α)(δ) ≤ η for all i = 0, . . . , n− 1, then
“
Fnβ,g−n(θ,α)

”′
(δ) > 1 .

Now, choose any δ ≤ η and let

κ̂θ(α) =
n(θ)

min
n=0

Fnβ,g−n(θ,α)(δ) .

Since the minimum is taken over a finite number of continuous and strictly positive curves, κ̂θ is
continuous and strictly positive as well. Hence, in order to prove the lemma it suffices to show that
∆β(θ, α) = κ̂θ(α).

In order to see this, suppose n ≥ n(θ). We proceed by induction on n to show that in this case

(5.22) Fnβ,g−n(θ,α)(δ) ≥ κ̂θ(α) .

First, suppose that F j
β,g−n(θ,α)

(δ) ≥ δ for some j ∈ {1, . . . , n}. Then by induction assumption we

obtain Fnβ,g−n(θ,α)(δ) ≥ Fn−j
β,g−n+j(θ,α)

(δ) ≥ κ̂θ(α). Otherwise, we can apply (5.21) and the concavity

of the fibre maps to obtain Fnβ,g−n(θ,α)(δ) ≥ δ ≥ κ̂θ(α). Hence, (5.22) holds in both cases, and this

shows κ̂θ(α) = ∆β(θ, α) as required.

We now turn to the existence and the attractor property of the invariant torus. Here, particular
attention is required to guarantee the β-independence of the exceptional set of measure zero.

Lemma 5.7. There exists a γ-invariant set Θ4 ⊆ Θ of full measure such that for all β > βm2 there
exists a random variable ρβ : Θ × T

1 → [0, 1] with the following properties.

(i) For all θ ∈ Θ4 the mapping α 7→ ρβ(θ, α) is strictly positive and continuous.

(ii) For all δ > 0 and θ ∈ Θ we have

(5.23) Fβ,θ,α(δρβ(θ, α)) ≥ δρβ(g(θ,α)) .

In particular, Kβ,δ = {(θ, α, r) | θ ∈ Θ, α ∈ T
1, r ∈ [δρβ(θ, α), 1]} is an Fβ-forward invariant

random compact set.

(iii) The random compact set

(5.24) Sβ =
\

n∈N

Fnβ (Kβ,δ)

is Fβ-invariant and for all θ ∈ Θ4 we have

(5.25) Sβ(θ) =
˘
(α, ψ+

β (θ, α)) | α ∈ T
1
¯
.

In particular α 7→ ψ+
β (θ, α) is continuous.

Proof. Let Bn = [β−
n , β

+
n ] be a nested sequence of intervals with Bn ր (βm2 ,+∞) as n → ∞.

Further, choose a sequence δk ∈ (0, 1) with limk→∞ δn = 0. We define

ρβ = ∆
β−

n
for all β ∈ Bn \ Bn−1 ,
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where ∆
β−

n
is the random variable from Lemma 5.6. Note that thus α 7→ ρβ(θ, α) is strictly positive

and continuous for all β > β2 and θ ∈ Tn∈N
Θ(β−

n ) =: bΘ, where the sets Θ(β−
n ) are again taken

from Lemma 5.6. Note that bΘ has full measure. Further, (5.23) holds for β = β−
n and δ = 1, and

by concavity and monotonicity of the fibre maps in β, it extends to all β ∈ Bn and δ ∈ (0, 1]. The
fact that Kβ,δ is Fβ-forward invariant is then obvious, thus we have shown (i) and (ii).

Since the Kβ,δ are forward invariant, the set Sβ is the nested intersection of random compact
sets and therefore randomly compact itself. Hence, the crucial point is to show that the fibres
Sβ(θ, α) = {r ∈ R

+ | (θ, α, r) ∈ Sβ} consist of the single point ψ+
β (θ, α). Then Sβ(θ) equals the

graph of α 7→ ψ+
β (θ, α), and since Sβ(θ) is compact this implies the continuity of α 7→ ψ+

β (θ, α).
We let

aβ,δn (θ, α) = Fnβ,g−n(θ,α)(δρβ(θ, α)) and bβn(θ, α) = Fnβ,g−n(θ,α)(1) .

Note that by definition limn→∞ bβn(θ, α) = ψ+
β (θ, α). Moreover,

(5.26)
`
Fnβ (Kβ,δ)

´
(θ) =

n
(α, r) | aβ,δn (θ, α) ≤ r ≤ bβn(θ, α)

o
.

Hence, it suffices to show that on a set of full measure and for all β > βm2 we have

lim
n→∞

sup
α∈T1

“
bβn(θ, α) − aβ,δn (θ, α)

”
= 0 .

In order to do so, we fix ℓ and k and consider the extended system

bF (θ, α, r, β) = (Fβ(θ, α, r), β)

defined on Θ × T
1 × R

+ × R
+. As K

β−

l
,δk

is Fβ-forward invariant for all β ∈ Bl, the set Kl,k =

K
β−

l
,δk

×Bl is forward invariant under bF .

Since the action of bF on β is the identity, any bF -invariant ergodic measure which projects tom in
the first coordinate and is supported on Kl,k is a direct product ν× δβ, where δβ is a Dirac measure
in β ∈ Bl and ν ∈ Mm(Fβ) is supported on K

β−

l
,δk

. Further, by Theorem 2.1, all Fβ-invariant

measures ν ∈ Mm(Fβ) are of the form ν = µψ for some µ ∈ Mm(g) and some (Fβ , µ)-invariant
graph ψ. Since ψ− = 0 is always invariant, Theorem 2.2 yields that there exists at most one
(Fβ , µ)-invariant graph ψ which is strictly positive, and we have λµ(ψ) < 0. As a consequence, the
additive sequence of functions

Φn(θ, α, r, β) = log
“
Fnβ,g−n(θ,α))

”′ `
F−n
β,θ,α(r)

´
= − log

`
F−n
β,θ,α

´′
(r)

satisfies the assumptions of Theorem 2.6 with γ replaced by γ−1 and λ = 0. Note that
R

Φ1 dν×δβ =R
logF ′

β,θ,α(r) dν(θ,α, r) = λµ(ψ) < 0 for all ν ∈ Mm(Fβ) supported on K
β−

l
,δk

.

Hence, there exist λ′ < 0 and a set Θl,k of full measure, such that for all θ ∈ Θl,k there exists
n(θ) ∈ N with
(5.27)

sup
n

log
`
Fnβ,γ−nθ,α

´′
(r)

˛̨
˛ β ∈ Bl, α ∈ T

1, r ∈ K
β
−

l
,δk

(γ−nθ)
o
< −nλ′ for all n ≥ n(θ) .

For fixed θ ∈ Θl,k and all β ∈ Bl and n ≥ n(θ) we therefore obtain

sup
α∈T1

“
bβn(θ, α) − aβ,δk

n (θ, α)
”

≤ e−nλ
′ n→∞−→ 0 .

In particular, we have

ψ+
β (θ, α) = lim

n→∞
aβ,δk
n (θ, α) = lim

n→∞
bβn(θ, α) ,

as required, and the convergence is even uniform in α ∈ T
1 and β ∈ Bl. If we now define Θ4 =

bΘ ∩Tl,k∈N
Θl,k, then (i)-(iii) hold for all β > βm2 , δ > 0 and θ ∈ Θ4.

Proof of Theorem 1.3. As in Section 4, the translation of the above results to the original setting
is now straightforward. We let Θ0 = Θ1 ∩Θ2 ∩Θ3 ∩Θ4, where the full measure sets Θ1,Θ2,Θ3 and
Θ4 are taken from Lemmas 5.1, 5.2, 5.5 and 5.7, respectively. Then, using the facts that
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• the projection P̂ conjugates fβ|Θ×R2
∗

with Fβ|Θ×T1×(0,∞),

• Aβ = P̂−1
“
Ãβ \ Θ × T

1 × {0}
”
∪ (Θ × {0}),

• ‖fnβ,θ(v)‖ = Fnβ,θ,α(r) when v = ±(r cos(πα), r sin(πα)),

• Ψβ(θ) = P−1
“n
ψ+
β,u(θ)

o”
for β > βm1 and

• Tβ = P̂−1(Sβ) for β > βm2 ,

statement (a) of Theorem 1.4 follows from Lemma 5.1, (b) follows from Lemmas 5.2 and 5.5 and
(c) follows from Lemmas 5.5 and 5.7. In (b) and (c), rβ(θ, α) = ψ+

β (θ, 2α mod 1). The random set
Kβ,δ in (c) is defined as

Kβ,δ =
˘
(θ, (r cos(2πα), r sin(2πα))t) | θ ∈ Θ, α ∈ T

1, r ∈ [δρβ(θ, 2α mod 1), 1]
¯
,

where ρβ is the random variable from Lemma 5.7.

Remark 5.8. We want to close this section with a remark on an alternative proof of Lemma 5.7.
In the above argument, the uniform contraction in the fibres of the set Kβ,δ is obtained by applying
Theorem 2.6, in combination with Theorem 2.2 to guarantee the negativity of the vertical Lyapunov
exponents in Kβ,δ.

In the particular situation we consider, it is also possible to give a direct proof, without invoking
these two general results, by making stronger use of the strict concavity of the fibre maps. The
crucial observation for this is the fact that any orbit which frequently stays further than a fixed
distance away from the zero line. In order to see this, let

qβ(r) =
h(βr)/r

βh′(βr)

and note that for all θ and α we have

Fβ,θ,α(r)/r

F ′
β,θ,α(r)

= qβ(r) .

Due to the strict concavity of h, the function qβ satisfies qβ(r) > 1 = limρ→0 qβ(ρ) for all r > 0.
Furthermore, we have

Fnβ,θ,α(r) = r ·
n−1Y

i=0

ri+1

ri
= r ·

n−1Y

i=0

Fβ,θi,αi
(ri)

ri

= r ·
n−1Y

i=0

qβ(ri)F
′
β,θi,αi

(ri) = r ·
`
Fnβ,θ,α

´′
(r) ·

n−1Y

i=0

qβ(ri)

where we used the notation (θi, αi, ri) = F iβ(θ, α, r). Since the fibre maps are all bounded by 1, we
obtain that

(5.28) log
`
Fnβ,θ,α

´′
(r) ≤ − log r −

n−1X

i=0

log qβ(ri) .

Now, let ρ̄β(θ) = infα∈T1 ρβ(θ, α), where ρβ = ∆
β−

n
is defined as in the proof of Lemma 5.7. By

Lemma 5.6, ρ̄β(θ) is strictly positive for all θ ∈ Θ(β−
n ), so the same is true for log qβ(ρ̄β(θ)). In

addition, we may assume, without loss of generality, that for all θ ∈ Θ(β−
n ), we have

lim
n→∞

1

n

nX

i=1

log qβ(ρ̄β(γ
−iθ)) =

Z

Θ

log qβ(ρ̄β(θ)) dm(θ) =: λ̃ > 0

and at the same time

lim
n→∞

1

n
log qβ(ρ̄β(γ

−nθ)) = 0 .

Hence, for all θ ∈ Θ(β) there exists some n(θ) > 0 such that for all n ≥ n(θ)

sup
n

log
`
Fnβ,γ−nθ,α

´′
(r)

˛̨
˛ α ∈ T

1, r ∈ K
β−

l
,δk

(γ−nθ)
o

(5.28)

≤ sup

(
− log r −

n−1X

i=0

log qβ(F
i
β,γ−nθ,α(r))

˛̨
˛̨
˛ α ∈ T

1, r ∈ K
β−

l
,δk

(γ−nθ)

)

≤ − log ρ̄β(γ
−nθ) −

nX

i=1

log qβ(ρ̄β(γ
−iθ)) ≤ −nλ̃/2 .
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This is equivalent to the uniform contraction property provided by (5.27), and from that point on
the proof proceeds in exactly the same way.

5.2 The critical parameters: Proof of Proposition 1.5

We split the proof into three lemmas, which are the analogues of statements (a), (b) and (c) of the
proposition for the double skew product. This time, the translation to the original setting is left to
the reader. The first lemma will imply part (b) of the proposition and also be useful in the proof
of part (a).

Lemma 5.9. Suppose β = βm1 . Then ψ+
β = 0 µ-a.s. for every µ ∈ Mm(g) and

(5.29) lim
n→∞

sup
α∈T1,r∈R+

1

n

n−1X

i=0

Fnβ,θ,α(r) = 0 for m-a.e. θ ∈ Θ .

Proof. As β = βm1 = e−λm(A), Lemma 3.6 implies that λµ(ψ
−) = λµ(Fβ, 0) ≤ 0 for all µ ∈ Mm(g).

Therefore, Theorem 2.2 implies that ψ+
β = 0 µ-a.s. for each µ ∈ Mm(g).

Let ν ∈ Mm(Fβ) and denote by µ ∈ Mm(g) its projection to Θ × T
1. If ν is ergodic, then

ν = µψ for some (g, µ)-invariant graph ψ by Theorem 2.1, and Theorem 2.2 implies now that ψ = 0
µ-a.s. It follows that ν(Θ × T

1 × (0,∞)) = 0 for each ν ∈ Mm(Fβ).

Consider the Fβ-forward invariant random compact set K(θ) = T
1 × [0, 1] and the additive

functions Φn(θ, (α, r)) =
Pn−1

k=0 F
k
β,θ,α(r). For each ν ∈ Mm(Fβ),

Φν =

Z

Θ×T1×R+

Φ1 dν =

Z

Θ×T1×{0}
Φ1 dν = 0 .

Let λ > 0. Then, for m-a.e. θ ∈ Θ,

0 ≤ sup
α∈T1,r∈[0,1]

Φn(θ, (α, r)) ≤ Cλ(θ) + nλ for all n ∈ N

by Theorem 2.6, and as this is true for each λ > 0, the claim (5.29) restricted to r ∈ [0, 1] follows at
once. As the fibre maps are monotone and bounded by 1, the extension to r ∈ R

+ is immediate.

Lemma 5.10. Suppose β = βm1 < βm2 . Then for m-a.e. θ ∈ Θ we have ψ+
β (θ, α) = 0 for all α ∈ T

1

and there is a set J(θ) ⊆ N of asymptotic density 0 such that

(5.30) lim
n→∞
n/∈J(θ)

Fnβ,θ,α(r) = 0 for all (α, r) ∈ T
1 × [0,∞) .

Proof. As ψ+
β is increasing in β, the fact that ψ+

β (θ, α) = 0 when α 6= φu(θ) follows from Lemma 5.2.
For α = φu(θ), this follows from the fact that λmφu

(Fβ , 0) = 0.
By Lemma 3.6 we have λmφs (Fβ , 0) = −λm(A) + log β1(m) = −2λm(A) < 0. Consequently, for

m-a.e. θ ∈ Θ

lim
n→∞

Fnβ,θ,φs(θ)(1) = 0 .

Further, Lemma 5.9 implies that for m-a.e. θ ∈ Θ

(5.31) lim
n→∞

1

n

n−1X

i=0

F iβ,θ,α(1) = 0 for all (α, r) ∈ T
1 × [0,∞).

Hence, for m-a.e. θ there is a set J(θ) ⊂ N of asymptotic density 0 such that

(5.32) lim
n→∞
n/∈J(θ)

Fnβ,θ,φu(θ)(1) = 0.

In order to prove that, along the same subsequence N \ J(θ) of asymptotic density 1, Fnβ,θ,α(1) → 0
for all α ∈ T

1, we use a modification of the proof of Lemma 5.5. Choose α, α′ ∈ T
1 \ {φs(θ)},

r, r′ > 0, and let (θk, αk, rk) = F kβ,θ,α(r) and define (θk, α
′
k, r

′
k) in the analogous way. Let

(5.33) ℓ = ℓ(n) =

(
max {k ≤ n : r′k ≥ rk} if such a k exists

0 otherwise.



A model for the nonautonomous Hopf bifurcation 21

If ℓ = n, then
r′n
rn

≥ 1. For ℓ < n, Lemma 5.4 implies

(5.34)
r′n
rn

≥ min


r′ℓ
rℓ
, 1

ff
· Ωn−ℓ(θℓ, α

′
ℓ)

Ωn−ℓ(θℓ, αℓ)
.

If ℓ > 0, then r′ℓ ≥ rℓ. If ℓ = 0, then rℓ = r and r′ℓ = r′. In any case,

(5.35)
r′n
rn

≥ min


r′

r
, 1

ff
· Ωn−ℓ(θℓ, α

′
ℓ)

Ωn−ℓ(θℓ, αℓ)
.

Now, if (cos 2πα, sin 2πα)t = avu(θ) + bvs(θ), where vu(θ), vs(θ) are the unit vectors con-
tained in the invariant subspaces Eu(θ), Es(θ) of the Oseledets splitting (see Theorem 3.2), then

limk→∞
Ωk(θ,α)

Ωk(θ,φu(θ))
= a. Likewise, if (cos 2πα′, sin 2πα′)t = a′vu(θ) + b′vs(θ) then we have that

limk→∞
Ωk(θ,α′)

Ωk(θ,φu(θ))
= a′. Together, this yields

lim
k→∞

Ωk(θ, α
′)

Ωk(θ, α)
=

a′

a
.

Consequently, since
Ωn−ℓ(θℓ, α

′
ℓ)

Ωn−ℓ(θℓ, αℓ)
=

Ωn(θ, α′)

Ωn(θ, α)
· Ωℓ(θ, α)

Ωℓ(θ, α′)

and the two factors on the right converge to a/a′ and a′/a as n and ℓ go to infinity, there exists a
constant C(θ, α, α′) > such that

(5.36)
Fnβ,θ,α′(r′)

Fnβ,θ,α(r)
=
r′n
rn

≥ min


r′

r
, 1

ff
· C(θ, α, α′) for all n.

For α′ = φu(θ) and r′ = 1, this is the estimate needed to infer (5.30) from (5.32).

Lemma 5.11. Suppose β = βm2 > βm1 . Then

ψ+
β (θ, α) = 0 for m-a.e. θ ∈ Θ and all α ∈ T

1 \ {φu(θ)} .

Proof. As log β = λm(A), Lemma 3.6 implies that λmφs
(Fβ, 0) = 0. Hence ψ+

β (θ, α) = 0 for

mφs -a.e. (θ, α) by Theorem 2.2, which means that ψ+
β (θ, α) = 0 for m-a.e. θ ∈ Θ and α = φs(θ).

For α,α′ ∈ T
1 \ {φu(θ)} and n ∈ N we let θ̄ = γ−nθ, ᾱ = g−nθ (α) and ᾱ′ = g−nθ (α′). Further,

let r̄k = F kβ,g−k(θ,α)(1) and r̄′k = F kβ,g−n(θ,α′)(1) and define

(5.37) ℓ = ℓ(n) =

(
max {k ≤ n : r̄′k ≥ r̄k} if such a k exists

0 otherwise.

Then Lemma 5.4 applied to θ̄, ᾱ, ᾱ′ and r̄ = r̄′ = 1 yields

(5.38)
Fnβ,g−n(θ,α′)(1)

Fn
β,g−n(θ,α)

(1)
=

r̄′n
r̄n

≥ Ωn−ℓ(θ̄ℓ, ᾱ
′
ℓ)

Ωn−ℓ(θ̄ℓ, ᾱℓ)
.

Suppose (cos 2πα, sin 2πα) = avu(θ) + bvs(θ) and (cos 2πα′, sin 2πα′) = a′vu(θ) + b′vs(θ), where
vu(θ), vs(θ) are defined as in the proof of the previous lemma. We have

Ωn−ℓ(θ̄ℓ, ᾱ
′
ℓ)

Ωn−ℓ(θ̄ℓ, ᾱℓ)
=

Ω−n(θ̄, ᾱ)

Ω−n(θ̄, ᾱ′)
· Ω−ℓ(θ̄, ᾱ

′)

Ω−ℓ(θ̄, ᾱ)
.

Similar as in the previous proof, the two factors on the right converge to b/b′ and b′/b, respectively, as

n and ℓ go to infinity. For this reason, there exists a constant C̄(θ, α, α′) such that
r̄′n
r̄n

≥ C̄(θ, α, α′).
Using (5.38), this means that

Fnβ,g−n(θ,α′)(1) ≥ C̄(θ, α, α′) · Fnβ,g−n(θ,α)(1) .

If we let α′ = φs(θ), then in the limit n→ ∞ we obtain

0 = ψ+
β (θ, φs(θ)) ≥ C̄(θ, α, α′) · ψ+

β (θ, α)

and thus ψ+
β (θ, α) = 0 for m-a.e. θ ∈ Θ and all α ∈ T

1 \ {φu(θ)} as required.
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6 Continuous-time models

The classical Hopf bifurcation takes place in continuous-time dynamical systems generated by planar
vector fields. Its discrete-time analogue, whose nonautonomous version we have considered so far,
is often called Neimark-Sacker bifurcation. However, since a Hopf bifurcation for a planar flow
corresponds to a Neimark-Sacker bifurcation of the corresponding time-one map, this is a minor
distinction. Nevertheless, as we have made quite specific additional assumptions on the considered
models, it is important to note that continuous-time systems with similar properties exist. The
aim of this section is to provide examples of continuous-time flows, generated by non-autonomous
planar vector fields, whose time-one maps have a similar structure as the maps considered in the
previous sections and therefore exhibit the same bifurcation pattern. We will only sketch the details
and concentrate on the deterministic setting. Randomly forced examples can be produced in an
analogous way.

Suppose that Θ is a compact metric space and ω : R×Θ → Θ, (t, θ) 7→ ωtθ is a continuous flow
on Θ. First, consider the linear two-dimensional ordinary differential equation

(6.1)

„
x
y

«′
= B(ωtθ)

„
x
y

«

with continuous B =

„
âθ b̂θ
ĉθ d̂θ

«
: Θ → sl(2,R). The time-one map of the generated flow is given

by a linear SL(2,R)-cocycle (ω1, A1), with continuous A1 : Θ → SL(2,R) obtained by integrating

B along the orbits of ω. In polar coordinates (α, r) =
“
arctan(y/x)/π mod 1,

p
x2 + y2

”
, equation

(6.1) is written as

α′ =
1

π

“
ĉωtθ cos2 πα+ (d̂ωtθ − âωtθ) cosπα sin πα− b̂ωtθ sin2 πα

”
(6.2)

r′ = γ(ωtθ, α) · r(6.3)

with γ(θ, α) = âθ cos2 πα+ (b̂θ + ĉθ) sin πα cos πα+ d̂θ sin2 πα. The time-one map of this system is
given by

(6.4) bF (θ, α, r) = (g1(θ, α),Ω1(θ, α) · r) ,

where g1(θ, α) = (ω1θ, g1,θ(α)) is the projective action of the cocycle (ω1, A1) and the factor Ω1(θ, α)
is obtained by integrating (6.3).

In order to introduce a bifurcation parameter and to make the fibre maps concave in r, we now
replace (6.1) by

(6.5)

„
x
y

«′
=
`
B(ωtθ) + (β + η(r))E

´„ x
y

«

with a non-positive decreasing C2-function η : R
+ → R such that r 7→ η(r) · r is concave, η(0) = 0

and limr→∞ η(r) = −∞. This results in the modified equation

(6.6) r′ = (γ(ωtθ, α) + β + η(r)) · r

replacing (6.3), while (6.2) is unaffected. The resulting time-one map will be of the form

(6.7) Fβ(θ, α, r) = (g1(θ, α), Fβ,θ,α(r)) ,

with fibre maps Fβ,θ,α : R
+ → R

+ that have the following properties:

• Fβ,θ,α is a strictly increasing C2-function;

• Fβ,θ,α(0) = 0;

• F ′
β,θ,α(0) = eβ · Ω1(θ, α);

• β 7→ Fβ,θ,α(r) is strictly increasing for all θ ∈ Θ, α ∈ T
1 and r > 0.

• Fβ,θ,α is strictly concave (due to the concavity of the right side of (6.6)).

• supθ,α,r Fβ,θ,α <∞ (due to the facts that limr→∞ η(r) = −∞ and γ is uniformly bounded).



A model for the nonautonomous Hopf bifurcation 23

While the fibre maps of Fβ are not exactly of the same form as in Lemma 3.1(iii), they have all the
qualitative features that were used in our analysis. The specific form of the maps in (1.1) was chosen
for reasons of presentation and readability, but all arguments go through in the generality needed
to treat maps with the above properties. Thus, the family (Fβ)β∈R satisfies all the assertions of
Theorem 1.1 with critical parameters β1 = −λmax(A1) and β2 = λmax(A1). Analogous statements
with obvious modifications for the continuous-time case hold for the flow generated by (6.2) and
(6.6).

7 Simulations

In this section, we illustrate the preceding results by an explicit example fβ : T
1 × R

2 → T
1 × R

2

with skew product structure (θ, v) 7→ (γθ, fβ,θ(v)). For simplicity, the base transformation is chosen
to be an irrational rotation of the circle, that is, γ : T

1 → T
1, θ 7→ θ + ̺ mod 1, where ̺ is the

golden mean. The fibre maps are defined by

(7.1) fβ,θ(v) =

8
<
:

h(β‖v‖)A(θ) v
‖v‖ if v 6= 0

0 if v = 0

,

where h(x) = 1
3
√
c
arctan(x) and A(θ) =

„
c−1/2 0

0 c1/2

«„
cos(2πθ) sin(2πθ)
− sin(2πθ) cos(2πθ)

«
=:

„
aθ bθ
cθ dθ

«
.

The map fβ is easily seen to satisfy (D1)–(D3) as well as condition (1.3). Therefore, fβ satisfies
Theorem 1.1 and for c = 1/2, the bifurcation parameters (determined by the maximal exponen-
tial expansion rate of the cocycle (γ,A), see [3, Section 4.1]) are given by β1 = 3

√
2e−λ(A) =

3
√

2
“

2
√

2
3

”
= 4 and β2 = 3

√
2eλ(A) = 3

√
2
“

1√
2

+ 1

2
√

2

”
= 4.5.
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(a) β1 < β = 4.080 < β2
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(c) β = 4.650 > β2
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(d) β = 6.080 > β2

Figure 7.1: The global attractor of the induced polar coordinate system Fβ .
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As in Section 3, we use polar coordinates in order to study the induced system Fβ : T
1 ×

T
1 × [0,∞) → T

1 × T
1 × [0,∞), given by Fβ(θ, α, r) = (γθ, gθ(α), Fβ,θ,α(r)), where gθ(α) =

1
π

arctan
“
cβ+dθ tan πα

aβ+bθ tan πα

”
mod 1, and Fβ,θ,α(r) = arctan(βr)

3
√

2
||A(θ)(cosπα, sin πα)||

Figures 7.1(a)–7.1(d) illustrate the behaviour of the induced polar coordinate system Fβ. Figures
7.1(a) and 7.1(b), show the global attractor shortly after the first critical parameter (β1) and just
before the second (β2), respectively. Figure 7.1(c) shows Aβ(θ) shortly after β2 where the invariant
torus has just formed, and finally, Figure 7.1(d) shows the split off torus far from the bifurcation
(all in polar coordinates). For the same values of β, Figures 7.2(a)–7.2(d) illustrate the behaviour
of the global attractor for the original system fβ.
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Figure 7.2: The global attractor of the original system fβ.

(a) β1 < β = 4.475 < β2 (b) β = 4.465 > β2

Figure 7.3: 2D projection of the global attractor onto R
2
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Finally, Figures 7.3(a) and 7.3.(b) show a 2D projection of the torus onto R
2 for β = 4.475

(before the torus has formed), and β = 4.465 (after the torus has split off), respectively.
All pictures were produced by using a mixture of pullback and forward iteration for a fixed grid

of (θ, α)-coordinates.

References

[1] C. Grebogi, E. Ott, S. Pelikan, and J.A. Yorke. Strange attractors that are not chaotic. Physica
D, 13:261–268, 1984.

[2] L. Arnold. Random Dynamical Systems. Springer, 1998.
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[18] T. Jäger. The creation of strange non-chaotic attractors in non-smooth saddle-node bifurca-
tions. Mem. Am. Math. Soc., 945:1–106, 2009.
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