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Abstract

We extend Poincaré’s theory of orientation-preserving homeomorphisms from the circle
to circloids with decomposable boundary. As special cases, this includes both decompos-
able cofrontiers and decomposable cobasin boundaries. More precisely, we show that if
the rotation number on an invariant circloid A of a surface homeomorphism is irrational
and the boundary of A is decomposable, then the dynamics are monotonically semicon-
jugate to the respective irrational rotation. This complements classical results by Barge
and Gillette on the equivalence between rational rotation numbers and the existence of
periodic orbits and yields a direct analogue to the Poincaré Classification Theorem for
circle homeomorphisms. Moreover, we show that the semiconjugacy can be obtained as
the composition of a monotone circle map with a ‘universal factor map’, only depending
on the topological structure of the circloid. This implies, in particular, that the monotone
semiconjugacy is unique up to post-composition with a rotation.

If, in addition, A is a minimal set, then the semiconjugacy is almost one-to-one if
and only if there exists a biaccessible point. In this case, the dynamics on A are almost
automorphic. Conversely, we use the Anosov-Katok method to build a C8-example where
all fibres of the semiconjugacy are non-trivial.

1 Introduction

Given an orientation-preserving circle homeomorphism ϕ, the Poincaré Classification The-
orem states that the rotation number ρpϕq is well-defined and determines the qualitative
dynamical behaviour of ϕ, in the sense that ρpϕq is rational if and only if ϕ has a peri-
odic orbit and irrational if and only if ϕ is monotonically semiconjugate to the respective
irrational rotation. This result provides the basis for a rather complete understanding
of invertible dynamics on the circle. At the same time the study of cofrontiers, circloids
and other classes of circle-like continua, like basin boundaries, co-basin boundaries or
pseudocircles, has a long history in plane topology and continuum theory, going back
to Kuratowski, Cartwright, Littlewood, Bing and others [Kur28, CL51b, Bin51]. Re-
cently the topic has gained further momentum, since invariant circloids play a crucial
role in surface dynamics. It is therefore a natural question to ask whether an analogue to
Poincaré’s classical result holds for these more general continua. In this article, we extend
the Poincaré Classification to circloids with decomposable boundary.1 In order to define
this notion, we let T1

“ R{Z and A “ T1
ˆ R and call a continuum A Ď A an essential

annular continuum if AzA consists of exactly two connected components, both of which
are homeomorphic to A. Further, A is called an essential circloid if it does not contain
any strictly smaller essential annular continuum as a subset, and a cofrontier if it is a
circloid with empty interior. We refer to Section 2 for further explanations and details.

In the context of the dynamics of surface homeomorphisms, circloids may appear in
various situations. For instance, they separate adjacent invariant topological disks or
annular domains [BG91, BGM93, Wal91, KY94, FLC03], and any periodic point free
continuum of a non-wandering surface homeomorphism is an annular continuum [Kor10]
that can further be decomposed into a dense union of invariant circloids and transitive
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annuli [Jäg10]. On the two-torus, the existence of invariant circloids can often be deduced
from information on the rotation set [Jäg09a, Dav, GKT14], and invariant “foliations”
consisting of circloids play an important role for the problem of linearisation [Jäg09b].
The respective results in topological dynamics have further applications in the theory
of Cr-generic diffeomorphisms [FLC03, KN10, KLCN15]. It is thus of vital interest to
understand the interplay between the topological structure and the possible dynamical be-
haviour on such continua. However, while the relation between rational rotation numbers
and periodic orbits is quite well-understood [CL51b, BG91, KLCN15], the more intricate
question of irrational rotation factors has been left completely open so far.

The problem is complicated by the fact that the rotation number on invariant circloids
is not necessarily unique. Non-degenerate rotation intervals have been shown to occur on
the Birkhoff attractor [LC88] and, more recently, the pseudocircle [BO]. Such examples
can be excluded by adding a mild recurrence assumption [KLCN15], but even in the case
of a unique rotation number a semiconjugacy does not have to exist. This was shown by
Handel [Han82] and Herman [Her86], who realised the pseudocircle as a minimal set of a
smooth surface diffeomorphism. In these examples, the rotation number is irrational, but
the dynamics are not semiconjugate to the corresponding rotation. While the pseudocir-
cle is the paradigm example of a circle-like continuum with highly intricate topological
structure, a modification of the construction can be used to produce a variety of more
‘regular’ indecomposable continua with the same behaviour. Hence, decomposability of
the circloid presents itself as the obvious minimal requirement for a possible analogue to
the Poincaré classification. As the following result shows, it turns out to be sufficient as
well. Recall that a monotone map is one with connected fibers.

Theorem 1.1. Suppose ϕ : A Ñ A is a homeomorphism homotopic to the identity with
an essential ϕ-invariant circloid A with decomposable boundary. Then every point of A
has a well-defined rotation number ρ P T1 which is independent of the point, and

• ρ is rational if and only if there is a periodic point in A.

• ρ is irrational if and only if ϕ|A is monotonically semiconjugate to the correspond-
ing irrational rotation by ρ on T1.

Barge and Gillette showed that the rotation number on a decomposable cofrontier is
always unique, and it is rational if and only if there exists a periodic orbit in the cofrontier
[BG91]. Theorem 1.1 complements these results to give a direct analogue to the Poincaré
Classification Theorem for decomposable cofrontiers and, more generally, to circloids with
decomposable boundary. Thus, dynamics with irrational rotation number on an invariant
circloid with decomposable boundary are ‘linearisable’.

As it further turns out, to a great extent this linearisation does not depend on the
dynamics. More precisely, there exists a ‘universal factor map’ which maps the circloid to
a topological circle and semiconjugates the dynamics of any homeomorphism preserving
the circloid to that of a circle homeomorphism.

Theorem 1.2. Suppose that A Ď A is an essential circloid with decomposable boundary
and there exists a self-homeomorphism of A leaving A invariant without periodic points
in A. Then there exists a continuous and onto map Π : A Ñ A with the following
properties.

(i) Π is monotone and homotopic to the identity;

(ii) Π sends A to T “ T1
ˆ t0u;

(iii) Π is injective on AzA;

(iv) for any homeomorphism φ : AÑ A leaving A invariant, there exists a homeomor-
phism ϕ̃ : AÑ A such that ϕ̃pTq “ T and Π ˝ ϕ “ ϕ̃ ˝Π.

(v) If h : A Ñ T1 is any monotone surjection, then there exists a monotone map
rh : T Ñ T1 such that h “ h̃ ˝ Π. In particular, if h semiconjugates ϕ|A to an

irrational rotation Rρ, then h̃ semiconjugates ϕ̃|T to Rρ.

We give a short self-contained proof in Section 5. It turns out, however, that the
family of subcontinua of A given by the fibres of Π coincides with a decomposition of the
circloid constructed already by Kuratowski, in a purely topological context [Kur28]. We
discuss this in Section 7.
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It is well-known that the semiconjugacies in the Poincaré Classification Theorem are
unique up to post-composition by a rotation. As an immediate consequence of Theo-
rem 1.2, we obtain the same statement for decomposable circloids.

Corollary 1.3. The semiconjugacy in Theorem 1.1 is unique up to post-composition by
a rotation.

As should be expected, additional information on the topological structure of the cir-
cloid yields further information on the dynamics. We concentrate on the relation between
the existence of biaccessible points and almost automorphic dynamics, whose study is a
classical topic in abstract topological dynamics [Vee65, Ell69, Aus88]. A homeomorphism
ϕ : X Ñ X is almost automorphic if it is semiconjugate to some almost periodic homeo-
morphism of a space Y in a way that the set of points of Y with a unique preimage under
the semiconjugation is dense in Y . The following statement shows how sets of this type
appear in surfaces. A point of an essential circloid A Ă A is called biaccessible if it is the
unique intersection point of some arc σ with A such that σ intersects both components of
AzA. An essential cobasin boundary B is the boundary of an essential circloid, B “ BA,
and if A has a biaccessible point x belonging to B, we also say that x is a biaccessible
point of B.

Theorem 1.4. If B is an essential cobasin boundary in A invariant by a homeomorphism
ϕ : A Ñ A without periodic points and there is a biaccessible recurrent point in B, then
ϕ|B is almost automorphic.

Corollary 1.5. Let ϕ : A Ñ A be a homeomorphism and X is an essential ϕ-invariant
continuum such that ϕ|X is minimal. If X has a biaccessible point, then X is a decom-
posable cofrontier and ϕ|X is almost automorphic.

In fact, to our knowledge all known examples of minimal decomposable cofrontiers
are of this type; see for instance [Wal91, Her83]. Therefore, we close with a construction
that is based on the well-known Anosov-Katok method [AK70] and demonstrates that all
fibres may be non-trivial as well.

Theorem 1.6. There exists a C8 diffeomorphism ϕ : AÑ A leaving invariant a decom-
posable cofrontier A such that

(i) the rotation number on A is irrational;

(ii) the dynamics on A are minimal;

(iii) all the fibres of points of T1 of the semiconjugacy given by Theorem 1.2 are non-
trivial continua (i.e. not a single point).

In fact, the fibres of points of T1 have a diameter uniformly bounded below by a
positive constant (see Claim 8.2) and, although we do not give a formal proof, it can be
seen from the construction that all these fibres can be given a rich topological structure,
reminiscent of the Knaster Buckethandle continuum.
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2 Notation and preliminaries
We denote by A “ T1

ˆ R the open annulus, and π : R2
Ñ A its universal covering map,

where T : px, yq ÞÑ px` 1, yq is a generator of the group of covering transformations.
A subset A of the open annulus A “ T1

ˆ R is called an essential annular continuum
if it is compact and connected and its complement AzA consists of exactly two connected
components, both of which are unbounded. Note that in this situation one of the com-
ponents is unbounded above and bounded below, whereas the other is bounded above
and unbounded below, and both of them are homeomorphic to A. Moreover, A is the
decreasing intersection of a sequence of closed annuli. We call C Ď U an essential circloid
if it is a minimal element with respect to inclusion amongst essential annular continua.
An essential circloid with empty interior is called an essential cofrontier. The boundary
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of an essential circloid is called an essential cobasin boundary. It is the intersection of the
boundaries of the two complementary components of the circloid and a minimal element
with respect to inclusion amongst essential continua. A subset A of a surface S is called
annular continuum (circloid/cofrontier/cobasin boundary) if it has a neighbourhood U
homeomorphic to A such that A as a subset of U is an essential annular continuum (es-
sential circloid/essential cofrontier/essential cobasin boundary) in the above sense. Note
that thus an annular continuum in A may be non-essential, in which case it is contained
in a closed topological disk. From now on, given any annular continuum, circloid, cobasin
boundary or cofrontier, we always identify its annular neighbourhood U with A and as-
sume implicitly that the objects are essential in A.

A closed subset A Ď R2 is called horizontal, if there exists M ą 0 with A Ď R ˆ
r´M,M s, and horizontally separating if R ˆ p´8,´Mq and R ˆ pM,8q are contained
in different connected components of R2

zA. It is called a horizontal strip if it separates
the plane into exactly two connected components, one of them unbounded above and
the other unbounded below. A horizontal strip is called minimal if it does not strictly
contain a smaller horizontal strip. In this case, its boundary is called a horizontal coplane
boundary and equals the intersection of the boundaries of the two complementary domains
of the strip. A horizontal coplane boundary is minimal amongst horizontally separating
sets. If A is an essential continuum, we call the set A “ π´1

pAq its lift. We state the next
observation as a lemma, since it will be used repeatedly. Its proof is straightforward and
left to the reader.

Lemma 2.1. The lift of an essential continuum A is a minimal strip if and only if A is
a circloid, and the lift of an essential continuum B is a coplane boundary if and only if
B is a cobasin boundary.

Let ϕ : A Ñ A be a homeomorphism homotopic to the identity. Any such map lifts
to a homeomorphism Φ: R2

Ñ R2 which commutes with the deck transformation T :
px, yq ÞÑ px` 1, yq. If A is a compact invariant subset of ϕ, the rotation interval of Φ on
A is defined as

(2.1) ρApΦq “
!

ρ P R | Dzi P π´1
pAq, ni Õ8 : lim

iÑ8
π1 pΦ

nipziq ´ ziq {ni “ ρ
)

.

When ρApΦq is reduced to a singleton tρu, we say Φ has a unique rotation number ρ in
A. In this case, limnÑ8 π1pΦ

n
pzq ´ zq{n “ ρ for all z P π´1

pAq. When this happens we
say that ϕ has a well-defined rotation number ρpϕq “ ρ` Z P T1.

Given metric spacesX,Y , a continuous map ϕ : X Ñ X is semiconjugate to ψ : Y Ñ Y
if there exists a continuous onto map h : X Ñ Y such that h˝ϕ “ ψ ˝h. In this situation,
we say ψ is a factor of ϕ and h is a semiconjugacy or factor map. An important case is
that of monotone semiconjugacies. A continuous map h : X Ñ Y is called monotone if
all fibres h´1

ptyuq, y P Y , are connected. A set U Ď X is called saturated with respect to
h : X Ñ Y , if x P U implies h´1

pthpxquq Ď U . If h is continuous, then it maps saturated
open (closed) sets to open (closed) sets. As a direct consequence, we have

Lemma 2.2. Preimages of connected sets under surjective monotone maps are connected.
In particular, preimages of decomposable sets are decomposable.

A cellular continuum in a surface S is one of the form K “
Ş

nPNDn where each Dn
is a closed topological disk and Dn`1 Ď intDn. This is equivalent to saying that K is a
continuum and has a neighborhood homeomorphic to R2 in which K is non-separating.

A partition F of a metric space X into compact subsets is called an upper semicontin-
uous decomposition if for each open set U Ď X, the union of all elements of F contained
in U is also open. A Moore decomposition of a surface S is an upper semicontinuous
decomposition of S into cellular continua. The following version of Moore’s theorem is
contained in [Dav86, Theorem 25.1] (see also Theorem 13.4 in the same book). It says
essentially that the quotient space of a Moore decomposition is the same surface S.

Theorem 2.3. Given any Moore decomposition F of a surface S, there exists a map
Π : S Ñ S which satisfies the following.

(i) Π is continuous and surjective;

(ii) Π is homotopic to the identity (and preserves orientation if S is orientable);

(iii) For all z P S, we have Π´1
pzq P F .
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The map Π is called the Moore projection associated to F .
Finally, we state some basic results from plane topology. We say that a subset K Ď X

of a topological space separates two points if the two points belong to different connected
components of XzK.

Lemma 2.4 ([New92, Theorem 14.3]). If two points in the plane are separated by a closed
set, then they are also separated by some connected component of that set.

Lemma 2.5 ([HY61, Theorem 2-28]). In any metric space, a continuum K is homeo-
morphic to a circle if for any pair x ‰ y of points of K, the set Kztx, yu is disconnected.

Lemma 2.6 ([HY61, Theorem 2-16]). If X is a continuum and Y Ď X is closed, then
the closure of every connected component of XzY intersects Y .

3 Minimal generators

Throughout this section, B Ď A denotes a decomposable cobasin boundary and B “
π´1

pBq its lift. If G Ď B is a continuum such that B “
Ť

nPZ T
n
pGq, we say that G is

a generator of B. We say that G is a minimal generator if it does not strictly contain a
smaller generator. In the same way we may define generators and minimal generators for
lifts of circloids. This concept has been used implicitly by Barge and Gillette in [BG91];
the terminology is taken from [JP]. As a consequence of Zorn’s Lemma, any generator
contains a minimal generator. The aim of this section is to provide a number of basic
facts on minimal generators which will be crucial for the later constructions. The main
objective is to derive the statements for circloids, but in order to do so first have to
consider cobasin boundaries.

Lemma 3.1. A continuum G Ď B is a generator of B if and only if GX TG ‰ H.

Proof. If G X TG ‰ H, then
Ť

kPZ T
kG Ĺ B is horizontally separating and by Lemma

2.1 it has to be equal to B, so G is a generator. To prove the converse, we first note
that if G is a generator then G X T kG ‰ H for some k ą 0, since otherwise G would
project injectively onto B Ď A contradicting the fact that B is essential. If k “ 1 we are
done; otherwise assume that k is maximal with the property that G X T kG ‰ H, and
note that

Ť

iPZ T
ikG is horizontally separating and so must be equal to B; in particular it

contains TG. But TGX T ikG “ H for i ă 0 and i ą 1 due to the maximality of k. Thus
TG Ď GYT kG, and since G is compact, TG cannot be contained in T kG, so GXTG ‰ H
as claimed.

Lemma 3.2. Suppose that L and R are closed connected subsets of B, with L unbounded
to the left and R unbounded to the right. If LXR “ H, then BzpLYRq is connected, and
if LXR ‰ H then LYR “ B.

Proof. If LXR ‰ H, then LYR is horizontally separating, so by Lemma 2.1 it must be
equal to B. Assume that LXR “ H. Let W´ and W` be the connected components of
R2
zB which are unbounded below and above, respectively, so B “ BW´

“ BW`. Note
that L Y R cannot be horizontally separating (since this would contradict Lemma 2.1);
thus W´ and W` are contained in the same connected component U of R2

zpL Y Rq.
Since E :“ BzpL Y Rq Ď BW´

X BW`, it follows that E Ď U . Note that U is simply
connected, since both L and R are connected and unbounded. Moreover, E is a closed
subset in the topology of U , and since B separates W´ from W` in R2 it follows that
E “ B X U separates W´ from W` in U . By Lemma 2.4 applied to U » R2, some
connected component E0 of E separates W´ from W` in U . Since E0 is closed in U , we
have that LY E0 YR is closed and horizontally separating, so by Lemma 2.1 it must be
equal to B. This implies that E0 “ E, so E is connected.

Lemma 3.3. There exists a minimal generator G0 such that G0XT
kG0 ‰ H if and only

if |k| ď 1. Moreover, G0zTG0 and G0zpTG0 Y T
´1G0q are connected and dense in G.

Proof. Since B is decomposable, there exists a decomposition B “ X Y Y into proper
subcontinua. As B is a cobasin boundary, both X and Y must be inessential in A, which
implies that there are open topological disks DX Ą X and DY Ą Y . Let rDX be a
connected component of π´1

pDXq, and X “ π´1
pXq X rDX . Let rDY be a connected

component of π´1
pDY q, and Y “ π´1

pXq X rDY . The sets X and Y project injectively
onto X and Y , respectively, so they are continua and T iX X X “ H for all i ‰ 0, and
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similarly for Y. Since X X Y ‰ H, there exists n P Z such that TnY X X ‰ H. The
set X Y TnY is a generator, so it contains some minimal generator G0. Let k be the
largest integer such that G0 X T kG0 ‰ H, and suppose for a contradiction that k ą 1.
Then

Ť

iPZ, i‰1 T
iG0 Ď

Ť

iPZ, i‰1 T
iX YTn`iY is closed and horizontally separating, so in

particular it contains TX . Since TX is disjoint from T iX for all i ‰ 1, it follows that
TX Ď

Ť

jPZ T
jY, which implies that X “ πpX q Ă Y , contradicting our choice of X and

Y .
By Lemma 3.2 we have that E0 :“ Bz

Ť

k‰1 T
kG0 “ G0zpT

´1G0 Y TG0q ‰ H is
connected. Note that the closure of any connected component of G0zTG0 intersects TG0

(see Lemma 2.6), so any connected component of G0zTG0 must contain E0 (otherwise
it would be contained in T´1G0 which is disjoint from TG0), so there is only one such
component. Thus G0zTG0 is connected. Since

Ť

kPZ T
k
pG0zTG0q “ B, it follows that

G0zTG0 is a generator and by minimality G0 “ G0zTG0. This implies that C “ G0XTG0

has empty interior in the restricted topology to G0, and therefore E0 “ G0zpT
´1G0 Y

TG0q “ G0zpC Y TCq is also dense in G0, completing the proof.

Lemma 3.4. If G is any minimal generator of B, then T kG X G ‰ H if and only if
|k| ď 1. Moreover, GzTG and GzpTGY T´1Gq are connected and dense in G.

Proof. Suppose that T kGXG ‰ H for some k ą 1, so there exists z P G such that T kz P G.
Let G0 be as in Lemma 3.3. Replacing G by T iG for a suitable i, we may assume that
z P T´1G0. This means that G intersects T´1G0 and T k´1G0, where k´1 ě 1. Thus the
set G Y

Ť

k‰0 T
iG0 is closed, connected and horizontally separating, and by Lemma 2.1

it should be equal to B. Thus G0zpT
´1G0 Y TG0q “ G0z

Ť

k‰0 T
iG0 Ď G, implying that

G0 Ď G. By minimality G0 “ G, contradicting the fact that GX T kG ‰ H with k ą 1.
Knowing that G X T kG ‰ H ðñ |k| ď 1, the remaining claims are proved exactly

as in the last paragraph of the proof of Lemma 3.3.

Given a minimal generatorG of B, let LnpGq “
Ť

kďn T
k
pGq andRnpGq “

Ť

kěn T
k
pGq.

With these notions, we have

Lemma 3.5. If G and G1 are two different minimal generators of B, then either G1 Ď
BzL´1pGq Ď R0pGq or G1 Ď BzR1pGq Ď L0pGq.

Proof. Suppose G1 intersects both L´1pGq and R1pGq. Then L´1pGq YG
1
YR1pGq “ B

by Lemma 2.1, so the union contains G. Since GzpTGYT´1Gq is disjoint from L´1pGqY
R1pGq, we have that GzpTG Y T´1Gq Ď G1, which implies by Lemma 3.4 that G Ď G1,
so by the minimality G “ G1.

Corollary 3.6. If G and G1 are minimal generators of B, then G1 is contained in two
adjacent copies of G and vice versa.

A cut (of B) is a set of the form GX T´1G where G is a minimal generator of B. We
denote by C the family of all cuts. Note that by Lemma 3.5, cuts are pairwise disjoint.

Given a cut C “ G X T´1
pGq, we let pRpCq “ R0pGq and pLpCq “ L´1pGq, so that

C “ pRpCq X pLpCq. Further, we let LpCq “ pLpCqzC and RpCq “ pRpCqzC. We write
C ă C 1 if C Ď LpC 1q, or equivalently if C 1 Ď RpCq. By Lemma 3.5 and its corollary, ă

defines a total order in C. We extend this notation to compare arbitrary subsets S Ď B
with cuts by writing S ă C if S Ď LpCq and S ď C if S Ď pLpCq. If z P B and tzu ă C,
we simply write z ă C. For two cuts C ă C 1, we let pC,C 1qB “ RpCq X LpC 1q “ tz P B |
C ă z ă C 1u and rC,C 1sB “ pRpCq X pLpC 1q “ pC,C 1qB Y C Y C 1.

We note that cuts need not be connected. However, we have:

Lemma 3.7. Given two cuts C ă C 1, the set pC,C 1qB is connected and its closure is
rC,C 1sB.

Proof. We have pC,C 1qB “ BzpL0pGqYR0pG
1
qq ‰ H for some minimal generators G,G1.

The connectedness follows from Lemma 3.2, and the fact that its closure is rC,C 1sB follows
easily from Lemma 3.4.

Let A be the essential circloid such that BA “ B (i.e. the union of B with all bounded
connected components of AzB), and let A “ π´1

pAq be its lift. A generator of A is a
continuum G Ď A which satisfies

Ť

nPZ T
nG “ A. In order to go over from a the decom-

posable cobasin boundary B to the corresponding circloid A, the following statements
will be crucial.
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Lemma 3.8. All connected components of AzB are topological disks with diameter bounded
by a uniform constant M .

Proof. Let G be a generator of B, and suppose π1pGq “ ra, bs. Let N P N be such that
a`N ą b. Since π2pGq “ π2pAq, the latter set has diameter bounded by some constant
c. let M “ 2N ` c ` 1. If U is a connected component of AzB with diampUq ą M ,
then diampπ1pUqq ą 2N ` 1 and we may assume ra ´ N, b ` N s Ď π1pUq replacing U
by T iU for an appropriate i P Z. Thus there is a simple arc γ : r0, 1s Ñ U such that
π1pγp0qq “ a ´ N , π1pγp1qq “ b ` N , and a ´ N ă γptq ă b ` N for 0 ă t ă 1. If
K “ γpr0, 1sq and S :“ ra´N, b`N s ˆ R, we have that SzK has exactly two connected
components S` and S´, the former unbounded above and the later unbounded below.
The set G1 “

ŤN
k“´N T

kG being connected, disjoint from K and contained in S, must lie

entirely in S´ or S`. Suppose without loss of generality that G1 Ď S´. Note that K Ď U
and U is is bounded above. If y is the smallest real such that tau ˆ ry,8q Ď R2

zB, then
tauˆ ry,8q is disjoint from K and thus contained in S`, and since z :“ pa, yq P BB there
must exist n such that z P TnG. Since T kG Ď S´ when |k| ď N , it follows that n ą N ,
but this is not possible since π1pT

nGq Ď ra`N,8q Ď pb,8q.

Given a continuum S Ď R2, the complement R2
zS consists of one unbounded compo-

nent and a union of topological disks. We denote the unbounded component by U8pSq
and the family of disks by US and let Sfill

“ R2
zU8pSq “ S Y

Ť

UPUS
U . Note that Sfill

is a nonseparating continuum.

Lemma 3.9. Suppose U is a connected component of AzB and C´0 ă C`0 are cuts such
that pC´0 , C

`
0 qB X BU ‰ H. If C´, C` are cuts with C´ ă C´0 ă C`0 ă C`, then

BU Ď rC´, C`sB.

Proof. Suppose for a contradiction that BU Ę rC´, C`sB. Assume without loss of
generality that BU X LpC´q ‰ H. Since U is bounded, there is n ą 0 such that
BU Ď rT´nC´, TnC´sB, and we may assume TnC´ ă C´0 and C`0 ă TnC´. The
sets L “ rT´nC´, C´0 sB and R “ rC´, TnC´sB are connected, and L X R “ rC´0 , C

´
sB

is also connected (by Lemma 3.7). Since BU is not contained in either set L or R, we
have that U Ď U8pLq X U8pRq. But then by Lemma 2.4 we have that U Ď U8pR Y Lq,
contradicting the fact that U is bounded and BU Ď LYR.

4 Dynamical linearisation: Proof of Theorem 1.1
Throughout this section, we assume that ϕ : A Ñ A is a homeomorphism homotopic to
the identity and A is a ϕ-invariant circloid with decomposable boundary. We let B “ BB
and denote the lifts of A,ϕ and B by A,Φ and B, respectively.

Lemma 4.1. The rotation number ρpΦ,Aq “ limnÑ8 π1pΦ
n
pzq ´ zq{n exists and is in-

dependent of z P A.

Proof. The fact that ρ “ limnÑ8 π1pΦ
n
pz0q ´ z0q{n exists for some z0 P B follows from

the Birkhoff Ergodic Theorem and the existence of an invariant measure for ϕ|B , since
π1pΦ

n
pz0q ´ z0q{n is a Birkhoff average for the function B Q x ÞÑ π1pΦpx

1
q ´ x1q P R,

where x1 P π´1
pxq is arbitrary.

Fix a minimal generator G of B containing z0. Since ΦnpGq is also a minimal generator,
by Corollary 3.6 there exists k such that ΦnpGq Ă T kpG Y TGq, so diampΦnpGqq ď
2diampGq :“ M for all n P N. This implies limnÑ8 π1 pΦ

n
pzq ´ zq {n “ ρ for all z P G,

and since G is a generator the same holds for all z P B. Finally, we deduce from Lemma
3.8 that the same property holds for z P A.

Lemma 4.2. ρpΦ,Aq “ p{q P Q if and only if there exists z P A such that Φqpzq “ T pz.

Proof. The if-part is trivial. For the other implication, note that it is easy to verify that
ρpT´pΦq,Aq “ 0 if and only if ρpΦ,Aq “ p{q, so it suffices to assume that ρpΦ,Aq “ 0
and show that there is a fixed point in A. Fix a minimal generator G of B. We claim
that ΦnpGqXG ‰ H for all n. Indeed, Corollary 3.6 implies that ΦnpGq Ă T kGYT k`1G
for some k. If k ą 0, then ΦnpGq Ă R1pGq which then implies ΦnkpGq Ă RkpGq and
this implies that π1pΦ

nk
pzq ´ zq{nk ě 1{n for all k P N and z P G, contradicting our

assumption. If k ă ´1, we get a similar contradiction. Thus k P t0,´1u, and since
G and ΦnpGq are minimal generators, ΦnpGq must intersect both T kG and T k`1G, so



8

ΦnpGqXG ‰ H as claimed. Thus K “
Ť

nPZ ΦnpGq Ă B is connected and bounded (again
due to Corollary 3.6), and ΦpKq “ K. Moreover, Kfill

Ă A and ΦpKfill
q “ Kfill, so Kfill

is a non-separating invariant continuum in R2 and the Cartwright-Littlewood theorem
[CL51a] implies that it contains a fixed point of Φ.

The previous lemma implies the first claim of Theorem 1.1, and one implication of
the second claim. To prove the remaining implication, from now on we assume that
ρ “ ρpΦ,Aq is irrational, and we fix a minimal generator G0 of B. Given x “ n ` kρ in
Qpρq “ tl` ρm | l,m P Zu, we let Gx “ Φk ˝ TnpG0q and denote by Cx “ Gx X T

´1
pGxq

the cut corresponding to Gx.

Lemma 4.3. The mapping Qpρq Ñ C, x ÞÑ Cx is strictly monotonically increasing. In
particular, CxXCy “ H if x ‰ y. Moreover, the set rCx, CysB is connected for all x ă y,
decreasing in x and increasing in y.

Proof. Suppose that x “ n ` kρ ă x1 “ n1 ` k1ρ, but Cx1 ď Cx. Then Φk
1´k

˝

Tn
1´n
p pLpC0qq Ď pLpC0q. As a consequence, all orbits in pLpC0q under the lift Ψ “ Φk

1´k
˝

Tn
1´n of ϕk

1´k are bounded to the right, contradicting the fact that ρpΨq “ x1 ´ x ą 0.
This shows the strict monotonicity of x ÞÑ Cx and the disjointness. Connectedness of
rCx, CysB is given by Lemma 3.7.

As in the previous section, given z P B and a cut C P C, we write z ă C iff z P LpCq
and C ă z iff z P RpCq. In order to extend this notion to all z P A, note that AzB
is a union of bounded open topological disks whose boundary is contained in B. Given
z P AzB, we denote the respective disk containing z by Uz and write z ă C iff BUz Ď LpCq
and C ă z iff BUz Ď RpCq. Equivalently, z ă C iff z P LpCqfill and C ă z iff z P RpCqfill.
Given a subset S Ď A, we write C ă S iff S Ď LpCqfill and S ă C iff S Ď RpCqfill. Then,
we define H : AÑ R by

(4.1) Hpzq “ suptx P Qpρq | Cx ă zu .

Lemma 4.4. The map H is continuous and projects to a monotone semiconjugacy h :
AÑ T1 from ϕ|A to the irrational rotation by ρ.

Proof. We first show the continuity of the restriction of H to B. By definition, we have
that

(4.2) H´1
|B px, yq “

ď

x1,y1PQpρq

xăx1ăy1ăy

pCx1 , Cy1qB “
ď

x1,y1PQpρq

xăx1ăy1ăy

rCx1 , Cy1 sB .

Since the sets pCx1 , Cy1qB are relative-open in B, this shows that preimages of open sets
are open, so that H|B is continuous.

In order to see that H is continuous on all of A, fix x ă y and z P H´1
px, yq. It suffices

show that H´1
px, yq contains a neighbourhood of z. If z P AzB, then by definition the

whole open disk Uz is contained in H´1
px, yq. (Note that if Cx ă z, then Cx ă z1 for

all z1 P Uz.) Thus, suppose that z P B. Since H|B is continuous, there exists ε ą 0 such
that BεpzqXB Ď H´1

px, yq. If z1 P BεpzqX pAzBq, then Bεpzq intersects both B and Uz1 .
Consequently, Bεpzq intersects BUz1 and we haveH ‰ BUz1XBεpzq Ď H´1

px, yq. However,
this implies that for some x1, y1 with x ă x1 ă y1 ă y we have BUz1 X pCx1 , Cy1qB ‰ H.
Therefore Lemma 3.9 yields that BUz1 Ď rCx̃, CỹsB for any x̃, ỹ with x ă x̃ ă x1 ă y1 ă
ỹ ă x and thus Uz1 Ď H´1

px, yq. Altogether, we obtain Bεpzq X A Ď H´1
px, yq, which

proves the continuity of H on A.
In order to show the further statements, note that since by definition ΦpGxq “ Gx`ρ

and T pGxq “ Gx`1, the same relations hold for Cx and LpCxq. Using these facts, it is
easy to check that H is a semiconjugacy from Φ|A to the translation x ÞÑ x` ρ on R and
that H commutes with the deck translation T , such that H projects to a semiconjugacy
h from ϕ|A to the rotation Rρ.

It remains to prove the monotonicity of h, which will follow immediately from that of
H. We have that

(4.3) H´1
|B pxq “

č

x1,y1PQpρq

x1ăxăy1

rCx1 , Cy1 s .
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This can be seen as a nested intersection of continua and is therefore a continuum itself.
The full fibre H´1

pxq is obtained by adding the union
Ť

zPH´1pxqzB Uz of topological open

disks to H´1
|B pxq. However, if z P H´1

pxq, then BUz cannot intersect LpCx1q for any

x1 ă x, since otherwise Lemma 3.9 would imply that BUz Ď pLpCx̃q for some x̃ P px1, xq
and thus Hpzq ď x̃. Similarly, BUz is disjoint from RpCy1q for all y1 ą x, and therefore
BUz Ď H´1

pxq. Hence, we have that H´1
pxq “ H´1

B pxqfill is the ‘fill-in’ of a continuum,
and hence a continuum itself.

5 Topological linearisation: a universal factor map

This section essentially contains an alternative proof of an old result by Kuratowski, and
we refer to Section 7 for a discussion. As before, we suppose A Ď A is a circloid with
decomposable boundary, and A “ π´1

pAq. We let B “ BA and B “ π´1
pBq. Our aim is

to define a Moore decomposition of A such that the corresponding projection maps A to
a topological circle. Similar to before, we start by decomposing B, and we use the family
C of cuts of B as the main tool. (This is the main difference to the proof of Kuratowski,
who concentrates on so-called layers instead.)

However, cuts need not be connected, and moreover is easy to give examples where
Ť

CPC C does not cover all of B. In order to obtain a decomposition starting from C,
we define a strong partial order relation Î on C by writing C Î C 1 if and only if there
exist uncountably many cuts C̃ P C such that C ă C̃ ă C 1. Similar to before, we extend
this definition to arbitrary subsets S, S1 Ď A by writing S Î S1 whenever there exist
uncountably many cuts C̃ with S ă C̃ ă S1.2 In case of one-point sets S “ tzu, we write
z Î S1 instead of tzu Î S1. Then, given any z P B, we define

(5.1) F pzq “
č

C´,C`PC
C´ÎzÎC`

rC´, C`sB .

We let FB “ tF pzq | z P Bu and call the elements F P FB fibres of B. Further, we let
FB “ tπpF q | F P FBu. We note that the intersection in (5.1) can be viewed as a nested
intersection of continua: by compactness, for every n P N there exist C´n Î z Î C`n such
that F pzq Ď rC´n , C

`
n s Ď B1{npF pzqq. Without loss of generality we may assume that

C´n Î C´n`1 and C`n`1 Î C`n for all n P N, and we have F pzq “
Ş

nPNrC
´
n , C

`
n s. By

Lemma 3.7 this is a nested intersection of continua, hence a continuum.

Lemma 5.1. If S, S1 Ď B and S Î S1, then there exists C P C such that S Î C Î S1.

Proof. We first show the following slightly weaker

Claim 5.2. If V, V 1 Ď A and V Î V 1, then there exist C,C 1 P C such that V Î C ă V 1

and V ă C 1 Î V 1.

We will prove the existence of C; that of C 1 then follows by symmetry. Suppose
for a contradiction that for all C P A with V ă C ă V 1 we have V Î C. Let
R “

Ş

CPC,CăV 1
pRpCq and choose an increasing sequence of cuts Cn ă V 1 with R “

Ş

nPN
pRpCnq. Note that, for example, it suffices to choose Cn such that distHp pRpCnq, Rq ă

1{n. Then, since V Î Cn, there exist at most countably many cuts between V and Cn.
However, every cut between V and V 1 is either equal to Cn for some n P N, lies between
V and C1 or lies between Cn and Cn`1 for some n P N. Altogether, we obtain that there
are at most countably many cuts between V and V 1, contradicting V Î V 1. This proves
the claim.

Now, suppose for a contradiction that for every cut C between S and S1 we either
have S Î C or C Î S1. Note that both properties cannot hold simultaneously since
S Î S1. Let L1 “

Ş

CPC,SÎC
pLpCq and R1 “

Ş

C1PC,C1ÎS1
pRpC 1q. Then the intersection

E “ L1 X R1 is non-empty, since for every pair of cuts C,C 1 with C 1 Î S1 and S Î C
we have C 1 ă C due to our contradiction assumption. Moreover, G “ T pL1q X R1 is a
continuum, since it can again be represented as a nested intersection of intervals in B.

2We note that the requirement of uncountably many intermediate cuts is crucial for the whole construction
in this section. We do not elaborate further on this, but just mention that a examples demonstrating why
requiring uncountably many intermediate cuts is necessary can be produced by gluing finitely or countably
many pseudoarcs together. Otherwise, a statement analogous to Lemma 5.1 does not hold.
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Since G X T´1
pGq “ E ‰ H, it follows from Lemma 3.1 that G is a generator. Thus, it

contains a minimal generator, and consequently the set E contains some cut rC. If S Î rC,
then Claim 5.2 implies that there exists C1 P C such that S Î C1 ă rC, and since rC Ď L1

it follows that rC Ď pLpC1q, contradicting the fact that C1 ă rC. Thus S Î rC, and by a
similar argument rC Î S1. However, this contradicts the fact that S Î S1.

Lemma 5.3. Distinct fibres F, F 1 P FB are disjoint and either F Î F 1 or F 1 Î F .

Proof. Let F “ F pzq and F 1 “ F pz1q. If F ‰ F 1, then there exists C P C such that
either z Î C and z1 Î C, or C Î z and C Î z1. Assume the former case (the other case
is analogous). According to Lemma 5.1, there exist C´, C` with z Î C´ Î C` Î C.

However, this implies that z Î C´ Î C` Î z1, hence F pzq Ď pLpC´q and F pz1q Ď pRpC`q
are disjoint and F pzq Î F pz1q.

We now turn to the decomposition of A. As before, given z P AzB, we denote by Uz
the connected component of AzB containing z.

Lemma 5.4. Suppose F P FB intersects BUz for some z P AzB. Then BUz Ď F .

Proof. Suppose F “ F pz1q intersects BUz. Then given any cuts C´ Î z Î C`, Lemma 5.1
yields cuts C´0 , C

`
0 with C´ Î C´0 Î F Î C`0 Î C` and BUz X pC

´
0 , C

`
0 qB ‰ H. By

Lemma 3.9, this implies that BUz Ď rC´, C`sB. Since this is true for all pairs of cuts
satisfying C´ Î z Î C`, we obtain BUz Ď F .

Bounded connected components of the complement of a fibre F P FB are also bounded
connected components of AzB. Therefore, the preceding lemma implies that F fill

“

F Y
Ť

BUzXF‰H
Uz. This allows to define a decomposition of A by FA “ tF

fill
| F P FBu.

We denote fibres of FA by pF , and given z P A we let pF pzq be the unique fibre in FA
which contains z. Note that F pzq “ B pF pzq, and so pF pzq “ pB pF pzqqfill.

Remark 5.5. An alternative way to define the fibres of A is the following. Recall that we
write C ă z for a cut C and z P A iff z P RpCqfill, and z ă C iff z P LpCqfill. The notions
C Î z and z Î C in FA can then be defined as before by the existence of uncountably
many intermediate cuts. Using this, the fibres of A can be defined exactly in the same
way as those of B in (5.1). Equivalence of the two definitions is provided by the following
statement.

Lemma 5.6. For any z P A, we have

(5.2) pF pzq “
č

C´,C`PC
C´ÎzÎC`

rC´, C`sfill
B .

Proof. If z P AzB and z1 P BUz, then by definition pF pzq “ pF pz1q, and the intersection on
the right hand side of (5.2) coincides as well. Thus, we may assume z P B. However, in

this case the right side is just F pzqfill
“ pF pzq by Lemma 5.4.

Given F´, F` P FB, we let pF´, F`qB “
Ť

F´ăFăF` F “ tz P B | F´ ă z ă F`u
and rF´, F`sB “ F´ Y pF´, F`qB Y F`. Note that these intervals are relative-open,
respectively relative-closed, in B. If pF and pF 1 are distinct fibres in FA, then F “ B pF and
F 1 “ BF 1 are fibres in FB. According to Lemma 5.3, we always have either F ă F 1 or
F 1 ă F , so either pF ă pF 1 or pF 1 ă pF , and the notions ă and Î coincide for the pairs
pF , pF 1 and F, F 1. As before, given pF´ ă pF`, we let p pF´, pF`qA “

Ť

pF´ă pFă pF`
pF and

r pF´, pF`sA “ pF´ Y p pF´, pF`qA Y pF`. As a consequence of Lemma 5.4, we obtain that
p pF´, pF`qA “ pB pF

´, B pF`qfill
B and r pF´, pF`sA “ rB pF

´, B pF`sfill
B . In particular, this implies

the following observation, which we state for further use.

Lemma 5.7. Given F´, F`, we have that p pF´, pF`qA is relative-open and r pF´, pF`sA is
relative-closed in A.

Moreover, we have

Lemma 5.8. For all pF´ ă pF` P FA, the set r pF´, pF`sA is a non-separating continuum.

Proof. If pF´ “ pF pz´q and pF` “ pF pz`q with z´, z` P B, then

(5.3) Br pF´, pF`sA “
č

C´Îz´

z`ÎC`

rC´, C`sB .
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Hence, as a nested intersection of continua the set Br pF´, pF`sB is connected, and so

r pF´, pF`sA “
´

Br pF´, pF`sB
¯fill

is a filled – and hence non-separating – continuum.

Lemma 5.9. FA is an upper semicontinuous decomposition of A.

Proof. Let U Ď A be an open set. We need to show that V “ tz P A : pF pzq Ď Uu is open
in A. Let z P V , so that pF pzq Ď U . From Lemma 5.6 it is easy to verify that pF pzq is the
intersection of all sets of the form r pF´, pF`sA with pF´, pF` P FA and pF´ Î pF pzq Î pF`,
and since this can be seen as a decreasing intersection, such pF` and pF´ may be chosen
satisfying r pF´, pF`sA Ă U . Since p pF´, pF`qA is open in A and contains z P V , which was
chosen arbitrarily, it follows that V is open in A as claimed.

Lemma 5.10. FA projects to an upper semicontinuous decomposition FA “ tπpF q | F P
FAu of A into cellular continua, and it has uncountably many elements.

Proof. Since by hypothesis there exists a self-homeomorphism ϕ of A leaving A invariant
without periodic points in A, and we may assume that ϕ is orientation-preserving (replac-
ing it by ϕ2 if necessary), Theorem 1.1 yields the existence of a monotone map h : AÑ T1,
which lifts to a monotone map H : A Ñ R that commutes with the translation T . It is
easily checked that for every x P R the set Gx “ H´1

prx, x` 1sq is a generator of A, and
consequently every fibre H´1

pxq “ T´1
pGxq X Gx contains a cut. This further implies

that every fibre of H contains (at least) one element of FA.
In particular, the above yields that T kF XF “ H for all F P FA and k P Zzt0u, hence

FA projects to a decomposition of A with uncountably many elements, and each F P FA
projects injectively into A. Since F is a cellular continuum, this implies that πpF q is a
cellular continuum as well. Upper semicontinuity of FA then follows directly from that
of FA.

Let F be the decomposition of A consisting of all elements of FA together with all sets
of the form tzu with z R A. Note that F is a Moore decomposition of A, and therefore
Theorem 2.3 applies.

Proposition 5.11. The Moore projection Π : A Ñ A provided by Theorem 2.3 maps A
to an essential simple closed curve.

Proof. Due to Lemma 2.5 it suffices to show that if x, y P ΠpAq are different points,
then ΠpAqztx, yu is disconnected. By Lemma 2.2, this is the same as saying that for
any pair of distinct elements F1, F2 of FA, the set AzpF1 Y F2q is disconnected. To show
this, let pF1, pF2 P FA be connected components of Π´1

pF1q and Π´1
pF2q. Note that

since T´1F Î F Î TF for all F P FA, the projection Π is injective on p pF1, T pF1qA,
and there is exactly one k P Z such that pF1 Î T k pF2 Î T pF1. If U “ p pF1, T

k
pF2qA and

V “ pT k pF2, T pF1qA, we have that ΠpUq and ΠpV q are disjoint nonempty open subsets of
A, and ΠpUq YΠpV q “ AzpF1 Y F2q, proving that the latter set is disconnected.

Lemma 5.12. Suppose h : AÑ T1 is a monotone map. Then the fibres h´1
pxq, x P T1,

are saturated with respect to FA.

Proof. The map h lifts to a monotone map H : A Ñ R that commutes with the deck
translation T . As argued in the proof of Lemma 5.10, every fibre H´1

pxq contains at least
one cut. If z P H´1

pxq X B and z1 P H´1
pyq X B with x ă y, this implies that z Î z1

and thus F pzq ‰ F pz1q. Hence, no two points of the same fibre of FB can be contained in
different fibres of H. In other words, the fibres of H|B are saturated with respect to FB.

By monotonicity, F Ď H´1
pxq implies pF “ F fill

Ď H´1
pxq, such that the fibres of H are

also saturated with respect to FA.

5.1 Proof of Theorem 1.2 Denote by Π : A Ñ A the Moore projection associated
to FA Y tx P A | x R Au, so it satisfies assertion (i) of Theorem 1.2. Assertions (ii)
and (iii) follow from Proposition 5.11 and Schönflies’ theorem (by post-composing with a
homeomorphism of A which maps ΠpAq to T). Since the lift Φ of any homeomorphism ϕ
of A leaving A invariant has to map minimal generators to minimal generators, it follows
from the above constructions that Φ permutes the elements of FA. This allows to define
ϕ̃ : A Ñ A by requiring that Π´1

pϕ̃pzqq “ ϕpΠ´1
pzqq. If U Ď A is open, then ϕ̃´1

pUq “
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Πpϕ´1
pΠ´1

pUqq is open as well, since Π maps saturated open sets to open sets. Hence, ϕ̃
is continuous and assertion (iv) holds. To prove assertion (v), suppose that h : AÑ T1 is
a monotone surjection, then by Lemma 5.12, h´1

pxq is saturated with respect to FA, and

thus h induces a map rh : T Ñ T1 by rhpxq “ hpx1q where x1 P Π´1
pxq is arbitrary. Note

that rh is continuous since for any open set U Ă T1 we have rh´1
pUq “ Πph´1

pUqq which
is again open since it is the image of a saturated open set. If h is a semiconjugation from
ϕ to Rρ, then given x P T1 and x1 P Π´1

pxq we have

h̃ ˝ ϕ̃pxq “ h̃ ˝ ϕ̃ ˝Πpzq “ h̃ ˝Π ˝ ϕpzq “ h ˝ ϕpzq “ Rρ ˝ hpzq “ Rρ ˝ h̃pxq.

completing the proof if (v).

5.2 Proof of Corollary 1.3 Suppose h1, h2 are two semiconjugacies from ϕ|A to the
irrational rotation Rρ, where ρ is the rotation number of ϕ on A. By post-composing
with a rotation, we may assume that there exists z0 P A with h1pz0q “ h2pz0q.

Let ϕ̃ be the homeomorphism of A from part (iv) of Theorem 1.2, so that Π˝ϕ “ ϕ̃˝Π

and ϕ̃pTq “ T, and let rhi the maps such that hi “ rh˝Π from part (v) of the same theorem.

Then rhi semiconjugates rϕ|T to the irrational rotation Rρ of T. Since the semiconjugacies
in the Poincaré Classification Theorem are unique up to post-composition by a rotation,
this yields that h̃1 “ h̃2 and thus h1 “ h2.

6 Almost automorphic minimal continua

A homeomorphism f : X Ñ X of a metric space is called almost automorphic if there
exists x P X such that, whenever the limit rx “ limkÑ8 f

nk pxq exists for some sequence
nk Ñ 8, then x “ limkÑ8 f

´nk prxq. Further, f is almost periodic if for every ε ą 0, the
set tn P Z : @x P X, dpfnpxq, xq ă εu is syndetic (i.e. has uniformly bounded gaps). The
Veech Structure Theorem [Vee65] asserts that f is almost automorphic if and only if f
is semiconjugate to an almost periodic map of some space Y by means of an almost 1-1
continuous surjection, i.e. a continuous surjection h : X Ñ Y for which the set of points
of Y with a unique preimage is dense.

6.1 Proof of Theorem 1.4 Let ϕ : A Ñ A be a homeomorphism, B Ă A is an
essential ϕ-invariant cobasin boundary without periodic points, and x0 P B a recurrent
bi-accessible point. Since x1 “ ϕpx0q is also bi-accessible, we may find an inessential
simple closed curve γ Ă A intersecting B exactly at x0 and x1. If V0 and V1 are the two
connected components of Azγ and Bi “ Vi X B, it is easy to verify that Bi Y tx0, x1u is
a continuum for i P t0, 1u. Thus B is decomposable, and Theorem 1.2 implies that there
exists Π: AÑ A mapping the circloid A whose boundary is B to the circle T “ T1

ˆ t0u
and inducing a map rϕ : A Ñ A which satisfies ϕ̃ ˝ Π “ Π ˝ ϕ and preserves T. Let U´

and U` denote the connected components of AzB which are unbounded below and above,
respectively, and let C be a simple arc joining a point of U´ to a point of U` such that
C X B “ tx0u. Then Πp rCq is an arc joining a point below T to a point above T and
intersecting T exactly at rx0 “ Πpx0q. By continuity, the compact set Π´1

p rCq is contained
in the closure of Π´1

p rCztrx0uq, and since Π|U´YU` is an injective map onto AzT we have
that Π´1

p rCztrx0uq “ Cztx0u. Thus Π´1
p rCq Ă C, and Π´1

prx0q Ă C XB “ tx0u.

Hence, Π´1
pΠpx0qq “ tx0u, and the same is true for any point in the orbit of x0. Since

rϕ : TÑ T is a homeomorphism of the circle without periodic points, the classic Poincaré
theory implies that it is semi-conjugate to an irrational rotation Rρ of the circle by means
of a continuous monotone surjection h : TÑ T1 which is injective in the nonwandering set
of rϕ. In particular, since rx0 is recurrent, h´1

phprx0qq “ trx0u, and so h1 “ h˝Π is an almost
1-1 semiconjugation between ϕ|B and Rρ, showing that ϕ|B is almost-automorphic.

6.2 Proof of Corollary 1.5 Let U´ and U` be the connected components of AzX
unbounded below and above, respectively. Then BU´YBU` is a compact invariant subset
of X and therefore is equal to X. In particular BU´ X BU` ‰ H, and since that is also a
compact invariant set we deduce X “ BU´ X BU`. Therefore, X is a cofrontier, and the
Corollary follows from Theorem 1.4.
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7 The Kuratowski decomposition

Let Λ be a continuum on the sphere S2 which is the common boundary of two open
simply connected sets. Using our terminology, this is the same as saying that Λ is a
cobasin boundary.

In [Kur28], Kuratowski studied the following topological problem: when can we find
a monotone surjection from Λ onto the circle? Following the method used in [Kur27] to
study a similar question for irreducible continua, he defined a decomposition into layers3

as follows: A fundamental layer of Λ is any subset of Λ which is maximal with the property
of being a continuum which is the union of at most countably many subcontinua of Λ,
each of which either is indecomposable or has empty interior in Λ. When there is a unique
fundamental layer, the continuum Λ is called monostratic.

The main results of [Kur28] implies that Λ is non-monostratic if and only if there
exists some monotone continuous surjection from Λ onto the circle. In fact, if Λ is non-
monostratic then the fundamental layers form a monotone upper semicontinuous decom-
position of Λ, and the quotient space by this decomposition is a simple closed curve. In
addition, the decomposition into fundamental layers is the finest upper semicontinuous
monotone decomposition of Λ into subcontinua with the property of having the circle as a
quotient space, in the sense that any other such decomposition has its elements saturated
by fundamental layers.

This can be stated in terms of maps as follows:

Theorem 7.1 (Kuratowski). If Λ is a non-monostratic cobasin boundary in S2, then there
exists a monotone continuous surjection Π: Λ Ñ T1 such that for any other monotone
continuous surjection P : Λ Ñ T1, there exists a map φ : Λ Ñ Λ such that P “ φ ˝Π.

There are many works which extend to a more general setting the concept of finding
a finest monotone upper semicontinuous decomposition with the property of having a
quotient space with a given property (what is often called the core decomposition with
the given property); see for instance [Cha73, FS67, Rak77, Vou74] and references therein.

Using the previous theorem together with Moore’s theorem, Kuratowski obtains a
result which can be reworded as follows [Kur28, Theorem II]:

Theorem 7.2. If Λ is a circloid in S2 with non-monostratic boundary, then there exists
a monotone continuous surjection Π: S2

Ñ S2 which maps Λ onto the equator and is
injective on S2

zΛ.

In fact, it can easily be verified that the decomposition of Λ into fibers of Π is the
core decomposition with respect of having the circle as quotient space. The map Π can
be characterized by considering the decomposition of S2 into points of S2

zΛ together with
the “filled” layers of BΛ (i.e. the union of each layer L with all the connected components
of S2

zL which are disjoint from Λ). This decomposition turns out to be the same given
in the proof of Theorem 1.2.

In essence, the arguments given in Section 5 can be viewed as an alternative proof
of Kuratowskis result and could be replaced by an application of Theorems 7.1 and 7.2.
The only fact which is used in order to prove Theorem 1.2 is the existence of uncountably
many elements in the decomposition FA. This is obtained via Lemma 5.10 from the
existence of the semiconjugacy in Theorem 1.1. Since it can be shown without too much
effort that uncountability of FA is equivalent to non-monostraticity, the starting points
for Kuratowski’s proof and our proof Theorem 1.2 are almost the same.

Thus, in this context, the main contribution of Theorem 1.1 could also be stated as
follows: if an invariant circloid has decomposable boundary and no periodic points, then
its boundary is non-monostratic.

8 An example with large fibers

In this section we prove Theorem 1.6. More specifically, we will prove that there exists
a C8 diffeomorphism f : A Ñ A and a monotone continuous surjection Π: A Ñ A such
that:

• f leaves invariant an essential decomposable cofrontier Λ;

• f |Λ is minimal;

3Translation of the original term tranches (in french).
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• Π semi-conjugates f with an irrational rotation of A: Πf “ RρΠ for some ρ R Q;

• Each fiber of Π|Λ is a continuum with diameter at least 1{4.

In what follows, intervals in T1 are assumed to be positively oriented, so for a, b P T1

the interval pa, bq is the component of T1
zta, bu which is positively oriented and pb, aq the

remaining one (and similarly for closed intervals).

8.1 The Anosov-Katok method We will use the Anosov-Katok method, which we
describe here briefly (and refer to [FK04] for more details and further references). The
map f will be obtained as a limit of maps fn, each of which is C8-conjugate to a rational
rotation Rpn{qn : pθ, yq ÞÑ pθ ` pn{qn, yq, so

fn “ HnRpn{qnH
´1
n

where Hn P Diff8pAq. The maps Hn are successive compositions of maps:

Hn “ h1 ˝ ¨ ¨ ¨ ˝ hn´1 ˝ hn.

The maps hn P Diff8pAq are chosen inductively alongside with the numbers pn{qn with
the following condition: If hn and pn{qn is already chosen, hn`1 can be chosen arbitrarily,
with the only restriction that it commutes with Rpn{qn :

hn`1R pn
qn
“ R pn

qn
hn`1.

This guarantees that for any τ ,

Hn`1RτH
´1
n`1 “ Hnhn`1Rτh

´1
n`1H

´1
n “ Hn

´

hn`1Rpτ´ pn
qn
qh
´1
n`1

¯

R pn
qn
H´1
n ,

which means that if τ “ pn`1{qn`1 is chosen close enough to pn{qn (but different from
it), the map fn`1 can be made arbitrarily C8-close to fn, and in particular one can make
the Cn-distance ξn “ dCnpfn`1, fnq ` dCnpf

´1
n`1, f

´1
n q is as small as desired. Repeating

this process, if the numbers ξn are chosen such that
ř

nPN ξn ă 8, the maps fn converge
in the C8-topology to an element of Diff8pAq.

Since there is a great degree of freedom in the choice of hn as well as pn{qn at each
step, additional restrictions may be placed in order to guarantee that the limit map has
special properties. To outline the construction that we will follow, our choice of these
maps will be such that there exists a decreasing sequence of essential annuli An such that
hn`1 is the identity outside An and maps An`1 into An in such a way that every horizontal
circle in An`1 becomes ε-dense in An (with an appropriate choice of ε depending on n)
and every vertical segment in An`1 is mapped to a set with diameter greater than 1{4.
This is achieved by first using a map that “twists” vertical segments inside An`1 so that
any such segment becomes horizontally large, and then composing with a map that maps
An`1 to something that oscillates vertically inside An (see Figure 8.1).

Figure 8.1: How hn`1 maps a vertical segment in An`1 (in two steps).

The cofrontier Λ will be the intersection of the sets Λn “ HnpAnq, which is a decreasing
intersection. An appropriate choice of pn`1{qn`1 and the fact that hn`1 spreads ε-densely
in An every horizontal circle will guarantee that f |Λ is minimal and pn{qn converges to an
irrational number α. Moreover, although the maps Hn are not required to converge to a
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homeomorphism, we will guarantee that H´1
n does converge to a continuous surjection Π

in the C0 topology. Due to the way in which these maps are defined, this automatically
implies that Π conjugates f with the rotation Rα, and the conditions on hn will guarantee
that the preimage of any point of Λ by Π has diameter at least 1{4.

Let pαnqnPN and pεnqnPN be decreasing sequences of positive real numbers such that
α1 ă 1, αn Ñ 0 as nÑ8, and

ř

nPN εn ă 8.

Claim 8.1. There exist sequences phnqnPN in Diff8pAq, ppn{qnqnPN in Q (where pn, qn
are relatively prime integers, qn ą 0), and pMnqně2 in N such that, letting

• Hn “ h1h2 ¨ ¨ ¨hn,

• fn “ HnRpn{qnH
´1
n , item An “ T1

ˆ r´αn, αns,

• Λn “ HnpAnq,

the following properties hold for k ě 1:

(1) hkpAkq “ Ak, and hkpzq “ z for all z P AzAk;

(2) diampHkptθu ˆ r´αk, αksqq ą 1{4 for all θ P T1;

(3) qk ą 13k;

and for k ě 2,

(4) hkRpk´1{qk´1
“ Rpk´1{qk´1

hk;

(5) HkpT1
ˆ tαuq is εk´1-dense in Λk´1 for all α P r´αk, αks;

(6) dpπ1phkpzqq, π1pzqq ă 3{qk´1 for all z P A;

(7) dCk pfk, fk´1q ă εk´1 and dCk pf
´1
k , f´1

k´1q ă εk´1;

(8) |pk{qk ´ pk´1{qk´1| ă εk´1;

(9) tf jkpzq : 0 ď j ďMi`1u is εi-dense in Λi for all z P Λk and 1 ď i ď k ´ 1;

Before explaining how to obtain such sequences, let us prove that they lead to a map
with the required properties.

Claim 8.2. Using the maps defined in Claim 8.1, there exist f P Diff8pAq, Π P C0
pA,Aq,

and ρ P T1 such that, if Λ “
Ş

nPN Λn, then

• fn Ñ f in the C8 topology as nÑ8;

• H´1
n Ñ Π in the C0 topology as nÑ8;

• Π is a monotone semiconjugation between f and Rρ;

• Λ is an essential f-invariant decomposable cofrontier and ΠpΛq “ T1
ˆ t0u;

• diampΠ´1
pΠpzqqq ě 1{4 for all z P Λ, and Π|AzΛ is injective;

• f |Λ is minimal.

Proof. Note that

dC0pH´1
n , H´1

n`mq “ dC0pH´1
q nHn`m, H

´1
n`mHn`mq “ dC0phn`1hn`2 ¨ ¨ ¨hn`m, Idq.

By (6) one has

|π1phn`1hn`2 ¨ ¨ ¨hn`mpzqq ´ π1pzq| ď
n`m´1
ÿ

i“n

3

qi
,

and by (1), since each hn`i leaves An invariant and is the identity outside An,

|π2hn`1hn`2 ¨ ¨ ¨hn`mpzq ´ π2pzq| ď 2αn.

Since αn Ñ 0 and
ř

i 1{qi ă 8, we see that the two coordinates of the map

z ÞÑ hn`1hn`2 ¨ ¨ ¨hn`mpzq ´ z

are uniformly small if n,m are large enough, and therefore pH´1
i qiPN is a Cauchy sequence

in C0
pA,Aq, so it converges to some continuous (and surjective) map Π. Note also that

H´1
i pzq is eventually constant if z R Λ. Since each H´1

i is a homeomorphism onto its
image, it follows easily that Π|AzΛ is injective, and ΠpΛq “ T1

ˆ t0u.
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By (7) and the fact that
ř

n εn ă 8, the sequences pfnqnPN and pf´1
n qnPN are Cauchy

in the Cr-topology for any r, the sequence pfnqnPN converges to some C8 diffeomorphism
f in the C8-topology.

By (8), the sequence ppn{qnqnPN is Cauchy and therefore has some limit ρ P T1.
oreover, since

H´1
n fn “ H´1

n pHnRpn{qnH
´1
n q “ Rpn{qnH

´1
n ,

taking limits as nÑ 8 one deduces that Πf “ RρΠ. The fact that Π is a uniform limit
of homeomorphisms implies that Π is monotone (see for instance [Why55]). Moreover,
note that Hnptθu ˆ r´αn, αnsq is connected and has diameter at least 1{4 due to (2).
Choosing zn, z

1
n P Hnptθu ˆ r´αn, αnsq such that dpzn, z

1
nq ě 1{4 and taking convergent

subsequences of pznq and pz1nq one finds two points z, z1 P Λ such that dpz, z1q ě 1{4
and Πpzq “ Πpz1q “ pθ, 0q, showing that diampΠ´1

pθ, 0qq ě 1{4. This means that
diampΠ´1

pΠpzqqq ě 1{4 for all z P Λ.
The minimality of f |Λ follows immediately from (9). Since the set Λ “

Ş

nPN Λn is
a decreasing intersection of essential closed topological annuli, it is an essential annular
continuum, and using the fact that f |Λ is minimal we deduce that Λ is an essential
cofrontier (by an argument already used in the proof of Corollary 1.5).

To see that Λ is decomposable, let I1 “ r0, 1{2s and I2 “ r1{2, 1s be the upper and
lower half-circles, respectively, and let Λjn “ HnpIj ˆ r´αn, αnsq for j P t1, 2u. For each
j, let Λj be the Hausdorff limit of some convergent subsequence of pΛjnqnPN. Then Λ1

and Λ2 are compact connected nonempty sets, and from the fact that Λn “ Λ1
n Y Λ2

n

it is easy to verify that Λ “ Λ1
Y Λ2. On the other hand, note that from (3) one has

µ :“
ř8

i“1 3{qi ă 3
ř8

i“1 1{13i “ 1{4, and (6) implies that dpπ1pHnpzqq, π1pzqq ă µ (as
noted in the beginning of the proof). Thus π1pΛ

j
nq “ π1pHnpIjˆr´αn, αnsqq is an interval

of length at most 1{2` 2µ. Therefore π1pΛ
j
q has length at most 1{2` 2µ ă 1, and since

Λ is essential this means that Λj ‰ Λ for j P t1, 2u, showing that Λ “ Λ1
Y Λ2 is a

decomposition of Λ into nonempty proper subcontiua.

Proof of Claim 8.1. We define the sequences recursively. Start with p1 “ 0 and q1 “
1{132. To simplify the construction we will assume α1 ą 1{4, so that letting h1 “ IdA
conditions (1))-((3) automatically hold for k “ 1.

Assuming that hk, pk{qk, and Mk are already defined for 1 ă k ď n and satisfy the
required properties, we will define them for k “ n ` 1. As explained in the introduction
of this section, as long as pn`1{qn`1 is chosen close enough to pn{qn we can guarantee
that fn`1 will be arbitrarily close to fn in the Cn-topology. Therefore we will first choose
hn`1 accommodating to our needs, and later we will choose pn`1{qn`1 close enough to
pn{qn (but different from it) so as to guarantee conditions (7), (9) and (3).

In order to define our map hn`1 we first introduce two auxiliary maps. Given δ ą 0
and positive integers K,n, q the first map V “ Vn,q,δ P Diff8pAq will have the following
properties:

(V1) V pzq “ z for z P AzpT1
ˆAnq;

(V2) If I Ă T1 is any interval of length greater than δ, then there is a subinterval
of I with endpoints θ0, θ1 such that V maps each set tθ0u ˆ r´αn`1, αn`1s and
tθ1u ˆ r´αn`1, αn`1s into a different connected component of AqnzpT1

ˆ r´αn `
δ, αn ´ δsq.

(V3) dpπ1pV pzqq, π1pzqq ă δ for all z P A.

(V4) V commutes with R 1
q

.

There are several ways to define such a map. We describe one way4, depicted in Figure
8.2: let φ : R Ñ R be a C8 bump function such that φptq “ 1 if |t| ă αn`1, φptq “ 0 if
|t| ą αn and 0 ď φptq ď 1 for all t P R, and consider the vector field

V pθ, yq “

ˆ

0, sin
`

2π
δx

4q

˘

φpyq

˙

4An alternative definition (which we will not develop further) leads to an area-preserving map V with
similar properties; roughly, this is done by using a map which expands An`1 horizontally, contracts vertically,
and folds it back into An while keeping all the required properties. By doing this, one could guarantee that
the maps fn (and therefore limit map f in Claim 8.2) are area-preserving.
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Figure 8.2: A possible map pθ, yq ÞÑ V pθ, yq

on A. If t P R is large enough, the time-t map of the flow induced by V is a diffeomorphism
satisfying the requred properties (see Figure 8.2).

The second map T “ Tn,q P Diff8pAq is such that:

(T1) T pzq “ z for all z P AzAn and all z P T1
ˆ t0u;

(T2) T pAn`1q “ An`1;

(T3) rθ ´ 1{q, θ ` 1{qs Ă π1pT ptθu ˆ r´αn`1, αn`1sqq for all θ P T1;

(T4) dpπ1pT pzqq, π1pzqqq ď 2{q for all z P A;

(T5) T commutes with R1{q.

Such a map may be defined explicitly as

pθ, yq ÞÑ

ˆ

θ `
ψpyqy

αn`1qn
, y

˙

,

where ψ : RÑ R is a C8 bump function such that 0 ď ψpzq ď 1 for all z P R, ψ is equal
to 1 on r´αn`1, αn`1s and 0 outside r´αn, αns and |ψpyqy| ď 2αn`1 for all y P R.

Let s “ supθPT1 diampHnptθu ˆ r´αn, αnsqq ´ 1{4. By continuity of Hn and prop-
erty (2) it follows that s ą 0. Let ε “ mints, εn`1u, and choose 0 ă δ so small
that dpHnpzq, Hnpz

1
qq ă ε{2 whenever dpz, z1q ă 3δ, and in addition δ ă 1{qn and

δ ă pαn ´ αn`1q{4.
We now claim that the map hn`1 “ V ˝T satisfies the required properties using q “ qn.

First, note that properties (1) and (4) for k “ n` 1 follow directly from (V1), (T1), (V4)
and (T5).

Let us further note that whenever γ Ă An`1 is an arc such that diampπ1pγqq ą δ,
then V pγq is 3δ-dense in π1pγq ˆ r´αn, αns. Indeed, the properties of V imply that
r´αn ` δ, αn ´ δs Ă π2pV pγqq and π1pV pγqq lies in an δ-neighborhood of πpγq. Thus,
given z P π1pγq ˆ r´αn ` δ, αn ´ δs, there exists z1 P γ such that π2pz

1
q “ π2pzq and

dpz1, zq ă 2δ. From this it follows easily that V pγq is 3δ-dense in π1pγq ˆ r´αn, αns as
claimed.

Since, for any α P r´αn`1, αn`1s, the set T pT1
ˆ tαuq is contained in An`1, the

previous remarks imply that hn`1pT1
ˆ tαuq “ V pT pT1

ˆ tαuqq is 3δ-dense in An, anqd
since Hn`1pT1

ˆtαuq “ Hnphn`1pT1
ˆtαuqq, the choice of δ implies that Hn`1pT1

ˆtαuq is
ε-dense in HnpAnq “ Λn. Since ε ă εn`1, this shows that property (5) holds for k “ n`1.

Given θ P T1, let γ “ T ptθu ˆ r´αn`1, αn`1sq. Then rθ ´ 1{qn, θ ` 1{qns Ă π1pγq,
and in particular diampπ1pγqq ą 2{qn ą δ, so that V pγq is 3δ-dense in π1pγq ˆ r´αn, αns.
Recall from our choice of ε that the diameter of Hnptθu ˆ r´αn, αnsq is at least 1{4` ε.
Thus we can find z1, z2 P tθu ˆ r´αn, αns such that dpHnpz1q, Hnpz2qq ě 1{4 ` ε. But
then there exist z11, z

1
2 P V pγq such that dpzi, z

1
iq ă 3δ, and our choice of δ implies that

dpHnpziq, Hnpz
1
iqq ă ε{2 for i P t1, 2u. Thus dpHnpz

1
1q, Hnpz

1
2qq ą 1{4, and it follows that

HnpV pγqq has diameter greater than 1{4. Since V pγq “ hn`1ptθu ˆ r´αn`1, αn`1sq, we
see that property ((2)) holds for k “ n` 1.



18

To verify property ((6)) for k “ n` 1, note that, using the properties of V and T and
the fact that δ ă 1{qn,

dpπ1phn`1pzq, πpzqq “ dpπ1pV pT pzqqq, π1pzqq ď δ ` 2{qn ă 3{qn.

The remaining properties are guaranteed by choosing pn`1{qn`1 close enough to pn{qn.
Indeed, as noted at the beginning of the proof, properties (7) and (9) are guaranteed in
this way, and property (3) will hold if pn`1{qn`1 is close to pn{qn but not equal to it.
Therefore there is an open interval I containing pn{qn such that properties (7) (8) and
(3) hold as long as pn`1{qn`1 P Iztpn{qnu.

By our induction assumption, property (9) holds for fn, so that tfknpzq : 0 ď k ďMiu

is εi-dense in Λi for each z P Λn and 1 ď i ď n´ 1. However, this condition is C0-open,
meaning that it still holds if one replaces fn by a map which is C0-close enough to fn.
Therefore, reducing the interval I we may assume that whenever pn`1{qn`1 P Iztpn{qnu,
the set tfkn`1pzq : 0 ď k ď Mi`1u is εi-dense in Λi when 1 ď i ď n ´ 1 (noting that
Λn`1 Ă Λn). It remains to verify that there exists Mn`1 such that the latter also holds
when i “ n` 1.

Choose an irrational θ P I and note that by property (5) the set Hn`1pT1
ˆ tαuq

is εn`1-dense in Λn for any α P r´αn`1, αn`1s, so the map g “ Hn`1RθH
´1
n`1 has the

property that every g-orbit of a point in Λn`1 is εn`1-dense in Λn. By compactness,
we may choose Mn`1 such that tgkpzq : 0 ď k ď Mn`1u is εn`1-dense in in Λn for
any z P Λn`1. Since this is an open condition, if pn`1{qn`1 P Iztpn{qnu is chosen close
enough to θ we have that tfkn`1pzq : 0 ď k ď Mn`1u is εn`1-dense in Λn, as required.
Thus property (9) holds, completing the proof.
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