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Abstract

In the study of quasiperiodically forced systems invariant graphs have a spe-
cial significance. In some cases, it was already possible to deduce statements
about the invariant graphs of certain classes of systems from properties of the
fibre maps. Here, we study quasiperiodically forced interval maps which are
monotonically increasing and have negative Schwarzian derivative. First, we
derive some basic results which only require monotonicity. Then we give a clas-
sification, with respect to the number and to the Lyapunov exponents of invariant
graphs, for this class of systems. It turns out, that the possibilities for the invari-
ant graphs are exactly analogous to those for the fixed points of the unperturbed
fibre maps.
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1 Introduction

Quasiperiodically forced systems occur in various situations in physics. For instance,
the differential equations describing a pendulum forced at two incommensurate fre-
quencies give rise to a quasiperiodically forced Poincaré map (see [1, 2] for details
and numerical studies). Another example is the so-called Harper map, which is inti-
mately related to certain discrete Schroedinger operators with quasiperiodic potential
(e.g. [3, 4]). In addition to this physical motivation, quasiperiodically forced systems
provide interesting examples of dynamical behaviour (namely the generic existence of
strange non-chaotic attractors, see below) usually not found in uniformly hyperbolic
systems, which are much better understood. Therefore they are of interest from a
purely mathematical point of view as well.

Due to the aperiodicity of the quasiperiodic forcing there cannot be any fixed
points or periodic points for such systems. Therefore invariant graphs are the most
simple invariant objects which can occur. Section 2 will point out their significance
for the dynamics of the system (all in the case of quasiperiodically driven monotone
interval maps): On the one hand, invariant graphs occur generically as boundary lines
of invariant compact sets. On the other hand there is a one to one correspondence
between the invariant graphs and the ergodic invariant measures of a system.

The stability of an invariant graph is determined by its Lyapunov exponent. If it
is negative the graph is attracting, but in which sense depends strongly on whether
the graph is continuous or not. This will be specified in section 3, which also contains
some other basic observations about invariant graphs and their Lyapunov exponents
in systems with monotone fibre maps. Some of the results from this section, as well as
from the preceding one, might be considered well-known ‘folklore’. But as they seem
not to be written down in the literature, proofs are included for the convenience of the
reader.

For a map of the real line to itself which is bounded and has strictly negative
Schwarzian derivative (e.g. tanh or arctan as typical representatives), there are three
possibilities regarding its fixed points: either it has a single fixed point which is stable
or neutral, or it has exactly one stable and one neutral fixed point, or it has three fixed
points, the inner one of which is unstable and the other two are stable. The main result
here is to show, that this carries over directly to quasiperiodically driven systems (see
also Theorem 4.2):

Suppose that for a system of quasiperiodically forced interval maps, all
the fibre maps have strictly negative Schwarzian derivative. Then either
there is only one invariant graph with non-positive Lyapunov exponent, or
there are two invariant graphs, one of which has strictly negative and the
other one zero Lyapunov exponent, or there are three invariant graphs, the
inner one of which has strictly positive and the other two strictly negative
Lyapunov exponents.

This is in some way similar to the classification done independently by Keller [6]
and Bezhaeva/Oseledets [7] for the class of systems originally proposed by Grebogi
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et al. [5]. Glendinning [8] has recently generalized parts of these results to a broader
class of systems. Their classification also includes a statement about the continuity of
the invariant graphs, a question which had to be left open here. However, simulations
suggest that non-continuous invariant graphs do occur in the class of systems considered
here, too (see Fig. 1.1). It might be worth mentioning, that the statements presented
in sections 2 and 3 can be used to reproduce most results from [6] and [7] quite easily.

Non-continuous invariant graphs with negative Lyapunov exponent are usually ref-
ered to as examples of strange non-chaotic attractors (SNA’s). They have received
much interest as a novel phenomenon and have been intensely studied numerically in
theoretical physics (e.g. [1, 2, 3, 12, 13, 14]). [4] gives a good overview and further
reference. Yet the classification mentioned above, and the results of Herman [11] for
quasiperiodically forced fractional linear maps, seem to be the only examples in which
the discontinuity of invariant graphs has been proved rigorously.

Acknowledgements. The results presented here are part of my Diplomarbeit (mas-
ter’s thesis) at the Friedrich-Alexander-Universität Erlangen-Nürnberg, and I would
like to thank Gerhard Keller for his supervision and advise, without which this work
would not have been possible.
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Figure 1.1: Systems of the form (θ, x) 7→ (θ + ω,
arctan(ax)
arctan(a) + b · sin(2πθ)) have negative Schwarzian

derivative on the fibres. Here 10 000 iterations of the starting points (0,3) and (0,-3) trace out pictures
of the upper and lower bounding graphs, respectively. These two graphs are stable, another invariant
graph which is unstable lies in between (see Theorem 4.2). The parameter a = 10 is the same for
all pictures A–F. Upon increasing the parameter b the two distinct graphs come closer together (A–
C). When they collide, non-continuous invariant graphs seem to occur over a small parameter range
(D,E), until only one continuous invariant graph remains (F). This phenomenon has been observed in
other parameter families of quasiperiodically forced systems as well, and is called creation of an SNA
via torus collision (see [4]).
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2 Invariant Graphs

Let M := T
1 × [a, b], where a < b ∈ R. We will study quasiperiodically forced interval

maps, i.e. maps of the form

T : M →M , (θ, x) 7→ (θ + ω, Tθ(x)) . (2.1)

The fibre map Tθ : [a, b] → [a, b] is given by Tθ(x) = π2 ◦ T (θ, x) with π2 the natural
projection from M to [a, b]. Its derivative with respect to x will be denoted by DTθ.

We will assume that T is continuous, Tθ is continuously differentiable in x and the
derivative DTθ(x) depends continuously on (θ, x) and denote the set of all such systems
(T,M) by T . Further, we define the class Tm of systems with weakly monotone fibre
maps as

Tm := {(T,M) ∈ T | ∀θ ∈ T
1 : Tθ(x) ≤ Tθ(y) if x ≤ y , Tθ(a) > a, Tθ(b) < b} .

The conditions Tθ(a) > a and Tθ(b) > b are only required for technical reasons (see
proof of Lemma 3.5). In all of the following, the Lebesgue-measure on T

1 will be
denoted by m and r = rω : T

1 → T
1 , θ 7→ θ + ω mod 1 will always be the rotation

with rotation number ω corresponding to the considered system.

Since the irrational rotation is aperiodic, there cannot be any fixed points or periodic
points for such systems. Furthermore, any compact invariant set in M will project onto
a compact subset of the circle which is invariant under the corresponding rotation. As
the irrational rotation is minimal, this must be either the empty set or the whole circle.
The simplest invariant objects are therefore invariant graphs:

Definition 2.1 Let (T,M) ∈ T . A Lebesgue-measurable function ϕ : T
1 → [a, b] is

called an invariant graph (with respect to T), if for all θ ∈ T
1:

T (θ, ϕ(θ)) = (θ + ω, ϕ(θ + ω)) . (2.2)

The point set Φ := {(θ, ϕ(θ)) : θ ∈ T
1} will be called invariant graph as well, but labeled

with the corresponding capital letter.

In the study of dynamical systems, there is generally a focus on compact invariant sets
and invariant ergodic measures. As mentioned before, in quasiperiodically forced sys-
tems these are closely related to the invariant graphs, at least in the case of monotone
fibre maps.

Invariant graphs and compact invariant sets: Suppose (T,M) ∈ Tm and K ⊂ M
is a non-empty compact set which is forward invariant under T , i.e. T (K) = K. Then
π1(K) is a compact subset of T

1 which is invariant under the irrational rotation r. As
it is non-empty, it must be the whole circle (minimality of r). Thus, by

ϕ+(θ) := sup{x ∈ [a, b] : (θ, x) ∈ K} (2.3)
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an invariant graph ϕ+ can be defined (the invariance following from the monotonicity
and continuity of the fibre maps), analogously a ϕ− via the infimum. As K is closed
we get lim supθ′→θ ϕ

+(θ′) ≤ ϕ+(θ), which means that ϕ+ is upper semi-continuous. In
the same way ϕ− is lower semi-continuous. This also gives the measurability of the
two graphs.

As the global attractor
⋂

n∈N
T n(M) is always a nonempty compact invariant set,

there exists at least one invariant graph. The graphs corresponding to this set often
have a special significance.

Definition 2.2 Let (T,M) ∈ Tm. Then the global attractor of T is the set Kmax :=⋂
n∈N

T n(M).

ϕ+
T (θ) := sup{x ∈ [a, b] : (θ, x) ∈ Kmax} and

ϕ−
T (θ) := inf{x ∈ [a, b] : (θ, x) ∈ Kmax}

are the upper and lower bounding graphs of the system (T,M).

If the fibre maps are not monotone one can still define an upper and lower bounding
graph, but then these graphs do not have to be invariant anymore. See [8] for details.

Invariant graphs and invariant ergodic measures: If ϕ is an invariant graph, by

µϕ(A) := m(π1(A ∩ Φ)) ∀A ∈ B(M) (2.4)

a T -invariant ergodic measure can be defined (recall the meaning of ergodicity:
T−1(A) = A⇒ µϕ(A) ∈ {0, 1}. The following lemma shows, that the converse is true
as well. A proof can be found in [17, Thm. 1.8.4(iv)]. Although the statement there
is formulated for continuous-time random dynamical systems, the proof literally stays
the same.

Lemma 2.3 Let (T,M) ∈ Tm and µ be a T-invariant ergodic measure on M. Then
µ = µϕ for some invariant graph ϕ.

Equivalence classes of invariant graphs and the essential closure: There is a
subtle issue in the definition of invariant graphs that has to be addressed: Any invariant
graph ϕ can be modified on a set of measure zero to yield another invariant graph ϕ̃,
equal to ϕ m-a.s. . We usually do not want to distinguish between such graphs. On the
other hand, especially when topology is concerned, we sometimes need objects which
are well-defined everywhere.

So far, this has not been a problem. The boundary graphs of compact invariant
sets are well-defined everywhere, and for the definition of the associated measure (2.4)
it does not matter. But as we also want to study the topological properties of invariant
graphs, some care has to be taken. We will therefore use the following convention:

We will consider two invariant graphs as equivalent if they are m-a.s. equal and
implicitly speak about equivalence classes of invariant graphs, just as functions in
L1

µ are identified if they are µ-a.s. equal. If any further assumptions about invariant
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graphs are made, such as continuity, semi-continuity or inequalities between invariant
graphs, we will understand it in the way that there is at least one representative in
each of the respective equivalence classes, such that the assumptions are met. These
representatives will then be used in the proofs, and all conclusions which are drawn
from the assumed properties will be true for all such representatives.

There is one case, where this terminology might cause confusion: It is possible,
that an equivalence class contains both an upper and a lower semi-continuous graph,
but no continuous graph. To get an idea of what could happen, regard the function
f : x 7→ sin 1

x
∀x 6= 0. By choosing f(0) = 1 we can extend it to an upper semi-

continuous function, by choosing f(0) = −1 to a lower semi-continuous function, but
there is no continuous function in the equivalence class. To avoid ambiguities, we will
explicitly mention this case whenever it can occur.

In order to assign a well defined point set to an equivalence class of invariant graphs,
we introduce the essential closure:

Definition 2.4 Let (T,M) ∈ Tm. If ϕ is an invariant graph, we define its essential
closure (with respect to its associated measure µϕ) as:

Φ
ess

:= {(θ, x) : µϕ(U ∩ Φ) > 0 ∀open neighbourhoods U of (θ, x)} (2.5)

Several facts follow immediately from this definition:

• Φ
ess

is a compact set.

• Φ
ess

= supp(µϕ), which in turn implies µϕ(Φ
ess

) = 1 (see e.g. [16]).

• Invariant graphs from the same equivalence class have the same essential closure
(as they have the same associated measure).

• Φ
ess

is contained in every other compact set which contains µϕ-a.e. point of Φ.

• Φ
ess

is forward invariant under T .

Invariance probably needs a little bit more caution than the other statements:
Suppose x ∈ Φ

ess

and U is an open neighbourhood of T (x). Then T−1(U) is an open
neighbourhood of x, and therefore µϕ(U) = µϕ ◦ T−1(U) > 0. This means T (x) ∈ Φ

ess

and thus T (Φ
ess

) ⊆ Φ
ess

. On the contrary T (Φ
ess

) is a compact set which contains
µϕ-a.e. point in Φ, therefore Φ

ess ⊆ T (Φ
ess

).

Proposition 3.7 will state some topological properties of the essential closure in a special
situation. However, despite its topological nature, the proof requires some facts from
ergodic theory (namely Lemma 3.2) and must therefore be postponed until Lyapunov
exponents have been introduced in the next section.

7



3 Lyapunov exponents

To study further properties of invariant graphs, we need to define Lyapunov exponents.
For simplicity, we denote the fibre maps of T n by T n

θ instead of (T n)θ.

Definition 3.1 Let (T,M) ∈ T , (θ, x) ∈M . If the limit

λ(θ, x) := lim
n→∞

1

n
log |DT n

θ (x)|

exists, it is called the (normal) Lyapunov exponent in (θ, x). If ϕ is an invariant graph
with log |DTθ(ϕ(θ))| ∈ L1

m, its Lyapunov exponent is defined as

λ(ϕ) :=

∫

T1

log |DTθ(ϕ(θ))|dθ .

Note that log |DT n
θ (ϕ(θ))| =

∑n−1
i=0 log |DTθ+iω(ϕ(θ + iω))|. Thus, by the Birkhoff

ergodic theorem, the Lyapunov exponent of an invariant graph equals that of its points
for Lebesgue-a.e. θ ∈ T

1.
As mentioned in the introduction, there is a great difference in the meaning of

a negative Lyapunov exponent between the continuous and the non-continuous case.
If DTθ is non-singular and the invariant graph ϕ is continuous, so is the function
log |DTθ(ϕ(θ))|. As the irrational rotation is uniquely ergodic, the ergodic sums of
continuous functions converge uniformly (see e.g. [16]). If λ = λ(ϕ) is negative, this
means that

∃n0 ∈ N ∃ε > 0 :
1

n0

log |DT n0

θ (x)| < λ

2
∀(θ, x) ∈ Uε(ϕ) (3.1)

where Uε(ϕ) := {(θ, x) ∈ M : x ∈ Bε(ϕ(θ))}. If DTθ has singularities the above
remains true, which can be seen by approximating log |DTθ ◦ϕ| with the monotonically
decreasing sequence of continuous functions max{log |DTθ ◦ ϕ|,−N}.

Thus, continuous invariant graphs with negative Lyapunov exponent are attracting
in the very strong sense that an iterate of T acts uniformly contracting (along the fibres)
on a neighbourhood of the graph. From this conclusions regarding the regularity and
stability of continuous invariant graphs can be drawn, as done by Stark [9].

On the other hand, if ϕ is not continuous (3.1) cannot be true anymore. This can
be seen from the following lemma, which is just a slightly adapted version of Corollary
1.15 in [10].

Lemma 3.2 Let (T,M) ∈ Tm. Suppose ϕ is an non-continuous invariant graph with
negative Lyapunov-Exponent. Then Φ

ess

contains at least one invariant graph with a
non-negative Lyapunov exponent.

To obtain a general result which also applies to the non-continuous case, the statement
in (3.1) must be replaced by the following proposition. In the case where T is a
diffeomorphism, the statement should follow from general Pesin theory as well (e.g.
supplement in [16] or [17, Thm 7.3.10]), but as we do not assume T to be invertible a
few technical difficulties have to be dealt with.
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Proposition 3.3 Suppose (T,M) ∈ T and ϕ is an invariant graph with λ(ϕ) < 0.
Then for m-a.e. θ ∈ T

1 there is a δθ > 0, such that

∀x ∈ Bδθ
(ϕ(θ)) : |T n

θ (x) − ϕ(θ + nω)| → 0 (n→ ∞).

Proof:
|DTθ| may equal zero and is not assumed to be Lipschitz- (or even Hölder-) continuous.
In order to deal with these possible irregularities, we choose a bounded, Lipschitz-
continuous function F : M → [0,∞) with the following properties:

• ∃c > 0 : F (θ, x) ≥ max{c, |DTθ(x)|} ∀(θ, x) ∈M (3.2)

•
∫

T1

logF (θ, ϕ(θ))dθ <
3

4
λ

(Exists, according to Stone-Weierstrass and dominated convergence.) Then logF will
be Lipschitz as well, thus ∃L > 0 ∀x, y ∈ [a, b], θ ∈ T

1 :

F (θ, x) ≤ eL|x−y| · F (θ, y) . (3.3)

Applying Birkhoff’s ergodic theorem to θ 7→ logF (θ, ϕ(θ)) yields that form-a.e. θ ∈ T
1

there is a constant K = Kθ > 1, such that ∀n ∈ N :

n−1∏

i=0

F (θ + iω, ϕ(θ + iω)) ≤ Ken λ

2 . (3.4)

Now we can choose δ > 0 with λ
2

+ δL < 1 and n0 ∈ N, such that Ken( λ

2
+δL) < 1 ∀n ≥

n0. If then 0 < δθ < δ is chosen such that ∀x ∈ Bθ := Bδθ
(ϕ(θ)) :

|T n
θ (x) − T n

θ (ϕ(θ))| < δ ∀i = 0, . . . , n0 , (3.5)

a straightforward induction yields that ∀n ∈ N ∀x ∈ Bθ:

|T n
θ (x) − ϕ(θ + nω)| < min{δ, δ ·K · en( λ

2
+δL)} (3.6)

For n = 0 this is obvious. Now suppose (3.6) holds for i = 0, . . . , n− 1 and let x ∈ Bθ.
Then

|T n
θ (x) − ϕ(θ + nω)| ≤ |x− ϕ(θ)| · sup

z∈Bθ

|DT n
θ (z)|

(3.2)

≤ δ · sup
z∈Bθ

n−1∏

i=0

F (θ + iω, T i
θ(z))

(3.3)

≤ δ · sup
z∈Bθ

n−1∏

i=0

F (θ + iω, ϕ(θ + iω)) · eL|T i

θ
(z)−ϕ(θ+iω)|

(3.4) and (3.6)

≤ δ ·K · en( λ

2
+δL)

Together with (3.5) in the case n < n0, this proves the induction hypothesis and thus
the proposition.

�

In the case of weakly monotone fibres, we get the following
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Corollary 3.4 Let (T,M) ∈ Tm and suppose ϕ is an invariant graph with λ(ϕ) < 0.
Then one of the following is true:

(i) ϕ = ϕ+
T and for m-a.e. θ ∈ T

1 and all x > ϕ(θ) :

|T n
θ (x) − ϕ(θ + nω)| → 0 (n→ ∞).

(ii) ϕ < ϕ+ m-a.s., and there is another invariant graph ψ ≥ ϕ with λ(ψ) ≥ 0,
such that for m-a.e. θ ∈ T

1 :

ϕ(θ) ≤ x < ψ(θ) ⇒ |T n
θ (x) − ϕ(θ + nω)| → 0 (n→ ∞) .

If in case (ii) ϕ is continuous, then ψ is lower semi-continuous.

Of course a similar statement holds for the region below ϕ.

Proof:
If ϕ is not equal to ϕ+

T but m-a.s. below, then

ψ(θ) := sup{x ≥ ϕ(θ) : |T n
θ (x) − ϕ(θ + nω)| → 0} ≤ ϕ+

T (θ)

defines an invariant graph. Because of the theorem, ψ is m-a.s. not equal to ϕ. The
convergence of orbits between the graphs follows immediately from the definition of ψ,
the invariance from the monotonicity and continuity of T . If λ(ψ) was negative, the
above theorem would yield a contradiction to this convergence behaviour, so λ(ψ) must
be non-negative. Note that ψ is uniquely determined by the convergence behaviour of
all points between ϕ and ψ.

Now suppose ϕ ≡ ϕ+
T and let B := {θ : ψ(θ) = b}. Because of r−1(B) ⊆ B and the

r-invariance of m, B is m-a.s. invariant. Due to the ergodicity of r its measure must
therefore be either 0 or 1. As there is no invariant graph above ϕ+

T it must be 1, which
proves the statement in (i).

If in case (ii) ϕ is continuous ε and n0 can be chosen as in (3.1). To obtain the
lower semi-continuity of ψ we show that {θ : ψ(θ) > s} is open for all s ∈ [a, b].
Suppose ψ(θ) > s. We assume s ≥ ϕ(θ), otherwise we replace s with an arbitrary
t ∈ [ϕ(θ), ψ(θ)). From ϕ(θ) ≤ s < ψ(θ) follows ∃n ∈ N : T n(θ, s) ∈ U ε

2
(ϕ). Then, due

to the continuity of T n, T n(θ′, z) ∈ Uε(ϕ) for all (θ′, z) from a small neighbourhood of
(θ, s). In particular this is true for all (θ′, s) with θ′ from a small neighbourhood V of
θ. But an orbit which enters Uε(ϕ) is trapped in there and will finally converge to ϕ,
thus V ⊂ {θ : ψ(θ) > s}. Note that V ⊂ {θ : ψ(θ) > t} ⊂ {θ : ψ(θ) > s} if s had to
be replaced.

�

The maximal invariant set should not be expected to have repelling boundaries, so the
Lyapunov exponents of the bounding graphs should be non-positive. Indeed we have
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Lemma 3.5 Let (T,M) ∈ Tm. If there exists a function h : T
1 → [0,∞) such that

inf
x∈[a,b]

DTθ(x) ≥ h(θ) ∀θ ∈ T
1 and log h ∈ L1

m(T1) ,

then λ(ϕ±
T ) ≤ 0.

Proof:
If ϕ is an arbitrary graph, let the graph T̂ (ϕ) be defined by T̂ (ϕ)(θ) := Tθ−ω ◦ϕ(θ−ω).
The iterates of the upper bounding line of M are then given by

ϕ1 :≡ b , ϕn+1 := T̂ (ϕn) .

This sequence of graphs converges pointwise and monotonically decreasing to ϕ+
T . As

h > 0 m-a.s. and Tθ(b) < b by definition of Tm, the convergence is strictly monotone
on m-a.e. fibre, i.e. |ϕn(θ) − ϕ+

T (θ)| > 0 ∀n ∈ N. Thus we have

ϕn+1(θ + ω) − ϕ+
T (θ + ω)

ϕn(θ) − ϕ+
T (θ)

−→ DTθ(ϕ
+
T (θ)) (n→ ∞).

As these terms are difference quotients of Tθ, they are bounded from above by a
Lipschitz constant L of T and from below by h(θ). Therefore it is possible to apply
dominated convergence after taking the logarithm:

∫

T1

log
ϕn+1(θ + ω) − ϕ+

T (θ + ω)

ϕn(θ) − ϕ+
T (θ)

dθ → λ(ϕ+
T ) (n→ ∞)

On the other hand these integrals are bounded uniformly from above by zero:

∫

T1

log
ϕn+1(θ + ω) − ϕ+

T (θ + ω)

ϕn(θ) − ϕ+
T (θ)

dθ =

=

∫

T1

log
ϕn+1(θ) − ϕ+

T (θ)

ϕn(θ) − ϕ+
T (θ)︸ ︷︷ ︸

≤ 1, as ϕn is decreasing

+ log
ϕn+1(θ + ω) − ϕ+

T (θ + ω)

ϕn+1(θ) − ϕ+
T (θ)

dθ ≤

≤
∫

T1

log
ϕn+1(θ + ω) − ϕ+

T (θ + ω)

ϕn+1(θ) − ϕ+
T (θ)

dθ

The last integrand is of the kind F ◦ r − F , where F := log(ϕn+1 − ϕ+
T ). At the

same time it is bounded from below by a difference quotient, as (ϕn+1 − ϕ+
T )(θ) in

the denominator is bounded from above by (ϕn − ϕ+
T )(θ). This means that it has the

integrable minorant log h. Therefore we can apply Lemma 3.6, which yields that the
integral is zero.

�
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Lemma 3.6 Let (X,F , µ) be a probability space, r : X → X a measurable transfor-
mation leaving the measure µ invariant and F : X → R a measurable function. If the
function F ◦ r − F has a minorant or majorant h ∈ L1

µ, then F ◦ r − F ∈ L1
µ and

∫

X

(F ◦ r − F ) dµ = 0 .

A proof can be found in [6], for example. (The lemma itself is probably far older than
that.)

Topology of semi-continuous invariant graphs: As mentioned before, one reason
for the interest in quasiperiodically forced systems is the occurrence of non-continuous
invariant graphs. On the other hand, semi-continuous invariant graph seem to play
a special role, as we have seen in Section 2. We can now study the topological prop-
erties of such graphs. Actually, in the situation of the proposition below, their es-
sential closures resemble Cantor sets, with the only difference that they are not to-
tally disconnected, but still nowhere dense. The intersection with any horizontal line
{(θ, s) : θ ∈ T

1} (s ∈ [a, b]) is indeed a Cantor set.

Proposition 3.7 Let (T,M) ∈ Tm. If ϕ− ≤ ϕ+ are two distinct, non-continuous
invariant graphs with negative Lyapunov exponents, ϕ− is lower semi-continuous and
ϕ+ is upper semi-continuous, and if there is no other semi-continuous invariant graph
in between, then the following is true:

(i) K := Φ−
ess

= Φ+
ess

is minimal.

(ii) There exists another invariant graph ψ, with non-negative Lyapunov exponent
and Ψ

ess

= K, between ϕ− and ϕ+.

(iii) B := {θ : ϕ−(θ) = ϕ+(θ)} = {θ : ϕ− and ϕ+ are both continuous in θ} is dense
in T

1 and m(B) = 0.

(iv) K is a perfect set (i.e. each of its points is an accumulation point of the set)
and has empty interior.

Proof:
Before really starting the proof, we want to exclude one rather pathological possibility.
As mentioned in Section 2, it is a priori conceivable that there is a lower semi-continuous
invariant graph ϕ̃ in the equivalence class of ϕ+. Due to the semi-continuity of the two
graphs, ϕ̃ must be strictly below ϕ+. Therefore the set {(θ, x) : ϕ̃(θ) ≤ x ≤ ϕ+(θ)} is
compact and invariant. As it contains all points in Φ+ it also contains Φ+ess

, but this
contradicts Lemma 3.2, because λ(ϕ+) < 0. Thus, this situation cannot occur in the
case of negative Lyapunov exponents.

(i) Due to the semi-continuity of the two graphs A := {(θ, x) : ϕ−(θ) ≤ x ≤ ϕ+(θ)}
is a compact and invariant set. As it contains Φ+, it also contains its essential
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closure. This is compact and invariant as well and therefore has a semi-continuous
lower bounding graph. As A contains no other lower semi-continuous invariant
graph, this has to be ϕ−. Thus we get that (θ, ϕ−(θ)) ∈ Φ+ess

m-a.s. and therefore
Φ−

ess ⊆ Φ+
ess

. The other way around we get that Φ+
ess ⊆ Φ−

ess

, i.e. Φ−
ess

=
Φ+

ess

. The same argument for the ω-limit gives that ω((θ, x)) = K ∀(θ, x) ∈ K,
so K is minimal.

(ii) The existence of ψ is a direct consequence of Lemma 3.2, the fact Ψ
ess

= K then
follows from the minimality of K.

(iii) ϕ+−ϕ− is upper semi-continuous, so Bn := {θ : |ϕ+(θ)−ϕ−(θ)| < 1
n
} is open. We

show that Bn is dense in T
1 as well, in order to apply Baire’s theorem. From any

open set U ∈ T
1, take a θ such that (θ, ϕ−(θ)) ∈ Φ+ess

. Then, by definition of the
essential closure, any neighbourhood of (θ, ϕ−(θ)) contains infinitely many points
of Φ+. This means there is a sequence (θn)n∈N with θn → θ and limn→∞ ϕ+(θn) =
ϕ−(θ). From the semi-continuity of ϕ− and the fact that ϕ− ≤ ϕ+, we get that
limn→∞ ϕ−(θn) = ϕ−(θ) as well, and therefore Bn intersects U . As U was arbitrary,
Bn is dense in T

1. Now Baire’s theorem yields, that the residual set
⋂

n∈N
Bn = B

is dense in T
1, too.

The continuity on B follows from the semi-continuity of both graphs. On the other
hand let θ /∈ B. If (θ, ϕ−(θ)) ∈ Φ+

ess

, then there is always a sequence (θn, ϕ
+(θn))

converging to (θ, ϕ−(θ)). Therefore if ϕ+(θ) 6= ϕ−(θ), then ϕ+ cannot be cts. in θ.
If (θ, ϕ−(θ)) /∈ Φ+

ess

, then ϕ− can surely not be cts. in θ as (θ, ϕ−(θ)) lies outside
of the compact set K, which contains almost all points of Φ−. Thus both graphs
cannot be cts. outside of B at the same time.

B is an r-invariant set and cannot have full measure (as the two graphs are distinct),
thus by the ergodicity of r its measure is zero.

(iv) As K is minimal, it is equal to the ω-limit of each of its points. But the ω-limits
only consist of accumulation points of the orbits, and due to the invariance of K
these orbits will be inside of K, too.

The statement that K has empty interior follows immediately from the fact that
B is dense in T

1.

�

13



4 Systems with negative Schwarzian derivative on

the fibres

Now we turn to study systems with negative Schwarzian derivative on the fibres. First,
we recall the following known facts:

The Schwarzian derivative of a function F ∈ C3([a, b]) with DF > 0 is defined as

SF :=
D3F

DF
− 3

2

(
D2F

DF

)2

.

It is strongly connected with the concept of cross ratios. The cross ratio of four points
x < y < z < w from [a, b] is defined as

CR[x, y, z, w] :=
(w − x) · (z − y)

(y − x) · (w − z)
,

the cross ratio distortion of F with respect to these points is

D(F, [x, y, z, w]) :=
CR[F (x), F (y), F (z), F (w)]

CR[x, y, z, w]
.

Note that this can be regarded as a quotient of difference quotients, which compares
the product of the average slope and the one in the middle with the product of the
slopes on the right and left part of the interval [x, w]. This geometric interpretation
will be fundamental for the proof of Theorem 4.2 . The following two known facts will
be used (see e.g. [15]):

• S(G ◦ F ) = (SG ◦ F ) · (DF )2 + SF (4.1)

• SF < 0 on [a, b] ⇔ D(F, [x, y, z, w]) > 1 ∀x < y < z < w ∈ [a, b] (4.2)

(4.2) will be used to show that the properties of the fibre maps carry over to the
forced systems, as mentioned in the introduction. In addition, in order not to lose the
strictness of the inequality while taking limits, the following lemma is needed:

Lemma 4.1 Let I ⊂ R be a compact interval. Then ∀γ > 0 ∀ε > 0 ∃δ > 0 such that
∀a < b < c < d ∈ I with min{|c − a|, |d − c|} > γ or |c − b| > γ ∀F ∈ C3(I) with
DF > 0 and SF < −ε:

D(F, [a, b, c, d]) > 1 + δ .

Proof:
The proof will use the fact, that for the composition of F with another function g

D(F ◦ g, [x, y, z, w]) = D(F, [g(x), g(y), g(z), g(w)]) ·D(g, [x, y, z, w]) .

The strategy will be to compose F with a function g of positive Schwarzian derivative.
This function is chosen such that on the one hand it reduces the cross ratio by a fixed
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factor, on the other hand the composition still has negative Schwarzian derivative.
Thus the decrease in the cross ratio has to be compensated by F .

Suppose SF < −ε and min{|c− a|, |d− c|} > γ. Then g is chosen as

g : [a, d] → [a, d] , x 7→
{
M · (x− a) + a x ∈ [a, d− s]
M · (x− a) + a+ (x− (d− s))4 x ∈ [d− s, d]

where M := 1− s4

d− a
. It is easy to show that

g is C3, monotonically increasing and maps
the endpoints of the interval to themselves. If
g−1(c) is to the left of d−s, then the two parts
to the left are contracted, only [g−1(c), d] is ex-
panded. Thus the cross ratio is reduced. Now
for given γ and ε, s has to be chosen indepen-
dently of F and a, b, c, d.

Construction of g:

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

a g−1(b) g−1(c) dd− s
a

b

c

d

slope M

polynomial
part

s4

First S(F ◦ g) must be negative. As S(F ◦ g) = (SF ◦ g) · (Dg)2 + Sg and SF < −ε,
this is surely the case if

Sg

(Dg)2
≤ ε . (4.3)

We will choose
s ≤ 4

√
γ . (4.4)

From this, as 2γ ≤ d− a, we get that s ≤ 4

√
d−a
2

, which implies M > 1
2

and therefore

Dg > 1
2

(see definitions of M and g). Then (4.3) will hold if Sg ≤ ε
4
. On [a, d − s]

Sg = 0 and on [d− s, s] we have (still assuming (4.4) and therefore M > 1
2
)

Sg =
24(x− d+ s)

M + 4(x− d+ s)3
− 3

2
(
D2g

Dg
)2 ≤ 24s

M
< 48s

Hence Sg ≤ ε
4
, if in addition to (4.4)

s ≤ ε

200
. (4.5)

Thus S(F ◦ g) < 0 can be ensured by (4.4) and (4.5). Secondly, we want the
linearly contracting part of g to extend at least until g−1(c), such that only the interval
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[g−1(c), d] is expanded and the other intervals are uniformly contracted. Therefore we
request g−1(c) ≤ d− s, which is equivalent to g(d− s) ≥ c. If we chose

s ≤ γ

2
, (4.6)

then (using γ ≤ d− c) we get that g(d− s) ≥ g(c+ d−c
2

) ≥ M · (c+ d−c
2

− a) + a. Now

M · (c− a + d−c
2

) + a ≥ c

is equivalent to

M ≥ c− a

c− a+ 1
2
(d− c)

=
(
1 + (d−c)

2(c−a)

)−1

,

and the last term on the right is bounded from above:

(
1 +

(d− c)

2(c− a)

)−1

≤
(

1 +
γ

2|I|

)−1

.

Using γ < d− a, we can ensure M ≥
(
1 + γ

2|I|

)−1

by choosing

s ≤ 4

√√√√γ ·
(

1 − 1

1 + γ

2|I|

)
. (4.7)

Then (4.6) and (4.7) together imply g(d− s) ≥ c.

Altogether, s can be chosen independently of F and a, b, c, d as the minimum of the
upper bounds in (4.4)–(4.7). M will still vary with d− a, but as this is bounded by |I|
we have

M ≤ 1 − s4

|I| =: p < 1 for any choice of a, b, c, d and F. (4.8)

Therefore, we can give an upper bound for the cross ratio distortion caused by g:
The interval [d, a] as a whole is invariant. [a, g−1(b)] and [g−1(b), g−1(c)] are con-

tracted by the same factor M , the corresponding difference quotients in the cross ratio
distortion cancel each other out. Thus D(g, [a, g−1(b), g−1(c), d]) depends only on the
change of the length of [g−1(c), d]:

D(g, [a, g−1(b), g−1(c), d]) =
d− g−1(c)

d− c
=

(d− a) − 1
M

(c− a)

(d− c)
=

=
d− c− ( 1

M
− 1)(c− a)

d− c
= 1 − (

1

M
− 1) · c− a

d− c
≤

≤ 1 − (
1

p
− 1) · γ|I|︸ ︷︷ ︸
∈(0,1)

=: q < 1
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If δ := 1
q
− 1 > 0, then g reduces the cross ratio at least by the factor q = 1

1+δ
. As F

has to compensate this decrease, we get

D(F, [a, b, c, d]) > 1 + δ .

In the case c − b > γ the strategy is exactly
the same, only g has to be constructed differ-
ently. Here it is simpler to leave the two points
b and c in the middle invariant, and to expand
the right and the left part of the interval uni-
formly. In order to do this, different linear
parts have to be connected three times differ-
entiable. In principle, any function with the
third derivative point symmetric to the mid-
dle of the respective interval could be used to
construct these connecting pieces, but trigono-
metric functions are probably the most easy to
handle. Let therefore be

Construction of g in the 2. case:

�
�
�
�

�
�

�

�
�
�
�
�
�

g−1(a)b c g−1(d)
a

b

c

d

connecting pieces
XXXXz�

�
���

linear
middle part

6

h : [0, 1] → [0, 1] , x 7→ 1

2π2

(
1

2
(2πx)2 + cos(2πx) − 1

)
.

It is easy to check that h(0) = h′(0) = h′′(0) = h′′′(0) = 0, h(1) = 1, h′(1) = 2 and
h′′(1) = h′′′(1) = 0. Now, for given ε > 0, γ > 0 and a < b < c < d (where we can
assume that ε < 1 and γ < 1), let

l :=
γ

4
, α :=

εl3

32π
, M := 1 +

α

l
, M ′ := 1 − α

l
, a′ := b− b− a

M
= g−1(a) ,

d′ := c+
d− c

M
= g−1(d) , hγ,ε : [0, l] → R , x 7→ α · h(x

l
) .

Again an easy calculation gives that hγ,ε(l) = α and h′γ,ε(l) = 2α
l
. Now we can define

g as

g : [a′, d′] → [a, d] , x 7→





a+M(x− a′) x ∈ [a′, b]
b+ α +M ′(x− b) − hγ,ε(b + l − x) x ∈ [b, b + l]
b+ α +M ′(x− b) x ∈ [b + l, c+b

2
]

b+ α +M ′(x− b) + hγ,ε(x− c+b
2

) x ∈ [ c+b
2
, c+b

2
+ l]

d−M(d′ − x) x ∈ [ c+b
2

+ l, d′]

From α
l
< 1

2
follows M ′ > 1

2
and therefore Dg > 1

2
. Combined with

max
x∈[a′,b′]

|g′′′(x)| = max
x∈[0,l]

|h′′′r,ε(x)| =
α

l3
· max

x∈[0,1]
|h′′′(x)| =

ε

8
,

this gives Sg ≤ ε
4
, so that again we have S(F ◦ g) < 0. As in the first case g reduces

the cross ratio:

D(g, [a′, b, c, d′]) =
d− a

d′ − a′︸ ︷︷ ︸
≤M

·c− b

c− b
· b− a′

b− a︸ ︷︷ ︸
= 1

M

· d
′ − c

d− c︸ ︷︷ ︸
= 1

M

≤ 1

M
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The choice of M was independent of F and a, b, c, d. This completes the proof, just as
in the first case.

�

Now we turn to the class of systems

Ts := {(T,M) ∈ Tm : Tθ ∈ C3([a, b]), DTθ > 0, STθ < 0 ∀θ ∈ T
1}.

As mentioned before, we have the following classification.

Theorem 4.2 Let (T,M) ∈ Ts. Then there are three possible cases:

(i) There exists one invariant graph ϕ with λ(ϕ) ≤ 0.

(ii) There exist two invariant graphs ϕ and ψ with λ(ϕ) < 0 and λ(ψ) = 0.

(iii) There exist three invariant graphs ϕ− ≤ ψ ≤ ϕ+ with λ(ϕ−) < 0, λ(ψ) > 0 and
λ(ϕ+) < 0.

Regarding the topology of the invariant graphs, there are the following possibilities:

(i) If the single invariant graph has negative Lyapunov-Exponent, it is always con-
tinuous. Otherwise the equivalence class contains at least an upper and a lower
semi-continuous representative.

(ii) The upper invariant graph is upper semi-continuous, the lower invariant graph
lower semi-continuous. If ϕ is not continuous and ψ (as an equivalence class)
is only semi-continuous in one direction, then Φ

ess

= Ψ
ess

.

(iii) ψ is continuous if and only if ϕ+ and ϕ− are continuous. Otherwise ϕ− is at
least lower semi-continuous and ϕ+ is at least upper semi-continuous. If ψ is
neither upper nor lower semi-continuous, then Φ−

ess

= Ψ
ess

= Φ+
ess

.

For the asymptotic behaviour on m-a.e. fibres the following is true:
All points above the upper bounding graph converge to it (in the sense of |T n

θ (x) −
ϕ+(θ + nω)| → 0 (n → ∞)), the analogue is true for points below the lower bound-
ing graph. Points between two graphs always converge to the one which has negative
Lyapunov exponent.

If the system has an additional symmetry, this reduces the number of possibilities
further:

Corollary 4.3 Let (T,M) ∈ Ts. If there exists an even integer k, such that Tθ(−x) =
−Tθ+ 1

k

(x), then one of the following is true:

(i) There exists one invariant graph ϕ, which satisfies

ϕ(θ) = −ϕ(θ +
1

k
) m-a.s. .

(Continuity as in the theorem.)
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(ii) There are three invariant graphs ϕ− ≤ ψ ≤ ϕ+, which satisfy

ϕ+(θ) = −ϕ−(θ +
1

k
) and ψ(θ) = −ψ(θ +

1

k
) m-a.s. .

If one of the three graphs is continuous, then so are the other two, if they are
all non-continuous then Φ−

ess

= Ψ
ess

= Φ+
ess

.

Proof of theorem 4.2:
Obviously there exists at least one invariant graph, so first we show that there are at
the most three of them:

Suppose there are four distinct invariant graphs ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ ϕ4. Let F (θ) :=
logCR[ϕ1, ϕ2, ϕ3, ϕ4](θ), wherever all four graphs take different values. F is m-a.s.
well-defined, and as we are only interested in integrals of F this is sufficient. For the
cross ratio distortion of Tθ with respect to the four graphs we have

CR[ϕ1, ϕ2, ϕ3, ϕ4](θ + ω)

CR[ϕ1, ϕ2, ϕ3, ϕ4](θ)
> 1 m-a.s. ,

hence the logarithm F ◦ r − F of this quotient is m.-a.s. positive and therefore has
positive integral as well. As it has the constant function 0 as an integrable minorant,
Lemma 3.6 yields that the integral is zero, giving a contradiction.

Now we turn to the Lyapunov exponents. Before going into detail, we sketch the crucial
argument in the easier case of an unperturbed interval map:

Suppose f : I → I is a monotonically increasing interval map with fixed points x1 <
x2 < x3. If f has negative Schwarzian derivative, then this already determines the
stability of the three fixed points, i.e. the signs of logDf(xi):

The definition of the cross ratio distortion to-
gether with (4.2) immediately imply, that any
point c between x1 and x2 is shifted toward
x1 by the action of f , i.e. f(c)−f(x1)

c−x1

< 1. In
the limit c→ x1 this gives Df(x1) < 1, where
Lemma 4.1 is needed to obtain the strictness
of the inequality, as mentioned before. If there
are only two fixed points x1 < x2, the same ar-
gument still gives Df(x1) ·Df(x2) < 1.
Obviously, when considering quasiperiodically
forced maps, this argument cannot be applied
to a single fibre map, as the values of invariant
graphs do of course not have to be fixed.

x1 x3x2cf(c)

	

The action of a map f with negative
Schwarzian derivative and three fixed
points: Any point in the left interval is
shifted to the left, analogously a point
in the right interval is shifted to the
right. This gives information about the
derivative in the fixed points. In the
case of quasiperiodically forced maps it
determines the stability of the invariant
graphs.

However, as above in the proof of the non-existence of four invariant graphs, we can
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integrate over the resulting inequalities, again after taking the logarithms. The reader
should keep this simple picture in mind when contemplating the long inequalities in
(ii) and (iii).

(i) A single invariant graph is, at the same time, upper and lower bounding graph.
Lemma 3.5 therefore gives λ(ϕ) ≤ 0.

(ii) Without loss of generality we can assume ψ ≤ ϕ. As STθ(x) is strictly negative
and continuous in (θ, x), there is an ε > 0 such that STθ(x) < −ε ∀(θ, x) ∈ M .
Let γ > 0 be such that m(A) > 0 where A := {θ : |ϕ(θ) − ψ(θ)| > 2γ}. Then, by
Lemma 4.1, ∃δ > 0 ∀θ ∈ A ∀h < γ

2
:

Tθ(ψ(θ) + h) − Tθ(ψ(θ))

h
· Tθ(ϕ(θ)) − Tθ(ϕ(θ) − h)

h
≤

≤ 1

1 + δ
· Tθ(ϕ(θ)) − Tθ(ψ(θ))

ϕ(θ) − ψ(θ)
· Tθ(ϕ(θ) − h) − Tθ(ψ(θ) + h)

ϕ(θ) − ψ(θ) − 2h
.

(Compare the above inequality with the definition of the cross ratio distortion of
Tθ with respect to the points ψ(θ) < ψ(θ)+h < ϕ(θ)−h < ϕ(θ)! To apply Lemma
4.1, note that the distance in the middle between ψ(θ)+h and ϕ(θ)−h is bounded
from below by γ.)

Let p := log(1 + δ) > 0. Applying the logarithm after taking the limit h → 0 on
both sides yields (using the invariance of the two graphs)

logDTθ(ψ(θ)) + logDTθ(ϕ(θ)) ≤ 2 · log

(
ϕ(θ + ω) − ψ(θ + ω)

ϕ(θ) − ψ(θ)

)
− p .

Outside of A we can still use the negative Schwarzian derivative and obtain the
same inequality without the additional term −p (at least wherever the two graphs
are no equal, i.e. m-almost surely). The function on the right is of the form
F ◦ r − F again, moreover it is bounded, as the argument of the logarithm is a
difference quotient. Integrating both sides gives (again by using Lemma 3.6)

λ(ϕ) + λ(ψ) ≤ −p ·m(A) < 0 .

Two invariant graphs which are next to each other cannot both have negative
Lyapunov exponents, a consequence of Corollary 3.4. On the other hand neither
of the two Lyapunov exponents can be positive, as both graphs are bounding
graphs (Lemma 3.5). Thus, one of them must equal zero.

(iii) As in case (ii), the sum of two Lyapunov exponents is always strictly negative.
Therefore, it suffices to show that the inner graph always has positive Lyapunov
exponent.

Let therefore γ > 0 be such that m(A) > 0 where A := {θ : |ϕ+(θ) − ψ(θ)| >
2γ and |ϕ−(θ) − ψ(θ)| > 2γ}. Then, again by Lemma 4.1, ∃δ > 0 ∀θ ∈ A ∀h < γ:

Tθ(ϕ
+(θ)) − Tθ(ϕ

−(θ))

ϕ+(θ) − ϕ−(θ)
· Tθ(ψ(θ) + h) − Tθ(ψ(θ))

h
≥

≥ (1 + δ) · Tθ(ϕ
+(θ)) − Tθ(ψ(θ) + h)

ϕ+(θ) − ψ(θ) − h
· Tθ(ψ(θ)) − Tθ(ϕ

−(θ))

ψ(θ) − ϕ−(θ)
.
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After taking the limits, applying the logarithm and integrating both sides again,
we obtain

λ(ψ) ≥ p ·m(A) > 0 ,

where p := log(1 + δ). All other terms are of the kind F ◦ r− F and have integral
zero by Lemma 3.6 .

Topology of the invariant graphs:

(i) As ϕ is at the same time upper and lower bounding graph, it is semi-continuous
in both directions (as an equivalence class). As mentioned before (proof of Prop.
3.7), this means that ϕ is cts. if λ(ϕ) < 0.

(ii) As ϕ and ψ are the only invariant graphs, they are semi-continuous as bound-
ing graphs. The statement about the essential closures follows directly from the
arguments used in the proof of Prop. 3.7 .

(iii) The system (T,M) can be extended to a diffeomorphism on T
1 × R. If the inner

invariant graph is continuous, then it is a stable invariant graph with respect to
the inverse of this extension. Thus the two outer graphs are semi-continuous in one
direction by Corollary 3.4, and in the other as bounding graphs. If on the other
hand the two bounding graphs are continuous, the continuity of the inner graph
follows again from Corollary 3.4 . (The possibility that there is no continuous
invariant graph, but only two semi-continuous graphs in the equivalence class is
excluded by the negative Lyapunov exponent again.)

If ψ is not semi-continuous in any direction, then the bounding graphs cannot be
continuous (Corollary 3.4 once more). Therefore, the essential closures are equal
by Prop. 3.7 .

The statement about the convergence behaviour follows directly from Corollary 3.4 .
�

Proof of corollary 4.3:
If ϕ is an invariant graph of a system with the given symmetry, then

ϕ̃(θ) := −ϕ(θ + 1
k
)

defines another invariant graph:

Tθ(ϕ̃(θ)) = Tθ(−ϕ(θ +
1

k
)) =

= −Tθ+ 1

k

(ϕ(θ +
1

k
)) = −ϕ(θ + ω +

1

k
) = ϕ̃(θ + ω)

Due to the symmetry, one bounding graph must be the mirror image of the other in
this sense. As their Lyapunov exponents must therefore be equal, case (ii) from the
theorem can be excluded. The inner invariant graph can only be symmetric to itself

21



(i.e. to a graph in the same equivalence class), just as in the case of a single invariant
graph. The statement about the continuity follows from the theorem and the fact that,
due to the symmetry again, either both or none of the bounding graphs are continuous.

�

Remark 4.4 The assumptions of the theorem (and the corollary) can be weakened to
some extend:

Suppose T has only weakly monotone fibre maps, but the function θ 7→ infx∈[a,n]

logDTθ(x) is still integrable. Further assume STθ(x) < −ε ∀x ∈ [a, b] holds on a set
A ⊆ T

1 of positive measure and STθ(x) ≤ 0 ∀x ∈ [a, b] holds m-a.s. .
The proof above (and thus the statement of the theorem) will then stay true with

only slightest modifications needed. The only difference is, that the continuity of the
inner invariant graph does not imply continuity of the bounding graphs anymore. In
fact the classical example from Grebogi et al. in [5], to which the theorem then applies,
provides a counterexample to this.
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