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The aim of this note is to point out some observations concerning modified power
entropy of Z- and N-actions. First, we provide an elementary example showing that this
quantity is sensitive to transient dynamics, and therefore does not satisfy a variational
principle. Further, we show that modified power entropy is not suitable to detect the
break of equicontinuity which takes place during the transition from almost periodic
to almost automorphic minimal systems. In this respect, it differs from power entropy
and amorphic complexity, which are two further topological invariants for zero entropy
systems (‘slow entropies’). Finally, we construct an example of an irregular Toeplitz
flow with zero modified power entropy.

1 Introduction

Given a continuous map f : X → X on some compact metric space (X, d), the Bowen-
Dinaburg metrics are given by

dfn(x, y) =
n−1
max
i=0

d(f i(x), f i(y)) .

If Sn(f, δ) denotes the maximal cardinality of a set S ⊆ X which is δ-separated1 with respect
to dfn, then the topological entropy of f can be defined by

htop(f) = lim
δ→0

lim sup
n→∞

logSn(f, δ)/n . (1)

This quantity measures the ‘chaoticity’ of a dynamical system and is arguably the most
important topological invariant in ergodic theory. If it is either infinite or zero, however,
then the complexity of a system has to be described by different means. In the case of
infinite entropy, mean dimension has been established as a suitable substitute [LW00].
If the entropy is zero, however, then the situation is less clear. There exist several alter-

native concepts to describe the complexity of a system in this situation (see, for example,
[Mis81, Smı́86, MS88, KS91, Fer97, KT97, Fer99, BHM00, HK02, FP07, HPY07, CL10]),
and different topological invariants have been proposed for this purpose ([Car97, HK02,
HY09, DHP11, Mar13, KC14, FGJ15]).
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1Given any function ρ : X ×X → R, we call a set S ⊆ X δ-separated with respect to ρ if ρ(x, y) ≥ δ for all

x 6= y ∈ S. One should think of ρ as a metric, but we will also use the same terminology in more general
situations.
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Some of them have properties that may be considered as shortcomings, although this
partly depends on the viewpoint and the particular purpose one has in mind (we briefly
discuss this issue in Section 2 below). In any case, it is not always obvious which one should
be considered best in a particular situation, and in general there are still many gaps in the
present state of knowledge. At the same time, the issue has considerable relevance, since
there exist many system classes of both of theoretical and practical importance in which
the topological entropy is zero for structural reasons. Just to mention some examples, these
include regular Toeplitz flows [Dow05], circle homeomorphisms [KH97], interval exchange
transformations [Via06], certain mathematical quasicrystals [Moo00, BLM07], quasiperi-
odically forced circle maps [GJS09] or C1+α-surface diffeomorphisms with subexponential
growth of periodic orbits [Kat80].
Maybe the most straightforward approach to the problem is to consider subexponential,

and in particular polynomial, growth rates instead of exponential ones as in (1). This leads
to the notion of power entropy2 hpow, which is also known under the name of polynomial word
complexity in the context of symbolic systems. One aspect in which this quantity behaves
quite differently from topological entropy is the fact that it is very sensitive to transient
behaviour. For instance, the existence of a single wandering point3 of a homeomorphism f
implies hpow(f) ≥ 1 [Lab13]. In particular, this means that the dynamically trivial Morse-
Smale systems have positive power entropy. A direct consequence is the non-existence
of a variational principle, which is another decisive difference to the standard notion of
topological entropy.
An alternative concept is modified power entropy [HK02]. In its definition, the Bowen-

Dinaburg metrics are replaced by the corresponding Hamming metrics. However, although
this is less obvious to see, this notion is equally sensitive to transient dynamics and therefore
cannot satisfy a variational principle either. We provide an example to demonstrate this
statement in Section 5. Since this question has been left open in the literature so far (see, for
example, [HK02, page 92]), the communication of this fact is one of the main motivations
for this note.
The second issue we discuss here is the response of power entropy and modified power

entropy to the break of equicontinuity, which can be observed during the transition from
almost periodic (=equicontinuous) minimal systems to their almost 1-1 extensions. It turns
out that power entropy is suitable to detect this change in the qualitative behaviour, whereas
modified power entropy is not. In this context, we also introduce and discuss amorphic
complexity. This is a new topological invariant that equally measures the complexity of
zero entropy systems, but is based on an asymptotic rather than a finite-time concept of
separation [FGJ15].
Finally, we provide an example of an irregular Toeplitz flow with zero modified power

entropy in order to clarify some further aspects of the preceding discussion.

Acknowledgments. All authors have been supported by an Emmy-Noether grant of the
German Research Council (grant Oe 538/3-1). T. J. also acknowledges support by a Heisen-
berg fellowship of the German Research Council (grant OE 538/7-1).

2defined in Section 3
3We call x ∈ X a wandering point of f if there exists an open neighbourhood U of x such that fn(U)∩U = ∅

for all n ∈ N.
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2 Some thoughts on slow entropies

In the context of this discussion, we understand ‘slow entropy’ in a broad sense of a topo-
logical invariant that measures the complexity of dynamical systems in the zero entropy
regime. Thereby, our focus lies on Z- and N-actions of low complexity. We note that similar
concepts are also used for the description of more general group actions, where the need for
considering alternative growth rates stems rather from the fast volume growth of the Følner
sequences than from the low complexity of the group action. However, we will not go into
any detail in this direction and refer to [KT97, Don14, KKH14] for a discussion and further
references. In order to restrict the scope to some degree, we concentrate on real-valued
invariants and compact metric spaces. We thus say a slow entropy is a function h defined
on the space of pairs (X, f), with X a compact metric space and f : X → X continuous,
which satisfies the following requirements.

• h is real-valued (including ∞) and non-negative;

• h takes the same value for topologically conjugate systems (topological invariance);

• If g is a topological factor of f , then h(g) ≤ h(f) (monotonicity);

• If f has positive topological entropy, then h(f) = ∞ (zero entropy regime).

Note that in fact topological invariance is a consequence of monotonicity. Beyond these
basic assumptions, however, it is not always clear what further properties are desireable for
a slow entropy, and which ones are rather not. The reason behind is that this depends to a
large extent on the purpose that such a quantity should serve, and there are quite different
and sometimes even contradictory aims one could have in mind. We want to discuss this by
means of an example.
As it is well-known, one of the most important results about entropy is the variational prin-

ciple, which states that topological entropy equals the supremum over its measure-theoretic
counterparts with respect to all the invariant probability measures of the system. It is one of
the main tools in thermodynamic formalism and explains the central role topological entropy
plays in this powerful machinery. As a consequence, topological entropy is also independent
of transient behaviour and determined by the dynamics on the set of recurrent points only.
It is one possible aim for introducing a slow entropy to provide similar tools for the study of
zero-entropy systems. Most likely, however, this will require at least some minimal amount
of ‘chaoticity’ in the system. In contrast to this, an alternative task for a slow entropy
would be to detect the very onset of complicated dynamical behaviour. For example, one
might want it to detect the qualitative change in behaviour when going from equicontinu-
ous systems – to which one would usually assign zero complexity – to non-equicontinuous
systems, by taking positive values for the latter. Now, this would mean that, for instance,
the slow entropy should give different values to Sturmian subshifts and irrational rotations.
However, a Sturmian subshift is uniquely ergodic and measure-theoretically isomorphic to
an irrational rotation, so that this immediately contradicts a variational principle.
Hence, it seems obvious that there is not one single notion of slow entropy that fulfills

all the possible roles of a topological invariant in the zero entropy regime at the same time.
Certainly, this just reflects the great diversity of zero entropy systems, which comprise
many classes of quite different complexity. The fact that not all of them can be adequately
described with the same concept is not too surprising. A more reasonable aim would be
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to identify a whole array of useful invariants such that their union allow to cover the zero
entropy regime in a reasonable way and distinguish different degrees of complexity. Yet, the
present state of knowledge on the topic is still far from this situation, and it will presumably
need a lot of further fundamental research in the area in order to get to that point.
The particular contribution of the present paper in this context is a modest one. As men-

tioned, we concentrate mostly on modified power entropy and clarify some of the mentioned
aspects concerning this particular notion. A short summary will be given in Section 8.

3 Power entropy, modified power entropy and amorphic

complexity

As mentioned above, power entropy measures the polynomial growth rate of orbits distin-
guishable by the Bowen-Dinaburg metrics dfn. In analogy to (1), it is defined as

hpow(f) = lim
δ→0

lim
n→∞

log Sn(f, δ)

logn
,

whenever the limits with respect to n → ∞ exists. If this is not the case, then one defines
upper and lower power entropy hpow and hpow by taking the limit superior and limit inferior,
respectively. Note that due to the monotonicity in δ, the existence of the second limit is
automatic. We refer to [Mar13] for more information about this quantity.
In the definition of modified power entropy (MPE), the Bowen-Dinaburg metrics are re-

placed by the Hamming metrics

d̂fn(x, y) =
1

n

n−1
∑

i=0

d(f i(x), f i(y)) .

If Ŝn(f, δ) denotes the maximal cardinality of a set S ⊆ X that is δ-separated with respect

to d̂fn, then the modified power entropy of f is defined as

hmod(f) = lim
δ→0

lim
n→∞

log Ŝn(f, δ)

logn
,

provided the limit as n → ∞ exists. If not, then one can again define upper and lower
versions hmod and hmod. The fact that d̂fn ≤ dfn implies Ŝn(f, δ) ≤ Sn(f, δ) and hence
hmod(f) ≤ hpow(f). We also note that htop(f) > 0 implies hmod(f) = ∞.4

In both cases, the concept of separation that is used in the first step is one in finite time:
both metrics dfn and d̂fn depend only on the first n iterates of the considered points. The
limit for n → ∞ is then taken in a second step. However, since asymptotic notions like
proximality, distality or Li-Yorke pairs play a central role in topological dynamics, it seems
natural to also consider topological invariants that are directly based on an asymptotic
concept of separation. This is true for the following notion.
Given x, y ∈ X and δ > 0, we let

Mf
δ,n(x, y) = #

{

0 ≤ k < n | d(fk(x), fk(y)) ≥ δ
}

4This is well-known folklore, but for the convenience of the reader we provide a short direct proof in the
next section.
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and

νfδ (x, y) = lim
n→∞

Mf
δ,n(x, y)

n
.

We say that x and y are (f, δ, ν)-separated if

νfδ (x, y) ≥ ν .

Given ν > 0, we denote the maximal cardinality of a set S ⊆ X which is ν-separated with
respect to νfδ by S∗

ν (f, δ). Then, the amorphic complexity of f is defined as

ac(f) = lim
δ→0

lim
ν→0

logS∗
ν (f, δ)

− log ν
.

As before, this assumes that the limits with respect to ν exist. Otherwise, it is again possible
to define an upper and a lower amorphic complexity. Basic properties of this quantity, like
topological invariance, factor relations, power invariance and a product rule, as well as the
application to a number of example classes are discussed in [FGJ15]. Somewhat surprisingly,
amorphic complexity turns out be very well applicable and accessible to explicit computa-
tions in various system classes like regular Toeplitz flows, Sturmian shifts and Denjoy type
circle homeomorphisms or cut and project quasicrystals. The reason behind is the fact that
the asymptotic nature of the employed separation concept allows to obtain bounds on the
separation numbers S∗

ν(f, δ) by applying suitable ergodic theorems. We refer to [FGJ15]
again for details.
The main reason for treating amorphic complexity here is to complete the discussion in

[FGJ15, Section 3.7] by showing that there are no direct relations, in terms of an inequality,
between amorphic complexity and the other two notions. Thereby, for one of the directions,
we will have to rely on the same example as for the non-existence of a variational principle
for modified power entropy. Hence, we come back to this issue at the end of the next section.
In all of the above, we have considered polynomial growth rates, which turn out to be the

appropriate scale for many important example classes. In general, however, it is certainly
possible to take into account more or less arbitrary growth rates. We say a : R+ ×N → R+

is a scale function if a is strictly increasing in both arguments. Then, in analogy to the
power entropy, the upper a-entropy of f is defined as

ha(f) = sup
δ>0

sup

{

s > 0

∣

∣

∣

∣

lim
n→∞

Sn(f, δ)

a(s, n)
> 0

}

,

and the lower one accordingly. In order to obtain good properties, one usually assumes that

the scale functions are O-regularly varying, that is, limn→∞
a(s,mn)
a(s,n) < ∞ for allm ∈ N. Since

this definition allows to capture any rates of asymptotic growth in the subexponential regime,
one of the most important distinctions on the qualitative level is whether supn∈N Sn(δ, f)
is bounded for all δ > 0, or infinite for all sufficiently small δ. We will mainly focus
on this aspect in our discussion of almost 1-1 extensions in Section 6. Of course, all these
comments on the use of different scale functions equally apply to modified power entropy and
amorphic complexity. For the latter, scale functions need to have the separation frequency
as the second argument, so in this case a is a positive real-valued function on R+ × (0, 1]

and O-regularly varying means that limν→0
a(s,cν)
a(s,ν) is finite for all c > 0.
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4 Modified power entropy and topological entropy

In many cases, modified power entropy is strictly smaller than power entropy (see e.g.
[HK02]). However, on an exponential scale (that is, using the scale function a(s, n) =
exp(sn)), this difference disappears. Since we do not know an appropriate reference, we
include a proof of this well-known result.

Lemma 4.1. Suppose X is a compact metric space and f : X → X is continuous. Then

lim
δ→0

lim
n→∞

log Ŝn(f, δ)

n
= lim

δ→0
lim
n→∞

log Ŝn(f, δ)

n
= htop(f) .

In particular, htop(f) > 0 implies hmod(f) = ∞.

Proof. The ≤-inequalities are obvious. Further, it is well-known that

htop(f) = lim
ε→0

lim
n→∞

logSn(f, ε)

n

(e.g. [KH97]). Therefore, it suffices to show that

lim
δ→0

lim
n→∞

log Ŝn(f, δ)

n
≥ lim

ε→0
lim

n→∞

logSn(f, ε)

n
. (2)

To that end, fix ε > 0 and α > 0 and choose δ ∈ (0, εα/2). Further, let U1, . . . , UK be a
finite partition of X into sets of diameter < ε.
Given n ∈ N, let N = Ŝn(f, δ) and choose a partition of X into sets P1, . . . , PN with the

property that d̂fn(x, y) ≤ δ for all x, y ∈ Pj , j = 1, . . . , N . From each of the Pj , we select
one point xj ∈ Pj . (Note that all of the Pj are non-empty due to the definition of N .) Then,
given x ∈ Pj , we define ω(x) ∈ {0, . . . ,K}n by

ωi(x) =







0 if d(f i(x), f i(xj)) < ε/2 ,

k if d(f i(x), f i(xj)) ≥ ε/2 and x ∈ Uk .

Note that if x, y ∈ Pj and ω(x) = ω(y), then dfn(x, y) < ε. Hence, the maximal cardinality
of a subset of Pj which is ε-separated with respect to dfn is at most #{ω(x) | x$nPj}.
Moreover, we have that for each x ∈ Pj

#{0 ≤ i ≤ n− 1 | ωi(x) 6= 0} ≤ αn ,

since otherwise d̂fn(x, xj) ≥ αnε/2 > δ, contradicting the choice of the Pj . Hence, using

that

(

n
⌊nα⌋

)

≤ exp(−α log(α)n) for sufficiently small α, we obtain that

#{ω(x) | x ∈ Pj} ≤

(

n
⌊nα⌋

)

·K⌊nα⌋ ≤ exp (α(log(K)− log(α))n) .

Altogether, this yields that

Sn(f, ε) ≤ Ŝn(f, δ) · exp (α(log(K)− log(α))n) .

Since limα→0 α(log(K)− log(α)) = 0 and α > 0 was arbitrary, this proves (2).
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5 A counterexample to the existence of a variational

principle for MPE

Let I = [0, 1] and T1 = R/Z. The main aim in this section is the construction of an example
of the following type.

Theorem 5.1. There exists a skew product map of the form

f : I × T1 → I × T1 , f(x, y) = (τ(x), y + β(x) + ρ) ,

where

• ρ ∈ R \Q,

• τ is a diffeomorphism of I with exactly two fixed points at 0 and 1,

• β : I → T1 is a differentiable function with β|{0}∪Bε(1) = 0 for some ε > 0,

such that f satisfies
hmod(f) ≥ 1/2 .

Before we turn to the proof, we first draw the following conclusion.

Corollary 5.2. There is no real-valued isomorphism invariant of measure-preserving dy-
namical systems that satisfies a variational principle with modified power entropy.

There is, of course, a standard measure-theoretic analogue of modified power entropy, in-
troduced in [Fer97, KT97] (see also [HK02]), which is bounded above by topological modified
power entropy. However, since the only structural property that is needed is the invariance
under isomorphisms, we do not need to state any detail here and omit these for the sake of
brevity.
We also note that we understand ‘variational principle’ in the sense that the topological

quantity equals the supremum over all measure-theoretic ones, where the supremum is taken
over all invariant measures. For the standard notion of entropy it suffices to consider only
ergodic measures due to the linearity of measure-theoretic entropy, but in general this can
make a big difference (see also [HK02, Section 4.4b and page 81]).

Proof of Corollary 5.2. Suppose that h∗ is a real-valued function of pairs (f, µ), where f
is a continuous map on some (compact) metric space. Suppose for a contradiction that
hmod(f) = supµ h

∗(f, µ), where the supremum is taken over all invariant measures µ of f .
In the example in Theorem 5.1, there exist exactly two ergodic measures µ0 and µ1,

which are the one-dimensional Lebesgue measures on the two circles T0 = {0} × T1 and
T1 = {1} × T1, and the restriction of f to these circles is just the rotation by ρ. Any
invariant measure µ is a convex combination of µ0 and µ1 and obviously isomorphic to
(f|T0∪T1

, µ|T0∪T1
). However, as f restricted to T0∪T1 is an isometry we have hmod(f|T0∪T1

) =
0 and hence h∗(f, µ) = 0 by the assumed variational principle. This means supµ h

∗(f, µ) = 0,
whereas hmod(f) ≥ 1/2, which yields the required contradiction.

We also note that in the situation of Theorem 5.1 we have hmod(f) > hmod(f|Ω(f)), where
Ω(f) denotes the set of non-wandering points of f . This shows that modified power entropy
is sensitive to transient dynamics. Since all invariant measures are supported on the non-
wandering set, this is equally not compatible with a variational principle. We turn to the
construction of the example.
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Proof of Theorem 5.1. We first construct the diffeomorphism τ : I → I. To that end, let
In = [2−n, 3·2−(n+1)] and I ′n = [2−n, 5·2−(n+2)] where n ≥ 3. Then, we choose a C1-function
α : I → I with the following properties:

(i) |α′(x)| < 1 for all x ∈ I;

(ii) α(0) = α(1) = 0;

(iii) α(x) > 0 for all x ∈ (0, 1);

(iv) α|In = 2−(3n+4);

Further, we let β(x) = x if x ∈ [0, 7/8] and extend this differentiable to all of I in such a way
that β|Bε(1) = 0 for some ε > 0. Note that since d(In, In+1) = 2−(n+2), condition (iv) does
not contradict the differentiability of α. Due to (i) and (ii) the map τ : I → I, x 7→ x+α(x)
is a C1-diffeomorphism of I with unique fixed points 0 and 1. Moreover, due to (iii) we have
limn→∞ τn(x) = 1 for all x ∈ (0, 1].
In order to prove hmod(f) > 0, fix n ≥ 3 and choose xn

1 < xn
2 < . . . < xn

2n ∈ I ′n with
xn
i+1−xn

i = 2−(2n+2). By (iv) and the choice of the intervals I ′n and In, we have τ
k(xn

j ) ∈ In
for all j = 1, . . . , 2n and k = 0, . . . , 22n+2. Since α is constant on In, this means that the
points xn

j remain at equal distance for the first 22n+2 iterations. If we consider the 2n points

(xn
j , 0) ∈ I × T1, then for l,m = 1, . . . , 2n the vertical distance after n steps is

d
(

π2 ◦ f
k(xn

l , 0), π2 ◦ f
k(xn

m, 0)
)

= d′
(

k · (l −m) · 2−(2n+2), 0
)

.

Here d′ denotes the canonical distance on T1. An easy computation yields for l 6= m

d̂f22n+2((x
n
l , 0), (x

n
m, 0)) ≥

1

22n+2

22n+2−1
∑

k=0

d′
(

k · (l −m) · 2−(2n+2), 0
)

=
1

4
.

This means that the set {xn
1 , . . . , x

n
2n} is 1

4 -separated with respect to d̂f22n+2 . We thus obtain

Ŝn(f, 1/4) ≥ 2n and hence

hmod(f) ≥ lim
n→∞

log Ŝn(f, δ)

logn
≥ lim

k→∞

log(2k)

log(22k+2)
=

1

2
.

In order to conclude this section, we want to discuss why the above example also shows
that there is no direct relation, in terms of an inequality, between modified power entropy
and amorphic complexity. To that end, let us first look at some trivial examples.
Since Morse-Smale systems have a finite set of fixed or periodic points and these attract all

other orbits, it is easy to see that they have zero amorphic complexity. This shows that one
may have ac(f) < hpow(f). On the other hand, consider f : T2 → T2, (x, y) 7→ (x, x + y).
Then any two points with different x-coordinate rotate with different speed in the vertical
direction, and it is therefore easy to see that they are ν-separated with respect to νfδ if
ν, δ > 0 are chosen sufficiently small. Therefore, S∗

ν (f, δ) = ∞ and thus ac(f) = ∞. At the
same time, it is easy to check that hpow(f) ≤ 1 (see [FGJ15, Section 3.7]). Hence, we may
have ac(f) > hpow(f) (and thus also ac(f) > hmod(f)). The only remaining direction is
therefore to show that hmod(f) > ac(f) is possible as well. However, we claim that this is the
case in the example constructed above. In order to see this, the following basic observation
is helpful.
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Lemma 5.3 ([FGJ15, Lemma 3.11]). Suppose that X is a compact metric space, f is a
continuous map and A ⊆ X is a forward invariant subset such that for all x ∈ X \ A there
exists yx ∈ A such that limn→∞ d(fn(x), fn(yx)) = 0. Then ac(f) = ac(f|A).

In the above situation, we say that f has the unique target property with respect to A. If
f is the example constructed in the proof of Theorem 5.1, then this assumption is satisfied
for A = Ω(f). This is a direct consequence of the fact that β|Bε(1) = 0 (and the reason
for including this condition, which has not been used otherwise). Note here that all orbits
outside of T0 converge to the circle T1 upon forward iterations, and once they enter Bε(1)×T1

the rotation in the second coordinate is always equal to ρ. For this reason, all these orbits
have a unique ‘target orbit’ in T1. Since f|T0∪T1

is an isometry and therefore has amorphic
complexity zero, the above Lemma 5.3 yields ac(f) = 0 < hmod(f).
It remains to point out that since the example constructed above has the unique target

property with respect to the non-wandering set, the transient dynamics causing the positive
modified power entropy should still be considered as rather ‘tame’. Amorphic complexity is
equally sensitive to transient dynamics, but these have to ‘mix up’ orbits arbitrarily close
to the non-wandering set. An example similar to the one above is given in [FGJ15, Section
3.5].

6 Modified power entropy of regular almost 1-1 extensions

Given two compact metric spaces (X, d), (Ξ, ρ) and two continuous maps f : X → X ,
τ : Ξ → Ξ, we say (X, f) is a (topological) extension of (Ξ, τ) if there exists a continuous
onto map h : X → Ξ such that h ◦ f = τ ◦ h. In this situation, h is called a factor map
or semi-conjugacy from f to τ and (Ξ, τ) is called a (topological) factor of (X, f). For the
sake of brevity, we will sometimes omit the spaces and say τ is a factor of f . An extension
is called almost 1-1 if the set Ω = {ξ ∈ Ξ | #h−1(ξ) = 1} is generic in the sense of Baire
(that is, a residual set). Note that if f and τ are invertible, then the set Ω is τ -invariant.
Moreover, if in addition τ is minimal, then it suffices to require that there exist a single ξ
with #h−1(ξ) = 1.
From now on, we assume for the remainder of this section that f and τ are invertible and

τ is minimal. Further, we suppose that τ is almost periodic (that is, equicontinuous). In
this case, there exists a unique τ -invariant probability measure µ on Ξ, which is necessarily
ergodic (unique ergodicity). We say that the extension (X, f) is regular if µ(Ω) = 1 and
irregular if µ(Ω) = 0. Note that by invariance of Ω and ergodicity of µ, one of the two always
holds. We refer to [Aus88] for a comprehensive exposition.
A regular almost 1-1 extension of an equicontinuous minimal system is always uniquely

ergodic and isomorphic to its factor. For this reason, the topological entropy is zero in this
case. However, if the extension is not everywhere 1-1 (that is, there exists ξ ∈ Ξ such that
#h−1(ξ) > 1), then f cannot be equicontinuous.5 Thus, there is a break of equicontinuity
when going from equicontinuous minimal systems to their almost 1-1 extensions, but at the
same time this does not lead beyond the regime of zero entropy. It is therefore a natural
question to ask how a topological invariant for low-complexity systems behaves during this
bifurcation. In particular, it is one possible task for such a slow entropy to detect this change
in the qualitative behaviour. We will discuss a positive result in this direction for amorphic

5From now on, whenever speaking of extensions we will assume implicitly that the factor map is not
injective.
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complexity and power entropy further below. Modified power entropy, however, does not
respond to this transition.

Theorem 6.1. Suppose f : X → X is a regular almost 1-1 extension of a minimal equicon-
tinuous homeomorphism τ : Ξ → Ξ. Then supn∈N

Ŝn(f, δ) < ∞ for all δ > 0 and in
particular hmod(f) = 0.

For the proof, the following statement will be useful.

Lemma 6.2 ([FGJ15, Lemma 2.6]). Let h : X → Ξ be the factor map of an almost 1-1
extension and define

Eδ = {ξ ∈ Ξ | diam(h−1(ξ)) ≥ δ} .

Then for all δ > 0 and ε > 0 there exists ηδ(ε) > 0 such that if x, y ∈ X satisfy d(x, y) ≥ δ
and ρ(h(x), h(y)) < ηδ(ε), then h(x) and h(y) are both contained in Bε(Eδ).

Proof of Theorem 6.1. By going over to an equivalent metric, we may assume without loss
of generality that τ is an isometry. Fix δ > 0 and choose

ν <
δ

2diam(X)− δ
. (3)

Then, choose ε > 0 such that µ (A) < ν where A = Bε(Eδ/2). Let η = ηδ/2(ε) be as in
Lemma 6.2. Due to the Uniform Ergodic Theorem we can find M ∈ N such that for all
n ≥ M and ξ ∈ Ξ we have

1

n

n−1
∑

i=0

1A ◦ τ i(ξ) < ν .

Therefore, given two points x, y ∈ X with ρ(h(x), h(y)) < η and n ≥ M , the fact that τ is
an isometry together with Lemma 6.2 implies

d̂fn(x, y) ≤
diam(X)

n
·

(

n−1
∑

i=0

1A ◦ τ i(h(x))

)

+
δ

2n
·

(

n−
n−1
∑

i=0

1A ◦ τ i(h(x))

)

≤ diam(X) · ν +
δ

2
· (1− ν)

(3)
< δ .

Thus, independent of n ≥ M , two points x, y can only be δ-separated with respect to d̂fn if
h(x) and h(y) have distance greater than η in Ξ. Hence, any set S ⊆ X which is δ-separated

with respect to d̂fn projects to a set which is η-separated with respect to the metric in Ξ.
Since Ξ is compact, there exists an upper bound K(η) on the maximal cardinality of an
η-separated set. We obtain Ŝn(f, δ) < K(η) for all n ≥ M and consequently hmod(f) = 0
as claimed.

Theorem 6.1 is in contrast to the following result in [FGJ15], which shows that the asymp-
totic separation numbers involved in the definition of amorphic complexity are sensitive to
the break of equicontinuity in the above situation.

Theorem 6.3 ([FGJ15, Theorem 2.10]). Let f : X → X be a minimal almost 1-1 ex-
tension of an equicontinuous homeomorphism τ : Ξ → Ξ. Then there is δ > 0 such that
supν>0 S

∗
ν (f, δ) = ∞.
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We note that this result does not guarantee polynomial growth rates, but as discussed
in Section 3 one can obtain positive amorphic complexity with respect to a suitably chosen
scale function. In order to obtain a similar result for power entropy, it suffices to use the
following elementary observation.

Lemma 6.4. If supν>0 S
∗
ν(f, δ) = ∞, then supn∈N Sn(f, δ) = ∞.

Proof. Suppose that S is a set which is ν-separated with respect to νfδ . Then there exists
n > 0 such that for all x 6= y ∈ S we have #{i = 0, . . . , n − 1 | d(f i(x), f i(y)) ≥ δ}/n ≥
ν/2 > 0. This immediately implies dfn(x, y) ≥ δ for all x 6= y ∈ S. Hence, S is a δ-separated
set with respect to dfn and therefore Sn(f, δ) ≥ #S. The statement now follows easily.

We note that the following direct consequence is also contained in a more general result
by Blanchard, Host and Maass [BHM00, Proposition 2.2].

Corollary 6.5. Suppose f : X → X is a minimal almost 1-1 extension of an equicontinuous
homeomorphism τ : Ξ → Ξ. Then there exists δ > 0 such that supn∈N

Sn(f, δ) = ∞.

7 An example of an irregular Toeplitz flow of low complexity

Since modified power entropy does not detect the difference between equicontinuous minimal
systems and their regular almost 1-1 extensions, one could hope that instead it responds
to the transition from regular to irregular almost 1-1 extensions. The aim of this section is
to demonstrate that this is not the case either. To that end, we construct an example of
an irregular Toeplitz sequence, leading to an irregular almost 1-1 extension f of the corre-
sponding odometer, which has modified power entropy zero and even bounded separation
numbers Ŝn(f, δ) for all δ > 0. We assume some acquaintance with the theory of odometers
and Toeplitz flows and refer to the excellent survey [Dow05] or classical papers by Jacobs
and Keane [JK69], Eberlein [Ebe71] and Williams [Wil84] for the relevant details.
We let Σ = {0, 1}Z and equip it with the metric

d(ω, ω̃) =
∑

ωk 6=ω̃k

2−|k| ,

where ω, ω̃ ∈ Σ and the index k in the sum runs over all of Z, to make it a compact metric
space. By σ we denote the left shift on Σ. Given ω ∈ Σ, we let Σω be the shift orbit closure
of ω.

Theorem 7.1. There exists an irregular Toeplitz sequence ω such that the corresponding
Toeplitz flow (Σω, σ) satisfies supn∈N Ŝn(σ|Σω

, δ) < ∞ for all δ > 0, and in particular
hmod(σ|Σω

) = 0.

Note that conversely irregular Toeplitz flows may have positive entropy [BK92], in which
case the modified power entropy is infinite by Lemma 4.1.
Before we turn to the proof, we first need to address some technical issues. Given ω, ω̃ ∈ Σ

and n ∈ N, we let

Dn(ω, ω̃) =
1

2n+ 1

n
∑

i=−n

|ωi − ω̃i| .

Further, we denote by Rn(Σω , δ) the largest cardinality of a set R ⊆ Σω which is δ-separated
with respect to Dn. The following statements allow to relate Rn(Σω, δ) to Ŝn(σ|Σω

, δ).
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Lemma 7.2. Let n ∈ N. We have d̂σn(ω, ω̃) ≤ 9D2n(ω, ω̃) + 2−(n−1) for all ω, ω̃ ∈ Σ.

In particular, if d̂σn(ω, ω̃) ≥ δ and 2−(n−1) ≤ δ/2, then D2n(ω, ω̃) ≥ δ/18 and hence
R2n(Σω, δ/18) ≥ Ŝ(σ|Σω

, δ).

Proof. We have

d̂σn(ω, ω̃) =
1

n

n−1
∑

i=0

d(σi(ω), σi(ω̃)) =
1

n

n−1
∑

i=0

∑

ωk+i 6=ω̃k+i

2−|k|

=
1

n

∑

ωk 6=ω̃k

n−1
∑

i=0

2−|k−i| ≤
1

n





∑

|k|≤2n:ωk 6=ω̃k

3 +
∑

|k|>2n:ωk 6=ω̃k

2−(|k|−n)





≤
3(2n+ 1)

n
D2n(ω, ω̃) + 2−(n−1) ≤ 9D2n(ω, ω̃) + 2−(n−1) .

Corollary 7.3. If supn∈N Rn(Σω , δ) < ∞ for all δ > 0, then supn∈N Ŝn(σ|Σω
, δ) < ∞ for

all δ > 0.

Thus, it suffices to consider the pseudometrics Dn in the proof of Theorem 7.1, which are
easier to handle than the Hamming metrics in this context.
For the particular case of Toeplitz flows, there is a further simplification, which is due to

the fact that for a Toeplitz sequence ω the space Σω consists precisely of those sequences
which have exactly the same subwords as ω. This leads to the following elementary obser-
vations. In order to specify finite subwords of ω ∈ Σ, we let ωm,n

j = ωm+j for j = −n, . . . , n,
so that ωm,n is the subword of ω with length 2n + 1 and center position m. In order to
count the number of mismatches between two subwords of the same length, we let

Dn(ω
m,n, ωm′,n) = Dn(σ

m(ω), σm′

(ω)) =
1

2n+ 1

n
∑

j=−n

|ωm,n
j − ωm′,n

j | .

Further, we denote by R̃n(ω, δ) the largest cardinality of a family of subwords of ω of length
2n+ 1 which are δ-separated with respect to Dn.

Corollary 7.4. If ω ∈ Σ is a Toeplitz sequence, then we have R̃n(ω, δ) = Rn(Σω , δ) for
all n ∈ N, δ > 0. In particular, if for each δ > 0 we have supn∈N R̃n(ω, δ) < ∞, then

supn∈N Ŝn(σ|Σω
, δ) < ∞ for all δ > 0.

We can now turn to the

Proof of Theorem 7.1. Our construction is a classical one which has been used in similar
form by many authors [Oxt52, Wil84, BK90, BK92, Dow05]. The difficulty lies in controlling
the separation numbers with respect to the Hamming metrics.
We first fix a1 ∈ N and a sequence (bn)n∈N of integers ≥ 2, specified further below, and

let an+1 = 2bnan for all n ≥ 1. Further, we let

An = {−an, . . . , an}+ an+1Z , Bn =

n
⋃

i=1

An and Cn = Bn \Bn−1 .
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Intervals of the form {−an, . . . , an} + ℓan+1 with ℓ ∈ Z will be called n-blocks. Note that
since the an converge to ∞, we have

⊎

n∈N
Cn = Z. Now, we can define a Toeplitz sequence

ω ∈ Σ by

ωk =







0 if k ∈ Cn with n odd;

1 if k ∈ Cn with n even.

If k ∈ Cn, then by definition k is an an+1-periodic position, that is, ωk+ℓan+1
= ωk for all

ℓ ∈ Z. By construction, all positions k ∈ Z are periodic for some an in this sense, so that by
definition ω is a Toeplitz sequence with periodic structure (an)n∈N. Further, if k ∈ Cn+1,
then there exists ℓ ∈ Z with k + ℓan+1 ∈ Cn+2 \ Cn+1. Hence, we have ωk+ℓan+1

6= ωk, so
that k is not an an+1-periodic position. Therefore, we obtain that the set Per(ω, an+1) of
an+1-periodic positions equals Cn. Since Cn =

⋃n
i=1 Ai, we obtain that this set has density

D(an+1) ≤
n
∑

i=1

2ai
ai+1

=

n
∑

i=1

1

bi
.

If we choose the bi’s such that
∑∞

i=1 b
−1
i < 1, then limn→∞ D(an) < 1. This means, by

definition, that the Toeplitz sequence ω with periodic structure (an)n∈N is irregular and
thus (Σω , σ) is an irregular almost 1-1 extension of a corresponding odometer (see [Dow05]).
In order to show that supn∈N R̃n(ω, δ) < ∞ for all δ, we fix δ > 0 and j0 ∈ N with

2−j0 < δ/4. Since R̃n(ω, δ) ≤ R̃n′(ω, δ/2) if n ≤ n′ ≤ 2n, it suffices to show that

sup
j∈N

R̃2j (ω, δ) < ∞ (4)

for all δ > 0. To that end, choose s ∈ N with
∑∞

i=s+1 b
−1
i < δ/8, so that the asymptotic

density of Bn \Bs is smaller than δ/4 for all n > s. Given N = 2j with j ≥ j0, we will define
a partition {Aι

p,q}
ι
p,q of Z with the property that if m,m′ belong to the same element of the

partition, then ωm,N and ωm′,N cannot be δ-separated with respect to Dn. This implies
immediately that R̃(ω, δ) does not exceed the number of partition elements. Since the latter
will be independent of N , this will prove (4).
The partition elements Aι

p,q depend on three parameters. The parameter p describes the
position of the subwords with respect to the s-blocks. Given p ∈ {0, . . . , as+1 − 1}, we let

Ap = {m ∈ Z | m = νas+1 + p for some ν ∈ Z}

and write p(m) = p if m ∈ Ap. The second parameter q describes the position with respect
to the nearest n-block, where n is chosen such that an/2 < N ≤ an+1/2, and the third
parameter ι determines the local configuration of symbols around the n-block. Both are
somewhat more subtle to define.
Suppose first that the interval Im,N = {m − N, . . . ,m + N} does not intersect any n-

block. Then we let q(m) = 0 and ι(m) = 0. Otherwise, Im,N intersects exactly one n-block
B(m) = {−an, . . . , an}+ ℓan+1. In this case, we define j(m) = ℓan+1 −m and let

q(m) = q if j(m) ∈

(

qN

2j0
,
(q + 1)N

2j0

]

Note that j(m) lies between −N − an and N + an and thus q(m) ranges only from at least
−3 · 2j0 to at most 3 · 2j0 − 1.
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In order to define ι for the case Im,N intersects an n-block B(m), we denote by B−(m)
and B+(m) the two neareast n-blocks to the left, respectively, right of B(m). Further,
we denote by J−(m) the interval between B−(m) and B(m) and by J+(m) the interval
between B(m) and B+(m). Note that by construction, there exist unique integers n± such
that J±(m) \ An ⊆ Cn± . Hence, ωk remains constant on each of the sets J±(m) \ An. We
assume that n is even, such that ωk = 0 for all k ∈ B(m) \An−1 = B(m) ∩Cn. Then there
are four possibilities:

(1) ωk = 0 for all k ∈ (J−(m) ∪ J+(m)) \An;

(2) ωk = 0 for all k ∈ J−(m) \An and ωk = 1 for all k ∈ J+(m) \An;

(3) ωk = 1 for all k ∈ J−(m) \An and ωk = 0 for all k ∈ J+(m) \An;

(4) ωk = 1 for all k ∈ (J−(m) ∪ J+(m)) \An;

We let ι(m) = ι if case (ι) applies. Now, given q ∈ {−3 ·2j0, . . . , 3 ·2j0 −1} and ι ∈ {0, . . . , 4}
we let

Aι
p,q = {m ∈ Ap | q(m) = q and ι(m) = ι} ,

where we set A0
p,q = ∅ if q 6= 0. This defines the required decomposition of Z into at most

30 · 2j0 · as+1 partition elements. It remains to show that given m,m′ ∈ Aι
p,q, the words

ωm,N and ωm′,N cannot be δ-separated with respect to DN . Thus, we need to estimate the
maximal number of mismatches that can appear between two such words.
First, since the position of the words with respect to the as+1-periodic set As is identical,

we have that j +m ∈ As if and only if j +m′ ∈ As, and in this case ωm,N
j = ωm′,N

j .
Secondly, if either j +m ∈ An−1 \As or j +m′ ∈ An−1 \ As, then this might result in a

mismatch. However, since

#
(

Im,N ∩ An−1

)

#Im,N
≤ 2

n−1
∑

i=s+1

b−1
i < δ/4

and likewise for Im
′,N , we have that the contribution of such mismatches toDN(ωm,N , ωm′,N)

is at most δ/2.
Finally, it remains to count the possible mismatches with j+m, j+m′ /∈ An−1. If j(m) =

j(m′), then there are no such mismatches, since the intervals B(m) − m and B(m′) − m′

as well as J±(m)−m and J±(m′)−m′ coincide and case (ι) above applies to both m and
m′. Otherwise, there are possible overlaps between non-corresponding intervals, but since
|j(m)−j(m′)| ≤ N/2j0 these overlaps concern at most 2N/2j0 < 2N ·(δ/4) positions. Again,
this results in a contribution to DN (ωm,N , ωm′,N ) of at most δ/2. Altogether, this yields
DN(ωm,N , ωm′,N ) < δ as required and thus completes the proof.

Remark 7.5.

(a) Using similar, but simpler arguments, it is possible to show that the power entropy
of the above example equals 1.

(b) At the same time, it can be shown that the amorphic complexity of the example
is infinite, and even S∗

ν (f, δ) = ∞ for sufficiently small ν, δ > 0. This is, in fact,
a consequence of a much more general statement. It is possible to prove that the
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asymptotic separation numbers S∗
ν (f, δ) of a minimal action of a homeomorphism

f on a compact metric space are all finite if and only if the system is Weyl mean
equicontinuous. By a recent result of Downarowicz and Glasner, this holds if and only
if the system is an isomorphic extension of its maximal equicontinuous factor [DG15,
Theorem 2.1]. In particular, it needs to be uniquely ergodic, which is not true for our
example due to the fluctuating symbol frequencies. Since these issues will be explored
further in [FGJ], we do not go into further detail here.

(c) A construction which is very similar to the above one, but results in a uniquely
ergodic irregular Toeplitz flow, can be found in [DK15]. Analogous arguments can be
applied to show that this example also has modified power entropy zero.

8 Conclusions and open questions

It may seem, admittedly, that this note has a somewhat negative touch, since the presented
results are mostly negative ones. We mainly showed that modified power entropy does not
satisfy a variational principle, is not independent of transient dynamics, does not respond
to the transition from equicontinuous systems to their almost 1-1 extensions and cannot be
used either to distinguish between regular and irregular extensions of minimal equicontinuous
systems. However, as we discussed in Section 2 already, these issues do not have to be seen as
disadvantages of the notion itself. As said before, the existence of a variational principle and
the insensitivity to transient effects are not necessarily positive features of a slow entropy,
since this depends very much on the purpose one has in mind. Thus, the presented facts
should rather be understood as clarifications and simply imply that for the specific aspects
we concentrate on other topological invariants have to be identified in order to fulfill the
respective tasks or requirements. We also note that it follows from results of Ferenczi that
modified power entropy does detect the transition from uniquely ergodic isomorphic to non-
isomorphic extensions of compact group rotations [Fer97].
As we have seen, the transition from equicontinuous minimal systems to their almost

1-1 extensions can be detected by means of a-entropy or amorphic complexity (with suit-
ably chosen scale functions). In the other cases, however, this leads to the following open
questions.

(a) Is there a topological invariant h for continuous maps on (compact) metric or topolog-
ical spaces that gives meaningful information about zero entropy systems, but at the
same time satisfies h(f) = h(f|Ω(f))?

(b) Is there such a topological invariant that satisfies a variational principle with respect
to a suitable measure-theoretic analogue?

We note that Kong and Chen [KC14] recently introduced a slow entropy which satisfies a
‘non-standard’ variational principle, in which the supremum is taken over all probability
measures on the phase space (and not just the invariant ones).

(c) Is there a meaningful topological invariant for dynamical systems which is zero for all
regular almost 1-1 extensions of equicontinuous systems, but strictly positive for all
irregular almost 1-1 extensions of such systems?

Some progress on closely related questions has recently been made by Li, Tu and Ye [LTY14]
and Downarowicz and Glasner [DG15].

15



References

[Aus88] J. Auslander. Minimal flows and their extensions. Elsevier Science Ltd, 1988.

[BLM07] M. Baake, D. Lenz, and R.V. Moody. Characterization of model sets by dynamical
systems. Ergodic Theory Dyn. Syst., 27(2):341–382, 2007.

[BHM00] F. Blanchard, B. Host, and A. Maass. Topological complexity. Ergodic Theory Dyn.
Syst., 20(3):641–662, 2000.

[BK90] W. Bulatek and J. Kwiatkowski. The topological centralizers of Toeplitz flows and their
Z2-extensions. Publ. Mat., 34(1):45–65, 1990.

[BK92] W. Bulatek and J. Kwiatkowski. Strictly ergodic Toeplitz flows with positive entropies
and trivial centralizers. Stud. Math., 103(2):133–142, 1992.

[Car97] M. Carvalho. Entropy dimension of dynamical systems. Port. Math., 54:19–40, 1997.

[CL10] W.-C. Cheng and B. Li. Zero entropy systems. J. Stat. Phys., 140:1006–1021, 2010.

[Don14] C. Dong. Slow entropy for abelian actions. Preprint, arXiv:1406.6423, 2014.

[DHP11] D. Dou, W. Huang, and K. K. Park. Entropy dimension of topological dynamical
systems. Trans. Am. Math. Soc., 363:659–680, 2011.

[Dow05] T. Downarowicz. Survey of odometers and Toeplitz flows. Cont. Math., 385:7–38, 2005.

[DG15] T. Downarowicz and E. Glasner. Isomorphic extensions and applications. Preprint,
arXiv:1502.06999, 2015.

[DK15] T. Downarowicz and S. Kasjan. Odometers and Toeplitz systems revisited in the context
of Sarnak’s conjecture. Preprint, arXiv:1502.02307, 2015.

[Ebe71] E. Eberlein. Toeplitz-Folgen und Gruppentranslationen. Arch. Math., 22(1):291–301,
1971.

[Fer97] S. Ferenczi. Measure-theoretic complexity of ergodic systems. Israel J. Math.,
100(1):189–207, 1997.

[Fer99] S. Ferenczi. Complexity of sequences and dynamical systems. Discrete Math., 206(1-
3):145–154, 1999.

[FP07] S. Ferenczi and K. K. Park. Entropy dimensions and a class of constructive examples.
Disc. Cont. Dyn. Syst., 17(1):133–141, 2007.
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