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Abstract. We establish a set-oriented algorithm for the numerical approxima-
tion of the rotation set of homeomorphisms of the two-torus homotopic to the
identity. A theoretical background is given by the concept of ε-rotation sets.
These are obtained by replacing orbits with ε-pseudo-orbits in the definition of
the Misiurewicz-Ziemian rotation set and are shown to converge to the latter as ε
decreases to zero. Based on this result, we prove the convergence of the numerical
approximations as precision and iteration time tend to infinity. Further, we pro-
vide analytic error estimates for the algorithm under an additional boundedness
assumption, which is known to hold in many relevant cases and in particular for
non-empty interior rotation sets.
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1. Introduction

Rotation theory for orientation-preserving homeomorphisms on the circle was estab-
lished by H. Poincaré in 1885 [1], who showed that the long-term behaviour of such
maps can be classified by the rotation number. This topological invariant provides
a dichotomy for the dynamics depending on whether it is a rational or an irrational
number, corresponding to periodic or quasiperiodic motion, respectively.

For homeomorphisms of higher dimensional tori, it is well-known that a unique
rotation vector does not need to exist anymore. In [2], Misiurewicz and Ziemian
therefore introduce the rotation set of a torus homeomorphism, which collects all
possible asymptotic rotation vectors and carries strong information about the sys-
tem’s asymptotic behaviour. For homeomorphisms on the two-torus, this compact
non-empty set is always convex [2]. If it has non-empty interior, then the system has
positive topological entropy [3] and all rational points in the interior of the rotation
set are realised by periodic orbits [4]. Apart from these nowadays classical results,
considerable progress has been made in the last years on the rotation theory of
surface homeomorphisms (e.g. [5]–[10]), including partial results on the well-known
Franks-Misiurewicz Conjecture [11]–[17] that excludes the existence of certain line
segments as rotation sets.

Concerning the shape of the rotation set, it is further known that generically –
in the C0-topology – it is a polygon with rational vertices [18]. For generic area-
preserving torus homeomorphisms, this polygon is non-degenerate (has non-empty
interior) [19]. Moreover, all rational polygons can be realised as the rotation set
of a torus homeomorphism [20]. For a particular parameter family of such maps,
derived, through some elaborate inverse limit construction, from symbolic systems
related to beta expansions, bifurcations of the rotation set involving new types of
convex sets have been described in [21] (see also [22]). Apart from that, however,
there is still little knowledge concerning the question which compact convex subsets
of the plane may appear. Likewise, there is still not much insight into the behaviour
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of the rotation set in ‘natural’ parameter families of torus diffeomorphisms, such as
those studied by theoretical physicists in [23].

One serious obstruction for further progress in this direction is the fact that, ex-
cept for some particular cases, it is usually not possible to analytically determine the
rotation set. Moreover, due to the inherent nonlinearity of the problem, the numer-
ical computation has proven to be difficult as well. In [19], pointwise approaches to
the numerical approximation of the rotation set are discussed. Based on the detec-
tion of periodic orbits of the system on the one hand, and of a discretisation of the
system by the projection to a finite lattice on the other hand, the complexity of this
numerical task as well as the restrictions of the proposed approaches are discussed.
It turns out that an accurate computation is already difficult in the case where the
rotation set is still a rational polygon, but its vertices correspond to periodic orbits
of larger periods. When the rotation set is not a rational polygon at all, it has to
be expected that the situation is even worse.

Thus, our aim here is to establish a more reliable algorithm for the numerical
computation of rotation sets based on set-oriented methods. On the theoretical
level, this corresponds to considering ε-pseudo-orbits reflecting the inaccuracies of
numerical calculations. This approach leads to the definition of an ε-rotation set in
Section 3. In the two-dimensional case, we prove that as the perturbation size ε > 0
decreases to zero the respective ε-rotation sets converge to the original rotation set
(Theorem 7).

In Section 4, we formulate our set-oriented algorithm for the numerical approx-
imation of the rotation set of a homeomorphism f : T2 −→ T2 homotopic to the
identity, which is defined via a lift F : R2 −→ R2 of f . Based on the fact that
the rotation set is approximated with arbitrary precision in the Hausdorff metric by
the normalised iterates 1

nF
n([0, 1]2) of the unit square (Corollary 10), our algorithm

aims to provide a good visualisation of the latter sets for large n ∈ N. This is backed
up by rigorous error estimates and a result on the convergence of the approxima-
tions to the true rotation set as the precision and iteration time tend to infinity
(Theorem 11). If the considered system has a shadowing property, this leads to a
further considerable improvement of the results on the convergence rate (Theorem
15). By a systematic overestimation of the system’s orbits, we further ensure that
the numerical algorithm always yields a super-set of the actual rotation set. This is
particularly important since, as mentioned, previous approaches tend to ‘miss out’
the vertices of polygonal rotation sets if these are realised by periodic orbits of large
period [19].

Numerical results for some parameter families inspired by [2, 19, 23] are then
presented in Section 5. It turns out that in most cases the algorithm performs
much better than predicted by the numerical error estimates. The reason for this
is possibly the fact that the considered systems possess a shadowing property. As
mentioned, this leads to a faster convergence of the approximations.
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from EU Marie-Sk lodowska-Curie Innovative Training Network Critical Transitions
in Complex Systems (H2020-MSCA-2014-ITN 643073 CRITICS).
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2. Preliminaries

By Conv(A) we denote the closed convex hull of a set A ⊆ Rm. The open ε-
neighbourhood of points or sets in Rm will be denoted by Bε(x), respectively Bε(A).
The closure of a set A is denoted by A. By dH(A,B) we denote the Hausdorff
distance between two subsets A,B of a metric space and also write An →H A if a
sequence (An)n∈N converges to A in the Hausdorff topology as n→∞.

For m ∈ N, we let Tm = Rm/Zm denote the m-dimensional torus. The set of all
lifts F : Rm → Rm of continuous maps f : Tm −→ Tm homotopic to the identity
is denoted by Cm. The subset of Cm consisting of lifts of torus homeomorphisms is
denoted by Hm. Note that Cm consists of all continuous functions F : Rm −→ Rm
that satisfy

F (x+ k) = F (x) + k (2.1)

for all x ∈ Rm, k ∈ Zm, and Hm is the set of all such F which are in addition
homeomorphisms of the plane. In their seminal paper [2] Misiurewicz and Ziemian
introduced the rotation set as

% (F ) =

{
v ∈ Rm

∣∣∣ ∃ni ↗∞, xi ∈ Rm : lim
i→∞

Fni(xi)− xi
ni

→ v

}
.

Thus, % (F ) can be viewed as the collection of all possible rotation vectors of the
system. By writing

Kk(F ) =

{
F k(x)− x

k

∣∣∣∣ x ∈ [0, 1]m
}

(2.2)

for k ∈ N, we alternatively obtain the rotation set as the upper Hausdorff limit of
the sequence (Kn(F ))n∈N, that is,

% (F ) =
⋂
n≥1

⋃
k≥n

Kk(F ) . (2.3)

Moreover, in the two-dimensional case, the approximating sets Kn(F ) converge to
the rotation set in the Hausdorff distance.

Lemma 1 ([2]). Let F ∈ H2. Then Kn(F )→H % (F ) as n→∞.
Furthermore, we have

Theorem 2 ([2]). Let F ∈ H2. Then the rotation set % (F ) is convex.

Lemma 3 ([2]). Let F ∈ Cm. Then % (F ) ⊆ Conv(Kn(F )) for all n ∈ N.

A generalisation of Lemma 3 to ε-rotation sets is given by Lemma 8 below. An
important technical estimate in [2] is the following.

Lemma 4 ([2]). Let G ∈ H2. Then Conv
(
G([0, 1]2)

)
⊆ B√2(G([0, 1]2)).

Applied to G = Fn and taking into account that

dH

(
Kn(F ),

Fn([0, 1]2)

n

)
<

√
2

n
,

this immediately implies the following consequence.

Corollary 5. If F ∈ H2 and n ∈ N, then

Conv(Kn(F )) ⊆ B 3
√
2

n

(Kn(F )) .
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3. The ε-rotation set

In order to model numerical approximations of rotation sets, we take into account the
fact that inaccuracies are inherent to computer simulations. While the definition of
the rotation set is based on proper orbits of the underlying torus map, we introduce
an alternative by allowing perturbations of the system’s orbits. This corresponds
to the well-known concept of ε-pseudo-orbits and leads to the notion of ε-rotation
sets. Since the start of this project, these have also been described independently
by Guiheneuf and Koropecki in [24].

Let (X,d) be a metric space and F : X −→ X a self-map. For n ∈ N and ε ≥ 0,
an (n+ 1)-tuple (ξj)

n
j=0 of points ξj ∈ X is called an ε-pseudo-orbit of length n+1 if

d (F (ξj), ξj+1) ≤ ε (3.1)

for all j ∈ {0, . . . , n − 1}. In the same way infinite sequences (ξj)
∞
j=0 or (ξj)

∞
j=−∞

satisfying (3.1) for all j ∈ N0 or j ∈ Z, respectively, are called (infinite) ε-pseudo-
orbits. Obviously, every proper orbit is an ε-pseudo-orbit for all ε > 0. Note that
we slightly deviate from the standard definition by not requiring strictness of the
inequality in (3.1). This will be very convenient later on for technical reasons, but
has no significance on a conceptual level.

For F ∈ Cm and ε ≥ 0, we now define the ε-rotation set to be the set of all
accumulation points of sequences of the form(

ξini − ξ
i
0

ni

)
i∈N

where ni → ∞ as i → ∞ and (ξij)
ni
j=0 is an ε-pseudo-orbit of F of length ni + 1 for

each i ∈ N. Analogous to (2.3), we let

Kε
k(F ) =

{
ξk − ξ0
k

∣∣∣∣ (ξj)
k
j=0 is an ε-pseudo-orbit of F with ξ0 ∈ [0, 1]m

}
for k ∈ N and can alternatively define the ε-rotation set by

%ε(F ) =
⋂
n≥1

⋃
k≥n

Kε
k(F ) . (3.2)

Note that since F commutes with integer translations, one could also replace ξ0 ∈
[0, 1]m by ξ0 ∈ Rm in the definition of Kε

k(F ). For every k ∈ N, the inclusion
Kk(F ) ⊆ Kε

k(F ) is apparent, so that due to (2.3) and (3.2), we obtain

% (F ) ⊆ %ε(F ) (3.3)

for all ε ≥ 0. We omit the elementary proof of the following lemma.

Lemma 6. Let F ∈ Cm, ε > 0 and M = maxx∈[0,1]m ‖F (x)− x‖. Then

(i) for each k ∈ N the set Kε
k(F ) is non-empty and compact, and thus the same

holds for %ε(F );

(ii) % (F ) ⊆ BM (0) and %ε(F ) ⊆ BM+ε(0).

We now aim to show convergence of the ε-rotation sets as ε decreases to zero. This
presents the main result of this section. An alternative proof can be found in [24].
However, we include the proof both for the convenience of the reader and because
the employed arguments and estimates will become crucial again in Section 4.
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Theorem 7. Let F ∈ H2. Then %ε(F )→H % (F ) as ε→ 0.

Since for % (F ) ⊆ %ε(F ) for all ε > 0 by (3.3), it remains to show that for every δ > 0
there is an ε > 0 such that

%ε(F ) ⊆ Bδ(% (F )) . (3.4)

We split the proof into Lemmas 8 and 9, beginning with a formulation of Lemma 3
in terms of ε-rotation sets.

Lemma 8. Let F ∈ Cm and ε ≥ 0. Then %ε(F ) ⊆ Conv(Kε
n(F )) for all n ∈ N.

Proof. Let k, n ∈ N. For an ε-pseudo-orbit (ξj)
kn
j=0 with 1

kn (ξkn − ξ0) ∈ Kε
kn(F )

we have

1

kn
(ξkn − ξ0) =

1

k

k−1∑
i=0

1

n

(
ξ(i+1)n − ξin

)
∈ Conv (Kε

n(F )) ,

since the tuples (ξin, ξin+1, . . . , ξ(i+1)n) are ε-pseudo-orbits of F of length n+ 1 and

hence 1
n(ξ(i+1)n − ξin) ∈ Kε

n(F ) for each i ∈ {0, . . . , k − 1}. Consequently, for all
k, n ∈ N we have

Kε
kn(F ) ⊆ Conv(Kε

n(F )) . (3.5)

Now let k, n ∈ N with k ≥ n. Each number k can uniquely be split into k = mkn+rk,
where mk ∈ N is the integer part of k

n and rk ∈ {0, . . . , n − 1}. If (ξj)
k
j=0 is an ε-

pseudo-orbit of length k + 1, we find

Kε
k(F ) 3 1

k
(ξk − ξ0) =

1

k
(ξmkn+rk − ξmkn) +

1

k
(ξmkn − ξ0) . (3.6)

Since the tuple (ξmkn+j)
rk
j=0 is an ε-pseudo-orbit of F of length rk+1, we obtain that

‖ξmkn+rk − ξmkn‖ =

∥∥∥∥∥
rk−1∑
i=0

ξmkn+i+1 − ξmkn+i

∥∥∥∥∥
≤

rk−1∑
i=0

(‖F (ξmkn+i)− ξmkn+i‖+ ε) ≤ rk(M + ε) .

Thus, the norm of the first summand in (3.6) is bounded by rk
k (M + ε). For the

second summand, we have

1

k
(ξmk − ξ0) =

mkn

k
· 1

mkn
(ξmkn − ξ0) ∈

mkn

k
·Kε

mkn
(F ) .

By (3.5), Kε
mkn

(F ) is included in Conv (Kε
n(F )). Altogether, we obtain

Kε
k(F ) ⊆ B rk

k
(M+ε)

(mkn

k
·Kε

mkn
(F )
)

⊆ B rk
k
(M+ε)

((
1− rk

k

)
Conv (Kε

n(F ))
)
. (3.7)

For a fixed value of n, the inclusion (3.7) is valid for all k ≥ n. Therefore, for each
n ∈ N, the representation (3.2) of the ε-rotation set yields

%ε(F ) =
⋂
l≥1

⋃
k≥l

Kε
k(F ) ⊆

⋂
l≥n

⋃
k≥l

Kε
k(F )

⊆
⋂
l≥n

⋃
k≥l

B rk
k
(M+ε)

((
1− rk

k

)
Conv (Kε

n(F ))
)

= Conv (Kε
n(F )) ,

due to the convergence rk
k → 0 as k →∞. �
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Lemma 9. Let F ∈ Cm and n ∈ N. Then Kε
n(F )→H Kn(F ) as ε→ 0.

Proof. The inclusion Kn(F ) ⊆ Kε
n(F ) is evident for every ε > 0. Let δ > 0. Due to

the continuity of F , there exists an ε0 > 0 such that ‖Fn(ξ0) − ξn‖ < nδ for every
ε-pseudo-orbit (ξj)

n
j=0 of F with 0 < ε ≤ ε0. Therefore, we obtain

ξn − ξ0
n

=
Fn(ξ0)− ξ0

n
+
ξn − Fn(ξ0)

n
∈ Bδ(Kn(F )) .

As δ > 0 was chosen arbitrarily and n ∈ N is fixed, this proves the convergence
Kε
n(F )→H Kn(F ) as ε→ 0. �

Proof of Theorem 7. Recall that in order to prove Theorem 7, we have to show the
inclusion (3.4). Let δ > 0. By Lemma 1, the rotation set % (F ) can be approximated
up to an arbitrary precision with respect to the Hausdorff distance by the sets
Kn(F ). Therefore, we choose n0 ∈ N sufficiently large, so that

Kn0(F ) ⊆ B δ
2
(% (F )) . (3.8)

Furthermore, by Lemma 9 there exists an ε0 > 0 sufficiently small, such that

Kε
n0

(F ) ⊆ B δ
2
(Kn0(F )) (3.9)

for all 0 < ε ≤ ε0. Applying Lemma 8, together with (3.8) and (3.9) we obtain

%ε(F ) ⊆ Conv
(
Kε
n0

(F )
)
⊆ Conv

(
B δ

2
(Kn0(F )

)
⊆ Conv (Bδ(% (F ))) = Bδ(% (F ))

for every 0 < ε ≤ ε0. Bδ(% (F )) is convex itself, since the rotation set is convex by
Theorem 2. As δ > 0 was arbitrary, this shows the asserted convergence %ε(F )→H

% (F ) as ε→ 0. �

4. Set-oriented computation of rotation sets

4.1. Why set-oriented numerics – shortcomings of the direct approach.
Before we turn to our algorithm for the set-oriented computation of rotation sets,
we briefly want to comment on the problems that arise with a more conventional
approach.

The easiest way to compute the rotation set of a torus homeomorphism numer-
ically would be to fix a standard grid Γ ⊆ [0, 1]2 of N × N points, to compute the
normalised displacement vectors 1

n(Fn(x) − x) for all x ∈ Γ and some large n ∈ N
and to plot the collection of these vectors in order to obtain an approximation of the
rotation set. However, one may now consider the following situation, which actually
turns out to be generic (with respect to C0-topology, see [19]): Suppose that an
area-preserving torus homeomorphism f has a rotation set with non-empty interior,
and that the Lebesgue measure LebT2 on T2 is ergodic with respect to f . Then there
exists a well-defined rotation vector

%f (LebT2) =

∫
T2

ϕ(x) dx,

where ϕ(x) = F (x)− x is interpreted as a function on the torus, and we have

lim
n→∞

Fn(x)− x
n

=
1

n

n−1∑
i=0

(ϕ ◦ f i)(x) = %f (LebT2)
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for Lebesgue-a.e. x ∈ T2. Hence, if n above is chosen too large, the rotation vectors
coming from starting points in the grid Γ will almost surely be arbitrarily close to
%f (LebT2). In this case, the numerical approximation of the rotation set will show
the singleton %f (LebT2), or something very close to it, whereas the true rotation set
is much bigger due to its non-empty interior. Figure 4.1 illustrates this numerical
phenomenon for a standard example f1,1 (see Section 5) of a torus diffeomorphism
given by the lift

F1,1 : R2 → R2 , (x, y) 7→
(
x+ sin(2π(y + sin(2πx))), y + sin(2πx)

)
,

which exhibits %f1,1(LebT2) = (0, 0) and is known to have the rotation set % (F1,1) =

[−1, 1]2 (see Lemma 22); as the number of iterations increases the majority of the
approximate rotation vectors based on the iteration of grid points tend towards the
origin and only the fixed points at the vertices are detected.

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Fig. 4.1. Approximation of % (F1,1) by a direct approach, 80 (left)
and 2500 (right) iterations, grid range 0.001 each

It is effects like this which prevent a direct approach from producing reasonable
results [19], and frequently lead to an underestimation of the actual rotation set. In
order to counter this, one would have to choose the grid constant N exponentially
large with respect to n (of magnitude N ∼ Ln, where L is a Lipschitz constant of
f), which is not feasible for efficient computations.

Moreover, the above discussion shows that in the direct approach there is a critical
dependency between the parameters N (grid size) and n (number of iterates), which
cannot be chosen independent of each other. In contrast to this, it is surely desirable
to have an algorithm whose precision increases in both parameters independently,
so that computation capacities can be pushed to their limit without having to worry
about the precise relation of the parameters. This is exactly what the set-oriented
method will allow us to do.

4.2. The set-oriented approach – description of the algorithm. We start
with a basic observation. By Lemma 1, the sets Kn(F ) converge to the rotation set
% (F ), and moreover we have the elementary estimate

dH

(
1

n
Fn([0, 1]2),Kn(F )

)
≤
√

2

n
. (4.1)

Thus, we obtain

Corollary 10. Let F ∈ H2. Then 1
nF

n([0, 1]2)→H % (F ) as n→∞.



8 K. Polotzek, K. Padberg-Gehle and T. Jäger

This allows to focus on the sets 1
nF

n([0, 1]2) in order to compute the rotation sets,
which is quite convenient from a practical viewpoint. Hence, we aim for an accurate
numerical approximation of the sets 1

nF
n([0, 1]2) for some large n ∈ N. Inspired

by the software package GAIO (Global Analysis of Invariant Objects), we apply
the concept of box coverings to formulate our algorithm. This library, developed
by Dellnitz, Froyland and Junge [25], provides numerical methods for the analy-
sis of dynamical systems by set-oriented techniques. As mentioned above, on the
theoretical level this corresponds to considering ε-pseudo-orbits.

For a given maximal diameter ε > 0 let B0 be a collection of compact sets B ⊂ [0, 1]2

with

sup
B∈B0

diam(B) ≤ ε and
⋃
B∈B0

B = [0, 1]2 . (4.2)

Note that B0 can be considered as a covering of T2, whose lift to R2 is then given by

B =
{
B + t

∣∣ B ∈ B0, t ∈ Z2
}
.

The elements of the collections B0 and B will be referred to as boxes. Further,
given η > 0, for each box B ∈ B, let ΓB ⊆ B be a finite set of points which is
η-dense in B and chosen such that ΓB+t = ΓB + t for every integer vector t ∈ Z2.
Finally, fix R > 0. Then, for F ∈ H2, we now generate a sequence of sets (Q∗n)n∈N
(approximations of the rotation set) according to the following algorithm.

Initialisation: Q0 = [0, 1]2

Box images: Given B ∈ B, let the box image of B be defined as

I(B) = {B′ ∈ B | ∃x ∈ ΓB : d(F (x), B′) ≤ R} (4.3)

(see Fig. 4.2).

Iteration: For k = 0, . . . , n− 1 generate the box coverings

Bk+1 = {B′ ∈ B | ∃B ∈ Bk : B′ ∈ I(B)} , (4.4)

Qk+1 =
⋃
B∈Bk+1

B. (4.5)

Normalisation: Q∗n = 1
nQn, n ∈ N (4.6)

B ∈ Bk

x ∈ Γ(B)

F
η

F (x)

R

ε

I(B)

Fig. 4.2. Box image of a box B in the box covering Bk, one test
point, exemplarily.
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The starting point of our algorithm is the unit square [0, 1]2. Instead of iterating
single test points, we consider collections of boxes B ∈ B and always collect those
which are hit by an image of one of the previous boxes.

By choosing the parameter R for the numerical calculation of the box images
sufficiently large, we can ensure that no boxes are missed out and the images are
always overestimated (see Lemma 12). This leads to a systematic overestimation
of the sets 1

nF
n
(
[0, 1]2

)
, which will eventually lead to the fact that the algorithm

always yields a superset of the actual rotation set (up to a small shift of order
2
√
2/n, see Lemma 20). Hence, the effect of underestimation described for the direct

approach in the previous subsection can be excluded (see Theorem 11 below).
Note also that for the implementation of the algorithm, the box images only have

to be computed once of each boxB ∈ B0 at the beginning. This immediately provides
the box images for the respective integer translates as well, and the information can
then be used throughout the whole iterative procedure.

4.3. Convergence of the approximations – qualitative results and error
bounds. Relations between the normalised approximations Q∗n and the rotation
set % (F ) are established by the following two results. Theorem 11 is qualitative in
nature and ensures convergence, whereas Theorem 14 uses an additional bounded-
ness assumption to provide error estimates.

Theorem 11. Suppose that F ∈ H2 is Lipschitz continuous with Lipschitz constant
L > 1 and for each ε > 0 the constants η,R > 0 are chosen such that Lη ≤ R ≤ ε.
Then

lim
n→∞
ε→0

dH(Q∗n, % (F )) = 0 , (4.7)

in the sense that for all δ > 0 there exist ε0 > 0 and n0 ∈ N such that if ε in (4.2)
satisfies ε ∈ (0, ε0] and n ≥ n0, then dH(Q∗n, % (F )) < δ.

Remark 4.1. For theoretical purposes, one may also want to ignore the fact that
the images of the boxes B ∈ B can only be approximated via test points, and define
alternative sequences

(
Q̃n
)
n∈N,

(
Q̃∗n
)
n∈N by using the precise images via

Q̃0 = Q0 ,

Q̃n =
⋃{

B ∈ B | B ∩ F (Q̃n−1) 6= ∅
}
,

Q̃∗n =
1

n
Q̃n .

This corresponds to setting the parameters η and R to zero. Then the above conver-
gence result is still valid for the new sequence, that is, limn→∞

ε→0
dH(Q̃∗n, % (F )) = 0.

Moreover, the assumption of Lipschitz continuity is not needed in this case, but it
would still be required in the respective analogue of the error estimates given in
Theorem 14 below.

For the proof of Theorem 11, we will need the following lemma.

Lemma 12. Suppose that F ∈ H2 is Lipschitz continuous with Lipschitz constant
L > 1 and for each ε > 0 the constants η,R > 0 are chosen such that Lη ≤ R ≤ ε.
Then

Fn
(
[0, 1]2

)
n

⊆ Q∗n ⊆
{
ξn
n

∣∣∣∣ (ξj)
n
j=0 is a 2ε-pseudo-orbit of F with ξ0 ∈ [0, 1]2

}
.
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Proof. First, suppose that v = 1
nF

n(x0) ∈ 1
nF

n
(
[0, 1]2

)
and let xj = F j(x0). Choose

boxes Bj ∈ B such that xj ∈ Bj . We claim that Bj ⊆ Qj for j = 0, . . . , n, so that
finally xn = nv ∈ Bn ⊆ Qn and hence v ∈ Q∗n.

For j = 0 the claim is obvious. Therefore, suppose that Bj ⊆ Qj . Then there
exists a test point y ∈ ΓBj η-close to xj , so that d(F (y), xj+1) ≤ Lη ≤ R. Since
xj+1 ∈ Bj+1, this implies Bj+1 ∈ I(B) and thus Bj+1 ∈ Qj+1.

This shows the first inclusion 1
nF

n
(
[0, 1]2

)
⊆ Q∗n. In order to show the second

inclusion, suppose that v ∈ Q∗n. Then, by definition of Qn, there exists a sequence
of boxes B0, . . . , Bn such that nv ∈ Bn and Bj+1 ∈ I(Bj) for all j = 0, . . . , n − 1.
By definition of the box images, there exists a sequence of test points ξj ∈ ΓBj ,
j = 0, . . . , n− 1, such that d(F (ξj), Bj+1) ≤ R. Hence

d(F (ξj), ξj+1) ≤ R+ ε ≤ 2ε .

for all j = 0, . . . , n− 2, and this remains true for j = n− 1 if we let ξn = nv ∈ Bn.
This means that (ξj)

n
j=0 is a 2ε-pseudo-orbit and thus yields the required second

inclusion. �

Corollary 13. In the situation of Lemma 12, we have

Kn(F ) ⊆ B√2
n

(Q∗n) and Q∗n ⊆ B√2
n

(
K2ε
n (F )

)
.

Proof of Theorem 11. First, by Theorem 7 and the convexity of the rotation set,
there exists ε0 > 0 such that

dH

(
Conv

(
%2ε0(F )

)
, % (F )

)
<

δ

3
.

Further, by the definition of %2ε0(F ), there exists n0 ∈ N such that for all n ≥ n0
we have K2ε0

n (F ) ⊆ Bδ/3

(
%2ε0(F )

)
and hence

Conv
(
K2ε0
n (F )

)
⊆ B δ

3

(
Conv

(
%2ε0(F )

))
.

As for all n ∈ N we have % (F ) ⊆ Conv (Kn(F )) ⊆ Conv
(
K2ε0
n (F )

)
(see Lemma 3),

we obtain that

dH

(
Conv

(
K2ε0
n (F )

)
, % (F )

)
<

2δ

3
. (4.8)

At the same time, Lemma 1 implies that we can choose n0 such that

dH (Kn(F ), % (F )) <
2δ

3
(4.9)

for all n ≥ n0. If n0 is chosen such that
√
2/n0 < δ/3 and n ≥ n0, then using (4.9)

together with the first inclusion in Corollary 13, we obtain

% (F ) ⊆ B 2δ
3

(Kn(F )) ⊆ Bδ(Q
∗
n) .

Conversely, (4.8) together with the second inclusion in Corollary 13 yield

Q∗n ⊆ B δ
3

(
K2ε0
n (F )

)
⊆ Bδ(% (F )) .

Together with the fact that K2ε
n (F ) ⊆ K2ε0

n (F ) for all ε < ε0, this means that

dH(Q∗n, % (F )) < δ

whenever n ≥ n0 and ε ∈ (0, ε0], as required. �

In general, it is not possible to give quantitative error estimates for the numerical
computation of rotation sets. The reason is that there are no general apriori bounds
for the convergence of the sets Kn(F ) to % (F ). However, it turns out that in many
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situations, and in particular whenever the rotation set has non-empty interior, there
exists a positive constant c > 0 such that

dH(Kn(F ), % (F )) ≤ c

n
for all n ∈ N . (BD)

This fact has been proven for diffeomorphisms in [26] and the result was later gen-
eralised to homeomorphisms in [12]. This is also referred to as bounded deviation
property. In our context, (BD) together with the existence of a Lipschitz constant
allows to provide the following quantitative estimates.

Theorem 14. Suppose F ∈ H2 is Lipschitz continuous with Lipschitz constant
L > 1, let ε > 0, ηL ≤ R ≤ ε and n ∈ N. Further, assume that (BD) holds for
c > 0. Then

dH (Q∗n, % (F )) ≤ max

{
2
√

2

n
,

√
2

n
+ γε,n

}
, (4.10)

where

γε,n =
2rn
n

(M + ε) +
(

1− rn
n

)
min

1≤k≤n

1

k

(
c+ 2ε

Lk − 1

L− 1

)
. (4.11)

Here M = maxx∈[0,1]2 ‖F (x) − x‖, kn is the number between 1 and n for which the
minimum on the right is attained and rn = n mod kn.

The proof is given in Section 4.5 below.

Remark 4.2. (a) It should be noted that the above estimate is rather of theo-
retical than practical interest. This is exemplified in part (b) of this remark
below. We include it nevertheless, since on the one hand it demonstrates
what is possible on the analytic side, and on the other hand the proof reflects
and demonstrates very well how and why the nonlinearity of the dynamics
complicates the efficient computation of rotation sets.

(b) In order to see why the above estimates are hardly relevant for the numerical
implementation, suppose that the constant c in (BD) is known (which is
usually not the case) and relatively small, say, equal to 1. Even in this case,
in order to achieve an apriori error bound of order 10−2, the integer k in

the term 1
k

(
c+ 2εL

k−1
L−1

)
in (4.11) would have to be at least 100 – otherwise

c/k > 100 – but then at the same time ε would need to be smaller than(2(Lk−1)
L−1

)−1 . Hence, even if L is only 2, this would require to work with

a box diameter of ε ' 2−100, which is hardly possible with contemporary
computers.

(c) Fortunately, it turns out that in the actual implementation the convergence
is usually much faster than indicated by the above error estimates. One pos-
sible reason is the fact that f may possess a shadowing property. This leads

to improved error bounds, where essentially the exponential term εL
k−1
L−1 can

be dropped altogether. We discuss this in detail in the following subsection.

4.4. Implications of shadowing. Given a self map g : X → X of some metric
space X, we say an orbit (xn)n∈N of g δ-shadows a sequence (ξn)n∈N if d(xn, ξn) < δ
for all n ∈ N. Given δ, ε > 0, we say g has the δ-shadowing property with constant
ε if all ε-pseudo-orbits of g are δ-shadowed by some orbit of g. If such a constant
ε = ε(δ) exists for all δ > 0, we simply say that g has the shadowing property.
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Theorem 15. Suppose f is a torus homeomorphism homotopic to the identity with
lift F ∈ H2 and δ, γ ∈ (0, 1/2) are such that d(x, y) < δ implies d(f(x), f(y)) < 1/2−γ
for all x, y ∈ T2. Further, assume that f has the δ-shadowing property with constant
ε ∈ (0, γ). Then

%ε(F ) = % (F ) .

Corollary 16. If a torus homeomorphism f homotopic to the identity has the shad-
owing property, then there exists ε0 > 0 such that %ε(F ) = % (F ) for any ε ∈ (0, ε0]
and any lift F of f .

For the proof of Theorem 15, we need the following elementary statement.

Lemma 17. Suppose f, F, δ, γ, ε are chosen as in Theorem 15. Then F has the
δ-shadowing property with constant ε.

Proof. Suppose (ξ̂n)n∈N is an ε-pseudo-orbit for F . Then ξn = π(ξ̂n) defines an ε-
pseudo-orbit of f , and we can therefore find some x0 ∈ T2 such that d (fn(x0), ξn) <

δ for all n ≥ 0. Let x̂0 be the unique lift of x0 in Bδ
(
ξ̂0
)
. We claim that

d(Fn(x̂0), ξ̂n) < δ for all n ≥ 0, so that the orbit of x̂0 is the required δ-shadowing or-
bit.

For n = 0 there is nothing to prove. If d(Fn(x̂0), ξ̂n) < δ for some n ≥ 0,

then Fn+1(x̂0) ∈ B1/2−γ
(
F (ξ̂n)

)
⊆ B1/2

(
ξ̂n+1

)
. However, as B1/2

(
ξ̂n+1

)
projects

injectively to T2 and d(π(Fn+1(x̂0), π(ξ̂n+1)) = d(fn+1(x0), ξn+1) < δ, we also obtain

d(Fn+1(x̂0), ξ̂n+1)) < δ as required. �

Proof of Theorem 15. Under the assumptions of the theorem, any finite ε-pseudo-
orbit (ξ̂j)

n
j=0 of F is δ-shadowed by some F -orbit (xj)

n
j=0, so that∣∣∣∣∣ ξ̂n − ξ̂0n

− Fn(x0)− x0
n

∣∣∣∣∣ ≤ 2δ

n
.

Therefore dH(Kn(F ),Kε
n(F )) ≤ 2δ/n, and due to the definition of the sets Kn(F ),

Kε
n(F ) and %ε(F ) and the convergence Kn(F ) →H % (F ) as n → ∞ by Lemma 1,

this implies %ε(F ) = % (F ). �

As mentioned before, the shadowing property leads to improved error estimates for
the set-oriented computation of the rotation set, and in particular allows to eliminate
the exponential term γε,n in Theorem 14.

Theorem 18. Suppose that f satisfies the assumptions of Theorem 14 and the
bounded deviations hypothesis (BD) with constant c > 0. Let F ∈ H2 be a lift of f
and Q∗n be defined by (4.5). Then

dH(Q∗n, % (F )) ≤
√

2 + 1 + c

n
.

The proof is postponed until the end of the next subsection.

4.5. Quantitative estimates – proofs of Theorems 14 and 18. Throughout
this section, we assume that F ∈ H2 and Qn, Q

∗
n are defined as in the preceding

section. Let

P εn(F ) =
{
ξn ∈ R2 | (ξj)nj=0 is an ε-pseudo-orbit of F with ξ0 ∈ [0, 1]2

}
and note that P 0

n(F ) = Fn
(
[0, 1]2

)
. Then the statement of Lemma 12 can be

rewritten as

P 0
n(F ) ⊆ Qn ⊆ P 2ε

n (F ) . (4.12)
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This leads to the following initial estimate.

Lemma 19. Suppose that F ∈ H2 is Lipschitz continuous with Lipschitz constant
L > 1 and for each ε > 0 the constants η,R > 0, are chosen such that Lη ≤ R ≤ ε.
Then, for every n ∈ N, we have

% (F ) ⊆ B 2
√
2

n

(Q∗n) .

Proof. We have

% (F )
Lemma 3
⊆ Conv(Kn(F )) ⊆ B√2

n

(
1

n
Conv

(
Fn([0, 1]2

))
Lemma 4
⊆ B 2

√
2

n

(
1

n

(
Fn([0, 1]2

)) Lemma 12
⊆ B 2

√
2

n

(Q∗n) .

�

Lemma 20. Suppose that F ∈ H2 is Lipschitz continuous with Lipschitz constant
L > 1 and ε > 0. Then, for all n ∈ N, we have

dH

(
K2ε
n (F ),Kn(F )

)
≤ 2ε(Ln − 1)

n(L− 1)
=: κε,n .

Proof. Let (ξ̂j)
n
j=0 be an 2ε-pseudo-orbit of F with ξ̂0 ∈ [0, 1]2. Using the fact that

‖ξ̂1 − F (ξ̂0)‖ ≤ 2ε and

‖ξ̂n − F j(ξ̂0)‖ ≤ ‖F (ξ̂j−1)− F (F j−1(ξ̂0))‖+ 2ε ≤ L‖ξ̂j−1 − F j−1(ξ̂0)‖+ 2ε,

for all j = 1, . . . , n− 1, we recursively obtain the estimate

‖ξ̂n − Fn(ξ̂0)‖ ≤ 2ε

n−1∑
i=0

Li = 2ε
Ln − 1

L− 1
.

Thus, for any v = 1
n(ξn − ξ0) ∈ K2ε

n (F ) we have

ξn − ξ0
n

=
ξn − Fn(ξ0)

n
+
Fn(ξ0)− ξ0

n︸ ︷︷ ︸
∈Kn(F )

,

so that
K2ε
n (F ) ⊆ B 2ε(Ln−1)

n(L−1)

(Kn(F )) .

Since conversely we always have Kn(F ) ⊆ K2ε
n (F ), this proves the statement. �

Lemma 21. Suppose that F ∈ H2 is Lipschitz continuous with Lipschitz constant
L > 1 and ε > 0. Further, assume that F additionally satisfies (BD) with c > 0.
Then for all n ≥ 0 we have

K2ε
n (F ) ⊆ Bγε,n(% (F )) ,

where γε,n is defined as in (4.11).

Proof. Let k ∈ N. Applying the estimate for the Hausdorff distance between the
sets K2ε

k (F ) and Kk(F ), denoted by κε,k in Lemma 20, and the assumption (BD),
we obtain

Conv
(
K2ε
k (F )

)
⊆ Conv

(
Bκε,k(Kk(F ))

)
⊆ Conv

(
B c
k
+κε,k(% (F ))

)
= B c

k
+κε,k(% (F )) .

(4.13)
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For the last equality, note that % (F ) is convex. Let kn ∈ {1, . . . , n} be the natural
number for which the minimum in the definition of γε,n in (4.11) is attained. Further,
let mn ∈ N, rn ∈ {0, . . . , kn−1} be such that n = mnkn+rn. By the inclusion (3.7)
in the proof of Lemma 8, since n ≥ kn, we know that

K2ε
n (F ) ⊆ B rn

n
(M+2ε)

((
1− rn

n

)
Conv

(
K2ε
kn

(F )
))

. (4.14)

Combining (4.13) and (4.14) and by the choice of kn and the definition (4.11) of γε,n,
we obtain

K2ε
n (F ) ⊆ B rn

n
(M+2ε)

((
1− rn

n

)
B c
k
+κε,kn

(% (F ))
)

= B rn
n
(M+2ε)+(1− rnn )

(
c
kn

+κε,kn

) ((1− rn
n

)
% (F )

)
⊆ B rn

n
(2M+2ε)+(1− rnn )

(
c
kn

+κε,kn

)(% (F ))

= Bγε,n(% (F )) .

For the inclusion from the second to the third line, note that % (F ) ⊆ BM (0), so

that
(
1− rn

n

)
% (F ) ⊆ B rn

n
M (% (F )). �

Proof of Theorem 14. In Lemma 19 we deduced that

% (F ) ⊆ B 2
√
2

n

(Q∗n) .

Conversely, from (4.12) and Lemma 21 we obtain

Q∗n =
1

n
Qn ⊆

1

n
P 2ε
n (F ) ⊆ B√2

n

(K2ε
n (F )) ⊆ B√2

n
+γε,n

(% (F )) .

Altogether, we obtain the error estimate (4.10). �

Proof of Theorem 18. On the one hand, we have

% (F ) ⊆ B 2
√
2

n

(Q∗n) (4.15)

by Lemma 19. On the other hand, we have shown in the proof of Theorem 15 that
K2ε
n (F ) ⊆ B2δ/n(Kn(F )) ⊆ B1/n(Kn(F )) (note that δ < 1/2 by assumption) and

thus obtain

Q∗n ⊆ 1

n
P 2ε
n (F ) ⊆ B√2

n

(K2εn(F ))

⊆ B√2+1
n

(Kn(F )) ⊆ B√2+1+c
n

(% (F )) .

This shows the required estimate. �

5. Numerical implementation and results

In order to implement the above algorithm and to apply it to some specific examples,
we consider a standard family of (lifts of) torus diffeomorphisms given by

Fα,β : R2 → R2 , (x, y) 7→
(
x+ α sin(2π(y + β sin(2πx))), y + β sin(2πx)

)
, (5.1)

where α, β ∈ R. Note that Fα,β is obtained as the composition of two skew shifts,
Fα,β = Fα ◦ Fβ, where

Fα(x, y) =
(
x+ α sin(2πy), y

)
and Fβ(x, y) =

(
x, y + β sin(2πx)

)
.
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See [23, 6] for previous numerical studies and [2] for structurally similar examples.
For specific parameter values, the rotation set of Fα,β can easily be determined
analytically, which allows to test the numerical algorithm in a controlled setting.

Lemma 22. % (F1,1) = [−1, 1]2.

Proof. This follows directly from two elementary observations. First, we have the
general estimate % (Fα,β) ⊆ [−α, α]× [−β, β], as α and β are the maximal step sizes
in the horizontal and vertical direction. Hence, % (F1,1) ⊆ [−1, 1]2.

Conversely, it is easily checked that the rotation vectors (1, 1), (−1, 1), (1,−1) and
(−1,−1) are realised by the fixed points (1/4, 1/4), (3/4, 1/4), (1/4, 3/4) and (3/4, 3/4). By
convexity, this means that [−1, 1]2 ⊆ % (F1,1). �

For the initialisation of the algorithm in Section 4.2 , we choose B0 to be the standard
covering of [0, 1]2 by k2 squares of side length 1/k, k ∈ N. Note that we can thus
choose ε =

√
2/k in (4.2). We fix a Lipschitz constant L of Fα,β (for example,

L = 1 + 4π2 works for all (α, β) ∈ [0, 1]2) and set R = ε in (4.3). Moreover, for
each B ∈ B0 we choose ΓB as a standard grid of m2 points in B, so that ΓB is√
2/(k(m−1))-dense in B (see Fig. 4.2). Thereby, we choose m = m(k) such that
η =

√
2/(k(m−1)) < ε/L.

In order to keep the dependence on k explicit, we will from now on writeQ∗k,n, instead

of Q∗n, for the approximation defined in (4.6). Then the assumptions of Theorem 14
with ε =

√
2/k are satisfied and we obtain that limk,n→∞Q

∗
k,n = % (Fα,β), with error

bound provided by (4.10) (and by Theorem 18 if Fα,β has the shadowing property).
Figure 5.1 shows Q∗k,n for F1,1 for k = 8 and different values of n.

Zooming in (Fig. 5.2) on the boundary of Q∗8,100 and Q∗8,200 of Figure 5.1 reveals the

difference that exists between these approximations and % (F1,1) = [0, 1]2, which is of
a magnitude of 10−2 (and hence significantly smaller than the theoretical error bound
in (4.10)). By Lemma 19, the 2

√
2/n-neighbourhood of Q∗k,n covers the rotation set.

As further examples, we consider the maps F1/2,1/2, F3/5,3/5 and F3/4,1. In the first case,

we still have an a priori lower bound for the rotation set: %
(
F1/2,1/2

)
contains the

square spanned by the points (±1/2, 0) and (0,±1/2), since these rotation vectors are
realised by the two-periodic points (0, 1/4), (1/4, 0),(0, 3/4) and (3/4, 0). The numerical
approximation in Figure 5.3 indicates that this square indeed is the rotation set of
F1/2,1/2 (recall here that our algorithm never underestimates).

In the examples F1,1 and F1/2,1/2 above, the vertices of the polygonal rotation set are
realised by periodic orbits of very low period (1, respectively 2). As discussed in [19],
such rotation sets can still be accurately predicted by conventional direct approaches,
but these tend to fail if the vertices correspond to periodic points of higher periods.
For this reason, we next consider the map G = g3 ◦ g2 ◦ g1 : R2 −→ R2 with

g1(x, y) =
(
x, y + 1

8 sin(5 · 2πx)
)
,

g2(x, y) =
(
x+ 2

5 sin(8 · 2πy), y
)

and

g3(x, y) =
(
x− 1

5 , y + 2
8

)
.

The related rotation set can be determined analytically as the rectangle % (G) =
[−3/5, 1/5]× [1/8, 3/8] since its vertices correspond to elliptic periodic orbits of period
40 (those of the points (3/20, 3/32), (1/20, 3/32), (1/20, 1/32) and (3/20, 1/32)). Figure 5.4
shows the approximate rotation set Q∗60,130 for G.
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Fig. 5.1. Approximations Q∗k,n for the rotation set of the map F1,1

with k = 8 and n = 1, 2, 5, 10, 25, 50, 100, 200 (from top
left to bottom right).
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Fig. 5.2. Zoom on top left area of the approximations Q∗8,100 (left)

and Q∗8,200 (right) for the rotation set of the map F1,1.
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Fig. 5.3. Approximations Q∗k,n for the rotation sets of the maps

F1/2,1/2, F1,1/4, F3/5,3/5 and F3/4,1 (with k = 50, 16, 50, 45
and n = 130, 140, 100, 80 from top left to bottom right)
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Fig. 5.4. Approximation Q∗60,130 for the rotation set of the map G.



18 K. Polotzek, K. Padberg-Gehle and T. Jäger

Finally, we consider a slightly perturbed version F̄ = R ◦ F of the above examples
by introducing a slight additional rotation

R : R2 → R2, (x, y) 7→ (x+ r1, y + r2), r1, r2 ∈ R .

In Table 1 we collect the specific parameter values for both k and n and the pertur-
bations r1 and r2, on which we base our approximations of the related rotation sets
of the perturbed maps.

Although it is difficult to check rigorously, we expect that for small perturbations
these modifications should not alter the rotation sets of the above examples due
to the generic structural stability of the dynamics [18]. Moreover, we expect that
the vertices of the rotation sets are still realised by periodic orbits that lie close
to the original ones. This fact could in principle be checked by a qualitative index
argument. However, we refrain from going into detail and content ourselves with
the numerical confirmation of the stability provided by Figure 5.5.

F̄ 1
2
, 1
2

Ḡ F̄1, 1
4

F̄ 3
5
, 3
5

F̄ 3
4
,1 F̄1,1

k 50 60 16 50 45 8
n 130 130 140 100 80 100
r1 0.012 0.008 0.012 0.01 0.002 0.022
r2 0.014 0.001 0.002 0.011 0.013 0.015

Table 1. Parameter values for the approximations shown in Figure 5.5.
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Fig. 5.5. Approximations Q∗k,n for the rotation sets of the

perturbed maps F̄1/2,1/2, Ḡ, F̄1,1/4, F̄3/5,3/5, F̄3/4,1 and F̄1,1

(from top left to bottom right) according to Table 1.
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6. Conclusion

In conclusion, the set-oriented approach to the computation of rotation sets provides
better and more stable results than conventional direct approaches. Moreover, it can
at least partially be backed up by rigorous convergence results, even if the theoretical
error estimates are not useful in practice. The much better performance of the
algorithm for specific examples finds a possible explanation in the likely presence of
a shadowing property, which can again be backed up by rigorous results.

What remains is to use this new numerical method in order to perform a system-
atic and detailed study of the behaviour and bifurcations of rotation sets in standard
parameter families, as the one given by (5.1). Of course, it is highly likely that the
performance of the algorithm becomes increasingly worse as bifurcation parameters
are approached, at which the rotation set changes and structural stability and shad-
owing therefore have to break down. Therefore, it seems feasible to carry out such
investigations in collaboration with experts on scientific computing and access to
high-performance computing facilities, so that at least the limits of contemporary
computing capacities can be exhausted to partially counter these effects. We leave
this as a task for future research.

Matlab codes will be made available on the authors’ homepages.
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