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Abstract. In the context of the Franks-Misiurewicz Conjecture, we study homeomor-
phisms of the two-torus semiconjugate to an irrational rotation of the circle. As a special
case, this conjecture asserts uniqueness of the rotation vector in this class of systems.
We first characterise these maps by the existence of an invariant ‘foliation’ by essential
annular continua (essential subcontinua of the torus whose complement is an open annu-
lus) which are permuted with irrational combinatorics. This result places the considered
class close to skew products over irrational rotations. Generalising a well-known result
of M. Herman on forced circle homeomorphisms, we provide a criterion, in terms of
topological properties of the annular continua, for the uniqueness of the rotation vector.

As a byproduct, we obtain a simple proof for the uniqueness of the rotation vector
on decomposable invariant annular continua with empty interior. In addition, we collect
a number of observations on the topology and rotation intervals of invariant annular
continua with empty interior.
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1. Introduction

Rotation Theory, as a branch of dynamical systems, goes back to Poincaré’s celebrated
classification theorem for circle homeomorphisms. It states that given an orientation-
preserving circle homeomorphism f with lift F : R → R, the limit

ρ(F ) = lim
n→∞

(Fn(x) − x)/n ,

called the rotation number of F , exists and is independent of x. Furthermore, ρ(F ) is rational
if and only if f has a periodic orbit and ρ(F ) is irrational if and only if f is semiconjugate
to an irrational rotation.

Since both cases of the above dichotomy are easy to analyse, this result provides a com-
plete description of the possible long-term behaviour for a whole class of systems without
any additional a priori assumptions – a situation which is still rare even nowadays in the
theory of dynamical systems. In addition, the rotation number can be viewed as an element
of the first homological group of the circle and thus provides a link between the dynami-
cal behaviour of homeomorphisms and the topological structure of the manifold. It is not
surprising that the consequences of this result have found numerous applications in the sci-
ences, ranging from quantum physics to neural biology [1, 2]. Hence, the attempt to apply
this approach to higher-dimensional manifolds, in order to obtain a classification of possible
dynamics in terms of rotation vectors and rotation sets, is most natural. However, despite
impressive contributions over the last decades, fundamental problems still remain open even
in dimension two.

Already in the case of the two-dimensional torus T2 = R2/Z2, a unique rotation vector
does not have to exist. Instead, given a torus homeomorphism f homotopic to the identity
and a lift F : R2 → R2, the rotation set is defined as

ρ(F ) =
{
ρ ∈ R2

∣∣∣ ∃zi ∈ R2, ni ր ∞ : lim
i→∞

(Fni(zi) − zi) /ni = ρ
}

.

This is always a compact and convex subset of the plane [3]. Consequently, three principal
cases can be distinguished according to whether the rotation set (1) has non-empty interior,
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(2) is a line segment of positive length or (3) is a singleton, that is, f has a unique rotation
vector. Existing results on each of the three cases suggest that a classification approach is
indeed feasible: for example, in case (1) the dynamics are ‘rich and chaotic’, in the sense that
the topological entropy is positive [4] and all the rational rotation vectors in the interior of
ρ(F ) are realised by periodic orbits [5]; in case (3) a Poincaré-like classification exists under
the additional assumption of area-preservation and a certain bounded mean motion property
[6], and the consequences of unbounded mean motion are being explored recently as well
[7, 8, 9]. In case the rotation set is a segment of positive length, examples can be constructed
whose rotation set is either (a) a segment with rational slope and infinitely many rational
points or (b) a segment with irrational slope and one rational endpoint [10]. Recent results
on torus homeomorphisms with this type of rotation segments indicate that these examples
can be seen as good models for the general case [11, 12, 13]. In addition, there exist many
further results that provide more information on each of the three cases. Just to mention
some of the contributions in this direction, we refer to [14, 15, 16, 17, 18, 19].

In the light of these advances, it seems reasonable to say that the outline of a complete
classification emerges. Yet, there is still a major blank spot in the current state of knowledge.
It is not known whether any rotation segment other than the two cases (a) and (b) mentioned
above can occur, and if so, hardly anything is known about the dynamical consequences of
rotation segments of such exceptional type. Actually, it was conjectured by Franks and
Misiurewicz in [10] that these cannot occur. However, while this conjecture has been in
the focus of attention for more than two decades, it has defied all experts and up to date
there are still only very partial results on the problem. A deeper reason for this may lie
in the fact that it concerns dynamics without any periodic points – in particular in the
case where the rotation segments do not contain any rational points1 – and therefore many
standard techniques in topological dynamics based on the existence of periodic orbits fail
to apply. Independent on whether the conjecture is true or false, this highlights the need
for a better understanding of periodic-point free dynamics, which seems a worthy task in a
broader context as well.

We believe that in this situation the systematic investigation of suitable subclasses of
periodic point free torus homeomorphisms is a good way to obtain further insight. In
fact, there are some classes that have been studied intensively already. First, Franks and
Misiurewicz proved that for time-one maps of flows the rotation set is either a singleton or
an interval of type (a) or (b) [10]. Secondly, Kwapisz considered torus homeomorphisms
that preserve the leaves of an irrational foliation and showed that the rotation set is either
a segment with a rational endpoint or a singleton [20]. Finally, for skew products over
irrational rotations on the torus, Herman proved the uniqueness of the rotation vector [21].
Hence, in these cases the conjecture was confirmed for the particular subclasses, which are
certainly very restrictive compared to general torus homeomorphisms. However, since these
are the only existing partial results on the problem, they are the only obvious starting point
for further investigations. The aim of this article is to make a first step in this direction
by studying torus homeomorphisms which are semiconjugate to a one-dimensional irrational
rotation. For obvious reasons these do not have any periodic orbits, but apart from this little
is known about the dynamical implications of this property. We first provide an analogous
characterisation of these systems.

Denote by Homeo0(Td) the set of homeomorphisms of the d-dimensional torus that are
homotopic to the identity. Recall that an essential annular continuum A ⊆ T2 is a continuum
whose complement T2 \ A is homeomorphic to the open annulus A = T1 × R. An essential
circloid is an essential annular continuum which is minimal with respect to inclusion amongst
all essential annular continua. We refer to Section 2 for the corresponding definitions in
higher dimensions. Note that for any family of pairwise disjoint essential continua in Td

there exists a natural circular order. We say a wandering2 essential continuum has irrational

1Note that a periodic orbit always has a rational rotation vector.
2We call A ⊆ T

d wandering, if fn(A) ∩ A = ∅ ∀n ≥ 1.
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combinatorics (with respect to f ∈ Homeo0(Td)) if its orbit is ordered in Td in the same
way as the orbit of an irrational rotation on T1. See Section 3 for more details.

Theorem 1. Suppose f ∈ Homeo0(Td). Then the following statements are equivalent.

(i) f is semiconjugate to an irrational rotation R of the circle;

(ii) there exists a wandering essential circloid with irrational combinatorics;

(iii) there exists a wandering essential continuum with irrational combinatorics;

(iv) there exists a semiconjugacy h from f to R such that for all ξ ∈ T1 the fibre
h−1{ξ} is an essential annular continuum.

The proof is given in Section 3. Issues concerning the uniqueness of the semiconjugacy
in the above situation are discussed in Section 4. In general the semiconjugacy is not
unique, but there exist important situations where it is unique up to post-composition with
a rotation. In this case every semiconjugacy has only essential annular continua as fibres.

For the two-dimensional case, the implication “(iii) ⇒(i)” in Theorem 1 is contained in
[22], and the proof easily extends to higher dimensions. In our context, the most important
fact will be the equivalence “(i) ⇔ (iv)”, which says that the semiconjugacy can always be
chosen such that its fibres are annular continua. This places the considered systems very
close to skew products over irrational rotations, with the only difference that the topological
structure of the fibres can be more complicated. For this reason, one may hope to generalise
Herman’s result to this larger class of systems, thus proving the existence of a unique rotation
vector. To that end, however, we here have to make an additional assumption on the
topological regularity of the fibres of the semiconjugacy.

An essential annular continuum A ⊆ T2 admits essential simple closed curves in its
complement. The homotopy type of such curves is unique, and we define it to be the
homotopy type of A. We say A is horizontal if its homotopy type is (1, 0). Given a horizontal

annular continuum A, we denote by Â a connected component of π−1(A), where π : R2 → T2

is the canonical projection. Let T : R2 → R2, (x, y) 7→ (x+1, y). Then we say A is compactly

generated if there exists a compact connected set G0 ⊆ Â such that Â =
⋃

n∈Z
T n(G0). In

this case G0 is called a compact generator of A. An essential annular continuum with
arbitrary homotopy type is said to be compactly generated if there exists a homeomorphism
of T2 which maps it to a compactly generated horizontal one.

Theorem 2. Suppose f ∈ Homeo0(T2) be semiconjugate to an irrational rotation of the
circle and the semiconjugacy h is chosen such that its fibres h−1(ξ) are all essential annular
continua. Further, assume that there exists a measurable set Ω ⊆ T1 of positive Lebesgue
measure such that h−1{ξ} is compactly generated for all ξ ∈ Ω. Then f has a unique rotation
vector.

The proof is given in Section 5.

Remark 1.1. (a) We say an annular continuum is thin if it has empty interior. Note
that in the situation of Theorem 2, all but at most countably many of the fibres are
thin in this sense.

(b) Since the set Ω is measurable and compactly generated fibres are mapped to
compactly generated ones, ergodicity of the irrational rotation implies that almost
all fibres have this property.

(c) A thin annular continuum A contains a unique circloid CA [6, Lemma 3.4]. If the
fibre h−1{ξ} of the semiconjugacy h over ξ is thin, we denote this circloid by Cξ.
It turns out that the assertion of Theorem 2 remains true if the fibres h−1(ξ) are
replaced by the circloids Cξ in the statement. This is not completely obvious, since
in general a thin annular continuum A may not be compactly generated even if this
is true for the circloid CA it contains. Only the converse implication is true, as we
show in Proposition 6.5.

However, in the situation of the theorem, it turns out that having a set of positive
measure on which fibres are compactly generated is equivalent to having a set of
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positive measure on which the corresponding circloids are compactly generated. A
precise statement is given in Proposition 6.7.

(d) The notion of a compact generator is closely related to the more classical one of
decomposability of an annular continuum. Here, a continuum C is called decompos-
able if it can be written as the union of two proper subcontinua. It is rather easy to
show that the existence of a compact generator of a circloid C is equivalent to the
fact that a lift of C to a finite covering of T2 is decomposable. Likewise, a compactly
generated annular continuum always has a decomposable finite covering, although
the converse is not true anymore in this case, even if the annular continuum is thin.
However, we will not make use of these facts and just work with compact generators,
which are most convenient for our purposes.

As a byproduct of our methods, we also obtain the uniqueness of the rotation vector for
invariant compactly generated thin annular continua, thus obtaining a variation of a result
by Barge and Gillette [23].

Theorem 3. Suppose f ∈ Homeo0(T2) and A is a thin annular continuum that is compactly
generated and f -invariant. Then f|A has a unique rotation vector, that is, there exists a

vector ρ ∈ R2 such that limn→∞(Fn(z)− z/n) = ρ for all z ∈ R2 with π(z) ∈ A. Moreover,
the convergence is uniform in z.

Barge and Gillette stated the result for decomposable cofrontiers, which includes the case
of thin circloids, but their argument can be adapted to thin annular continua without too
much effort. Our proof is essentially a variation of theirs. An alternative proof by Le Calvez
[24] uses Caratheodory’s prime ends, which is a classical approach to study the rotation
theory of continua [25, 26, 27].

It should be noted that there exist important examples of invariant thin annular continua
which are not compactly generated. One example is the Birkhoff attractor [28], which does
not have a unique rotation vector and therefore cannot have compact generator due to the
above statement. Another well-known example is the pseudo-circle, which was constructed
by Bing in [29] and latter shown to occur as a minimal set of smooth surface diffeomorphisms
[30, 31]. Whether pseudocircles admit dynamics with non-unique rotation vectors is still
open.

We close by collecting some observations on the topology and dynamics of invariant thin
annular continua in Section 6. It is known that any thin annular continuum A contains a
unique circloid CA (see Lemma 2.3). We show that if A is compactly generated, then so
is the circloid CA. Conversely, if CA is compactly generated then either A is compactly
generated as well or A contains at least one infinite spike, that is, an unbounded connected
component of A \ CA. Finally, reproducing some examples due to Walker [32] we show
that thin annular continua can have any compact interval as rotation segment, even in the
absence of periodic orbits.

Acknowledgements. This work was supported by an Emmy-Noether grant of the German
Research Council (DFG grant JA 1721/2-1). We would like to thank Patrice Le Calvez
for helpful comments, Henk Bruin for fruitful discussions leading to the remarks on the
uniqueness of the semiconjugacies in Section 4 and Gerhard Keller for asking some questions
leading to Remark 1.1 and Proposition 6.7. Finally, we are much obliged to an anonymous
referee, whose thoughtful comments and suggestions led to substantial improvements of the
article.

2. Notation and preliminaries

The following notions are usually used in the study of dynamics on the two-dimensional
torus or annulus. For convenience, we stick to the same terminology also in higher dimen-
sions. We let T1 = R/Z and denote by Ad = Td−1 ×R the d-dimensional annulus. If d = 2,
we simply write A instead of A2. We will often compactify A by adding two points −∞ and
+∞, thus making it a sphere. As long as no ambiguities can arise, we will always denote
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canonical quotient maps like R → T1, Rd → Td, Rd → Ad by π. Likewise, on any product
space πi denotes the projection to the i-th coordinate. We call a subset A ⊆ Ad or A ⊆ Rd

bounded from above (from below) if πd(A) is bounded from above (from below). By A or
cl(A) we denote the closure of a set A. A closed set is called thin thin if it has empty interior.

We say a continuum (that is, a compact and connected set) E ⊆ Ad is essential if Ad \E
contains two unbounded connected components. In this case, one of these components
will be unbounded above and bounded below, and we denote it by U+(A) . The second
unbounded component will be bounded above and unbounded below, and we denote it by
U−(A). The set A is called an essential annular continuum if Ad\A = U+(A)∪U−(A). Note
that in dimension two, one can show by using the Riemann Mapping Theorem that both
unbounded components are homeomorphic to A and A is the intersection of a decreasing
sequence of topological annuli. This is not true anymore in higher dimensions, but at least
we have the following.

Lemma 2.1. If (An)n∈N is a decreasing sequence of essential annular continua, then A =⋂
n∈N

An is an essential annular continuum as well.

Proof. As a decreasing intersection of essential continua, A is an essential continuum. Fur-
ther, we have that Td \ A =

⋃
n∈N

Td \ An is the union of the two sets

U+ =
⋃

n∈N

U+(An) and U− =
⋃

n∈N

U−(An) .

As the union of an increasing sequence of open connected sets is connected, both these sets
are connected. Hence, Td \ A consists of exactly two connected components U+(A) = U+

and U−(A) = U−, both of which are unbounded. �

Given a set S ⊆ Rd, we say S is horizontal if πd(S) is bounded and Rd \ S contains two
different connected components U+(S) and U−(S) whose image under πd is unbounded.
Note that in this case one of the two components, which we always denote by U+(S), is
bounded below whereas the other component, denoted by U−(S), is bounded above. By
definition, U±(S) are always open sets. Similarly, given a set B ⊆ Ad bounded above
(below) we denote by U+(B) (U−(B)) the unique connected component of Ad \ B which is
unbounded above (below). The same notation is used on Rd. A horizontal connected closed
set S is called a horizontal strip, if Rd \ S = U+(S) ∪ U−(S). Note that thus the lift of an
essential annular continuum A ⊆ Ad to Rd is a horizontal strip. More generally, we say a
strip is a set which can be obtained from a horizontal strip by a linear coordinate change.

In any d-dimensional manifold M , we say A is an annular continuum if it is contained in a
topological annulus A ≃ Ad and it is an essential annular continuum in the above sense when
viewed as a subset of A. In this situation, we say A is essential if essential loops in A are also
essential in M . We call C ⊆ Ad an essential circloid if it is an essential annular continuum
and does not contain any other essential annular continuum as a strict subset. Circloids in
general manifolds are then defined in the same way as annular continua. Finally, we call a
strip S minimal if it is a minimal element of the set of strips with the partial ordering by
inclusion.

Lemma 2.2. An annular essential continuum in Ad or Td is a circloid if and only if its lift
to Rd is a minimal strip.

Proof. We give the proof for Ad, the case of Td is more or less the same. Let C ⊆ Ad be a
circloid and denote its lift to Rd by S. Suppose S′ is a closed connected strict subset of S.
Then there exists x ∈ S and δ ∈ (0, 1/4) such that Bδ(x) ∩ S′ = ∅. Let x0 = π(x). Then
C′ = C \ Bδ(x0) is non-essential, and we can find a proper curve γ : R → Ad in C′ that
goes from −∞ to +∞, that is, limt→±∞ πd ◦ γ(t) = ±∞. Further, we may assume that γ
takes values in Bδ(x0) only on a single open interval. This allows to choose a suitable lift
γ̂ : R → Rd of γ that takes values in Bδ(x), but not in Bδ(x)+(0, n) for any n ∈ Z\{0}. Then
γ̂ is a proper curve in the complement of S′ connecting U−(S) and U+(S), and therefore
S′ cannot be a strip. This shows that the lift of a circloid is a minimal strip. The converse
implication is proved in a similar way. �
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Lemma 2.3 ([6], Lemma 3.4). Every thin annular continuum A ⊆ Ad contains a unique
circloid CA, which is given by

(2.1) CA = U+(A) ∩ U−(A) .

The same statement applies to thin strips and to thin annular continua in Td.

The proof in [6] is given for essential annular continua and for d = 2, but it literally
goes through in higher dimensions and for strips. The same is true for the following result,
which describes an explicit construction to obtain essential circloids from arbitrary essential
continua. Given an essential set A ⊆ Rd which is bounded above, we write U+−(A) instead
of U−(U+(A)) and use analogous notation for other concatenations of these procedures.

Lemma 2.4 ([6], Lemma 3.2). If A ⊆ Ad is an essential continuum, then

C+(A) = Td \
(
U+−(A) ∪ U+−+(A)

)
and C−(A) = Td \

(
U−+(A) ∪ U−+−(A)

)

are circloids. Further, we have ∂C±(A) ⊆ A.

The circloids C+(A) and C−(A) are the ‘highest’ and the lowest circloids, respectively,
whose boundary is contained in A. The same construction works for strips in Rd, and for
essential continua in Td as long as they are not doubly essential, that is, they admit an
essential curve in their complement. However, in these cases an orientation has to be fixed
in order to distinguish between the upper and the lower minimal strip, respectively circloid.

Given two horizontal essential continua A1, A2 ⊆ Td, we say Âi ⊆ Ad is a lift of Ai

if it is a connected component of π−1(Ai). We write Â1 ≺ Â2 if Â2 ⊆ U+(Â1). When

A1 and A2 are disjoint, we choose lifts Â1 ≺ Â2 such that no integer translate of Â1 or

Â2 is contained in U+(Â1) ∩ U−(Â2). Then we let (A1, A2) = π
(
U+(Â1) ∩ U−(Â2)

)
and

[A1, A2] = π
(

Ad \
(
U−(Â1) ∪ U+(Â2)

))
.

With these notions, we define a circular order on pairwise disjoint essential continua
A1, A2, A3 ⊆ Td by

A1 ≺ A2 ≺ A3 ⇔ A2 ∈ (A1, A3) .

Using these notions, we now say a sequence (An)n∈N of pairwise disjoint essential continua
in Td has irrational combinatorics if there exists ρ ∈ R \ Q such that for arbitrary y0 ∈ T1

the sequence yn = y0 + nρ mod 1 satisfies

Ak ≺ Am ≺ An ⇔ yk < ym < yn

for all k, m, n ∈ Z. We complete the topological preliminaries with two applications of
Mayer-Vietoris sequences.

Lemma 2.5. Let A, B be compact subsets of Ad such that

• A ∩ B = ∅;
• Ad \ A has exactly one unbounded component;
• Ad \ B has exactly one unbounded component.

Then Ad \ (A ∪ B) has exactly one unbounded component.

Proof. We include a short proof based on the use of Mayer-Vietoris sequences. Assume for a
contradiction that Ad\(A∪B) has two unbounded components. Let U± be the component of

(A∪B)c containing ±∞, where Ac denotes the complement of a set A in Ad. Let γ± be the
0-cycle corresponding to the point ±∞ and κ± = [γ±] ∈ H0((A∪B)c) its equivalence class.
Note that since both A and B have only one unbounded component in their complement,
the 0-cycle γ+ − γ− represents the zero element in H0(A

c) and H0(B
c). Therefore, in the

Mayer-Vietoris sequence

H1(Ad)
∂∗→ H0(A

c ∩ Bc)
θ∗→ H0(A

c) ⊕ H0(B
c)

ξ∗
→ H0(Ad) → 0 ,

the map θ∗ sends κ+ − κ− to zero. However, as the sequence is exact and H1(Ad) = 0, the
map θ∗ is injective. Hence, we must have κ+ = κ−, contradicting our assumption. �

A proof of the following statement can be given in a similar way.
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Lemma 2.6 (Theorem 11.5 in [34]). Suppose A, B ⊆ R2 are both continua, but A ∩ B is
not connected. Then A ∪ B separates the plane, meaning that R2 \ (A ∪ B) has at least two
connected components.

Finally, we will frequently use the following Uniform Ergodic Theorem (e.g. [35, 36]).

Theorem 2.7. Suppose X is a compact metric space and f : X → X and ϕ : X → R are
continuous. Further, assume that there exists ρ ∈ R such that

∫

X

ϕ dµ = ρ

for all f -invariant ergodic probability measures µ on X. Then

lim
n→∞

1

n

(
n−1∑

i=0

ϕ ◦ f i(x)

)
= ρ for all x ∈ X .

Furthermore, the convergence is uniform on X.

3. Semiconjugacy to an irrational rotation

We now turn to the proof of Theorem 1. The implications (ii)⇒(iii) and (iv)⇒(i) in
Theorem 1 are obvious. Hence, in order to prove all the equivalences, it suffices to prove
(iii)⇒(ii), (i)⇒(iii) and (ii)⇒(iv). We do so in three separate lemmas and start by treating
the easiest of the three implications, which is (iii)⇒(ii).

Lemma 3.1. Let f ∈ Homeo0(Td) and suppose E is a wandering essential continuum.
Then C+(E) is a wandering essential circloid and the circular ordering of the orbits of E
and C+(E) are the same.

Proof. Suppose f ∈ Homeo0(Td) and E is a wandering essential continuum with irrational
combinatorics. Let En = fn(E) and Cn = C+(En) = fn(C+(E)). Note that, as remarked
above, Lemma 2.4 can be applied to essential continua of arbitrary ‘homotopy type’. Assume
for a contradiction that the Cn are not pairwise disjoint, that is, Ci∩Cj 6= ∅ for some integers
i 6= j. Since ∂Cn ⊆ En for all n ∈ Z and the En are pairwise disjoint, Ci must intersect
the interior of Cj or vice versa. Assuming the first case, Ci has to intersect some connected
component U of int(Cj). We distinguish three cases. First, if Ci ⊆ U , then this contradicts
the minimality of Cj . Secondly, if U ⊆ int(Ci), then ∂U ⊆ int(Ci) since ∂U ⊆ ∂Cj ⊆ Ej

and hence ∂U is disjoint from ∂Ci ⊆ Ei. This means that ∂Cj intersects int(Ci). However,
as Cj cannot be contained in Ci we must have ∂Ci ∩∂Cj 6= ∅, contradicting the disjointness
of Ei and Ej . As a third possibility, this only leaves the case where ∂Ci intersects ∂U , and
hence ∂Cj , leading to the same contradiction as before. Thus Ci and Cj are disjoint, which
shows that C0 is wandering. The fact that circular ordering is preserved when going from
(En)n∈N to (Cn)n∈N is obvious. �

The next lemma shows (ii)⇒(iv). Given ρ ∈ Td, we denote by Rρ : Td → Td, x 7→ x + ρ
the rotation by ρ.

Lemma 3.2. Let f ∈ Homeo0(Td) and suppose C is a wandering essential circloid with
irrational combinatorics of type ρ. Then there exists a semiconjugacy h : Td → T1 from f
to Rρ such that the fibres h−1{ξ} are all essential annular continua.

Proof. By performing a change of coordinates, we may assume that C and all its iterates
are horizontal. Let T ′ : Ad → Ad, (x, y) 7→ (x, y + 1). We let Cn := fn(C) and denote the

connected components of the lifts of these circloid by Ĉn,m, where the indices are chosen
such that for all integers n, m we have

• π(Ĉn,m) = Cn;

• F (Ĉn,m) = Ĉn+1,m;

• T ′(Ĉn,m) = Ĉn,m+1.
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We claim that

H(z) = sup
{
nρ + m | z ∈ U+(Ĉn,m)

}

is a lift of a semiconjugacy h with the required properties. Note that due to the irrational

combinatorics we have nρ+m < ñρ+ m̃ if and only if Ĉn,m ≺ Ĉñ,m̃, such that in particular
H(z) is well-defined and finite for all z ∈ Ad. Further, for any z ∈ Ad we have

H ◦ F (z) = sup
{

nρ + m | F (z) ∈ U+(Ĉn,m)
}

= sup
{

nρ + m | z ∈ U+(Ĉn−1,m)
}

= H(z) + ρ .

In a similar way one can see that H ◦ T (z) = H(z) + 1, such that H projects to a map
h : Td → T1 which satisfies h ◦ f = Rρ ◦ h.

In order to check the continuity of H , suppose U ⊆ R is an open interval and let z ∈
H−1(U). Choose r = nρ + m < H(z) < ñρ + m̃ = s with r, s ∈ U . Then z ∈ U+(Cn,m) ∩
U−(Cm̃,ñ) =: V . From the definition of H we see that H(V ) ⊆ [r, s] ⊆ U , and thus
H−1(U) contains an open neighbourhood of z. Since U and z ∈ H−1(U) were arbitrary, H
is continuous. The fact that h is onto follows easily from the minimality of Rρ, so that h is
indeed a semiconjugacy from f to Rρ.

It remains to prove the fact that the fibres h−1{ξ} are annular continua. In order to do
so, note that for ξ ∈ T1

H−1{ξ} =
⋂

nρ+m<ξ

U+(Ĉn,m) ∩
⋂

ñ+ρm̃>ξ

U−(Ĉñ,m̃)

=
⋂

nρ+m<ξ

Ad \ U−(Ĉn,m) ∩
⋂

ñρ+m̃>ξ

Ad \ U+(Ĉñ,m̃) .
(3.1)

Note here that for all n, m, n′, m′ with nρ + m < n′ρ + m′ we have

U+(Ĉn′,m′) ⊆ Ad \ U−(Ĉn′,m′) ⊆ U+(Ĉn,m)

and similar inclusions hold in the opposite direction. This explains the second equality in
(3.1). Choosing sequences ni, mi, ñi, m̃i with niρ+mi ր ξ and ñiρ+m̃i ց ξ, we can rewrite
(3.1) as

H−1{ξ} =
⋂

i∈N

Ad \
(
U−(Ĉni,mi

) ∪ U+(Ĉñi,m̃i
)
)

.

Since the sets of the intersection are all essential annular continua, so is H−1{ξ} by Lemma 2.1.
�

It remains to prove the implication (i)⇒(iii).

Lemma 3.3. Suppose h : Td → T1 is a semiconjugacy from f ∈ Homeo0(Td) to an irra-
tional rotation Rρ. Then every fibre h−1{ξ} contains a wandering essential continuum with
irrational combinatorics.

Proof. We first show that the action h∗ : Π1(Td) → Π1(T1) of h on the fundamental groups
is non-trivial. Suppose for a contradiction that h∗ = 0. Then any lift H : Rd → R of h is

bounded since in this case supz∈Rd ‖H(z)‖ = supz∈[0,1]d ‖H(z)‖. However, if R̂ρ is the lift

of Rρ which satisfies H ◦ F = R̂ρ ◦ H , then this contradicts the unboundedness of

H ◦ Fn(z) = R̂n
ρ ◦ H(z) .

Consequently, h∗ is non-trivial, and by composing h with a linear torus automorphism
we may assume that h∗ is just the projection to the last coordinate. This composition may

change the rotation number, but does not effect its irrationality. We obtain a lift ĥ : Ad → R
which satisfies ĥ(z) → ±∞ if z → ±∞.

As a consequence, the Intermediate Value Theorem implies that every properly embedded

line Γ = {γ(t) | t ∈ R} intersects all level sets Êx = ĥ−1{x}. Hence, all Êx are essential.

If Êx is not connected, we consider the family of all compact and essential subsets of Êx

and choose and element Ê which is minimal with respect to the inclusion. Note that such
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minimal elements exist by the Lemma of Zorn. By Lemma 2.5 Ê is connected. Further,

E = π(Ê) is wandering since Ê ⊆ h−1{x}. Hence, E is the wandering essential continuum
we are looking for. The fact that E has irrational combinatorics can be seen from the
semi-conjugacy equation. �

4. On the uniqueness of the semiconjugacy.

In the light of the preceding section, it is an obvious question to ask to what extent a
semiconjugacy between f ∈ Homeo(T2) and an irrational rotation Rρ of the circle is unique.
It is easy to check that for every rigid rotation R : T1 → T1 the map R ◦ h is a semicon-
jugacy between f and Rρ as well. Hence there is non-uniqueness of the semiconjugacy in
general. Nevertheless, one could ask whether there is uniqueness up to post-composition
with rotations. In brief, we will speak of uniqueness modulo rotations.

Consider f ∈ Homeo0(T2) given by f(x, y) = (x+ρ1, y) with ρ1 ∈ Qc. For any continuous
function α : T1 → T1, we have that hα(x, y) = x + α(y) is a semiconjugacy from f to Rρ1 .
Thus we do not have uniqueness of the semiconjugacy even modulo rotations. However, it
is not difficult to see that all the possibles semiconjugacies between f and Rρ1 are given by
hα for some continuous function α. This implies in particular that on every minimal set
Yr = {(x, y) ∈ T2| y = r}, r ∈ T1, given any two semiconjugacies h1 and h2 we have that
h1|Yr

= (R ◦ h2)|Yr
for some rigid rotation R. This, as we will see, is a general fact.

We say that an f -invariant set Ω is externally transitive if for every x, y ∈ Ω and neigh-
bourhoods Ux, Uy of x and y, respectively, there exists n ∈ N such that fn(Ux) ∩ Uy 6= ∅.
Notice that fn(Ux) and Uy do not need to intersect in Ω as in the usual definition of topolog-
ical transitivity. In the above example the sets Yr are transitive, hence externally transitive.

Given f ∈ Homeo0(T2) semiconjugate to a rigid rotation Rρ and a f -invariant set Ω ⊆ T2,
we say the semiconjugacy is unique modulo rotations on Ω if for all semiconjugacies h1, h2

from f to Rρ we have h1|Ω = (R ◦ h2)|Ω for some rigid rotation R.

Proposition 4.1. Let f ∈ Homeo(T2) be semiconjugate to a rigid rotation of T1. Further,
assume that Ω ⊂ T2 is an externally transitive invariant set of f . Then the semiconjugacy
is unique modulo rotations on Ω.

Proof. Let h1, h2 be two semiconjugacies between f and Rρ. By post-composing with a rigid
rotation, we may assume that h1(x) = h2(x) for some x ∈ Ω. Suppose for a contradiction
that h1(y) 6= h2(y) for some y ∈ Ω.

Let ε = 1
2 · d(h1(y), h2(y)) and δ > 0 such that d(h1(x

′), h2(x
′)) < ε if x′ ∈ Bδ(x)

and d(h1(y
′), h2(y

′)) > ε if y′ ∈ Bδ(y). Due to Ω being externally transitive, there exists
z ∈ Bδ(x) and n ∈ N such that fn(z) ∈ Bδ(y). However, at the same time we have that
ε < d(h1(f

n(z)), h2(f
n(z))) = d(Rn

ρ (h1(z)), Rn
ρ (h2(z))) = d(h1(z), h2(z)) < ε, which is

absurd. �

As a consequence, we obtain the uniqueness of the semiconjugacy modulo rotations when-
ever the non-wandering set of f is externally transitive. The reason is the following simple
observation.

Lemma 4.2. If h1(x) = h2(x) for two semiconjugacies between f ∈ Homeo(T2) and a rigid

rotation of T1, then h1(y) = h2(y) for all y with x ∈ O(y, f).

Proof. Suppose for a contradiction that x ∈ O(y, f) but h1(y) 6= h2(y). Let
ε = d(h1(y), h2(y))/2 and δ > 0 such that if x′ ∈ Bδ(x) then h1(x

′), h2(x
′) ∈ Bε(h1(x)).

Further, let n ∈ N be such that z := fn(y) ∈ Bδ(x). Then on one hand h1(z), h2(z) ∈
Bε(h1(x)), and on the other hand d(h1(z), h2(z)) = d(h1(y), h2(y)) = 2ε, which is absurd.

�

Given f ∈ Homeo(T2) we denote its non-wandering set by Ω(f). Since any orbit ac-
cumulates in the non-wandering set, the combination of Proposition 4.1 and Lemma 4.2
immediately yields
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Corollary 4.3. Suppose that f ∈ Homeo(T2) is semiconjugate to a rigid rotation of T1.
Further assume that Ω(f) is externally transitive. Then the semiconjugacy is unique modulo
rotations.

For irrational pseudorotations of the torus,3 external transitivity of the non-wandering
set was proved by R. Potrie in [37]. Hence, applying Corollary 4.3 in both coordinates yields

Corollary 4.4. Let f ∈ Homeo(T2) be an irrational pseudo-rotation which is semiconjugate
to the respective rigid translation of T2. Then the semiconjugacy is unique up to composing
with rigid translations of T2.

Finally, one may ask the following.

Question 4.5. Does every semiconjugacy between f ∈ Homeo0(T2) and a rigid rotation on
T1 have essential annular continua as fibres?

We note that in the example f(x, y) = (x + ρ1, y) discussed above this is true, since the
fibres of the semiconjugacy hα are the essential circles {(x − α(y), y) | y ∈ T1}, x ∈ T1.
By Theorem 1 it is also true whenever the semiconjugacy is unique modulo rotations, since
there always exists one semiconjugacy with this property and the topological structure of
the fibres is certainly preserved by post-composition with rotations.

5. Fibred rotation number for foliations of circloids

The aim of this section is to prove Theorem 2. In order to do so, we need some further
preliminary results. Given two open connected subsets U, V of a manifold M , we say that
K ⊆ M \ (U ∪ V ) separates U and V if U and V are contained in different connected
components of M \ K.

Lemma 5.1. Suppose S ⊆ Rd is a thin horizontal strip and K ⊆ S is a connected closed
set that separates U+(S) and U−(S). Then CS ⊆ K.

Proof. Suppose CS * K and let z ∈ CS \ K. Then Bε(z) ⊆ Rd \ K. However, as Bε(z)
intersects both U+(S) and U−(S) by Lemma 2.3, this means that U+(S)∪Bε(z)∪U−(S) is
contained in a single connected component of Rd\K, contradicting the fact that K separates
U+(S) and U−(S). �

Given an essential annular continuum A ⊆ A, we denote its lift to R2 by Â = π−1(A).
Let T : R2 → R2, (x, y) 7→ (x+1, y). Then we say A has a compact generator, if there exists

a compact connected set G0 ⊆ Â such that
⋃

n∈Z
Gn = Â, where Gn = T n(G0).

Lemma 5.2. If A ⊆ A is an annular continuum with generator G0, then Gn ∩ Gn+1 6= ∅
for all n ∈ N.

Proof. It suffices to prove that G0∩G1 6= ∅. Suppose for a contradiction that the intersection
is empty. Then G0 has a connected neighbourhood U such that T (U)∩U = ∅. Since U cannot
be contained in bounded connected component of T (U) and vice versa, we have T (D)∩D = ∅
where D = Fill(U). Due to Frank’s Lemma [38], this implies that T n(D) ∩ D = ∅ for all
n ∈ Z \ {0}, contradicting the connectedness of A ⊆

⋃
n∈Z

T n(D). �

Given any bounded set B ⊆ R2, we let

νB = max{n ∈ N | ∃z ∈ B : T n(z) ∈ B} .

Lemma 5.3. Suppose A, A′ ⊆ A are thin essential annular continua with compact genera-
tors G0, G

′
0. Further, assume f ∈ Homeo0(A) maps A to A′. Then for any lift F of f the

set F (G0) intersects at most νG0 + νG′
0
+ 1 integer translates of G′

0.

Proof. Suppose F (G0) intersects G′
n and G′

m for some m > n. Then due to Lemma 5.2, the
set ⋃

k≤n

G′
k ∪ F (G0) ∪

⋃

k≥m

G′
k ⊆ Â′

3That is, torus homeomorphisms homotopic to the identity with unique and totally irrational rotation
vector.
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is connected and therefore separates U+(Â′) and U−(Â′). Hence, by Lemma 5.1 it contains

C bA′ = ĈA′ . Let z0 ∈ G′
0 ∩ C bA and assume without loss of generality that zj = T j(z0) /∈ G′

0

for all j ≥ 1. Then zn ∈ G′
n and zj /∈

⋃
k≤n G′

k for all j > n. Furthermore, since zm ∈ G′
m

we have that zj /∈
⋃

k≥m G′
k for all j < m − νG′

0
. Thus, we must have

{zn+1, . . . , zm−νG′
0
−1} ⊆ F (G0) .

However, since F (G0) contains at most νG0 integer translates of z0, this implies m − n ≤
νG0 + νG′

0
+ 1. �

As a first consequence, this yields the following variation of [23, Theorem 2.7].

Corollary 5.4. Let f ∈ Homeo0(A) with lift F : R2 → R2 and suppose A is an f -invariant
thin essential annular continuum which is compactly generated. Then f|A has a unique
rotation number, that is,

ρA(F ) = lim
n→∞

π2 ◦ (Fn(z) − z)/n

exists for all z ∈ π−1(A) and is independent of z. Moreover, the convergence is uniform in
z.

Proof. As ρ(F, z) = limn→∞ π2 ◦ (Fn(z) − z)/n = limn→∞
1
n

∑n−1
i=0 ϕ ◦ f i(z) is an ergodic

sum with observable ϕ(z) = π2(F (z) − z), we have that ρ(f, z) =
∫

A ϕ dµ =: ρ(µ) µ-
a.s. for every f -invariant probability measure supported on A. Note here that ϕ is well-
defined as a function A → R. Assume for a contradiction that the rotation number is not
unique on A. Then Theorem 2.7 implies the existence of two f -invariant ergodic measures
µ1, µ2 supported on A with ρ(µ1) 6= ρ(µ2). Consequently, we can choose z1, z2 ∈ A with
ρ(F, z1) = ρ(µ1) 6= ρ(F, z2) = ρ(µ2). However, at the same time we may choose lifts
ẑ1, ẑ2 ∈ GA of z1, z2, where GA is a compact generator of A. Then Lemma 5.3 implies
that Fn(ẑ1) and Fn(ẑ2) are contained in the union of 2νGA

+ 1 adjacent copies of GA.
Consequently, we have that d(Fn(ẑ1), F

n(ẑ2)) ≤ diam(GA) + 2νGA
+ 1 for all n ∈ N, a

contradiction. The uniform convergence follows from the same argument. �

Remark 5.5. (a) As remarked before we note that as a special case, Corollary 5.4
applies to decomposable essential thin circloids. In order to see this, recall that a
continuum C is called decomposable if it can be written as the union of two non-
empty continua C1 and C2. If C is a thin circloid, then due to the minimality

of circloids C1 and C2 have to be non-essential. Hence, connected components Ĉi

of π−1(Ci) ⊆ R2, i = 1, 2, are bounded. If these lifts are chosen such that their

intersection is non-empty, then G = Ĉ1 ∪ Ĉ2 is a compact generator of C.

(b) Conversely, if C has a compact generator G0 and n is chosen such that T n(G0)∩
G0 = ∅, then a lift of C to the 2n-fold covering decomposes into two continua, which

are given by the projections of the sets
⋃n−1

i=0 T i(G0) and
⋃2n−1

i=n T i(G0).

(c) Theorem 2.7 in [23] is stated for the case where A is a cofrontier, which is defined
as an irreducibly plane-separating continuum. A cofrontier is always the boundary
of a circloid, and conversely an annular continuum is a circloid if and only if its
boundary is a cofrontier. Since circloids may have interior, the two concepts are
not the same. However, while the subtle difference may play a role in other situa-
tions (see, for example, [6]), it is of minor importance in our context here and the
arguments in [23] work for both cases.

(d) Examples of (hereditarily) non-decomposable circloids were constructed by Bing
[39] and may occur as minimal sets of smooth surface diffeomorphisms [30, 31].

In the particular case of rational rotation number, we further obtain the existence of
periodic orbits.

Corollary 5.6. Let f ∈ Homeo0(A) with lift F : R2 → R2. Further, suppose A is an f -
invariant thin essential annular continuum which is compactly generated and ρA(F ) = {p/q}.
Then F has a q-periodic orbit with rotation number p/q in π−1(A).
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Proof. By going over to the q-th iterate, we may assume that ρA(F ) = {0}. Further, by
replacing G0 with

⋃n
i=0 Gi for sufficiently large n ∈ N, we may assume without loss of

generality that F (G0) ∩ G0 6= ∅. Then Lemma 5.3 implies that C :=
(⋃

k∈Z
F k(G0)

)
is

a compact and invariant set. Moreover, as A is thin, C is a non-separating continuum.
Therefore the Cartwright and Littlewood Theorem [40] implies the existence of a fixed point
of F in C. �

As Lemma 5.3 works for any combination of two compactly generated thin annular con-
tinua, we can prove Theorem 2 in a similar way as the above Corollary 5.4. However, what
we need as a technical prerequisite is the measurable dependence of the size of the generators
of fibres h−1(ξ) under the assumptions of the theorem. We obtain this in several steps. We
place ourselves in the situation of Theorem 2 and assume again without loss of generality
that the action h∗ : Π1(T2) → Π1(T1) on the fundamental group is the projection to the
second coordinate. This implies that the annular continua Aξ = h−1{ξ} are all of homotopy

type (1, 0). We denote by f̂ the lift of f to A and by F the lift to R2. Further, we denote

by ĥ : A → R a lift of h to A and by H : R2 → R a lift to R2.

Let Ω0 = {ξ ∈ T1 | Aξ is thin}, Ω = π−1(Ω0) and Aξ = ĥ−1{ξ} (ξ ∈ R). Then all Aξ

are essential annular continua in A, and Aξ is thin if and only if ξ ∈ Ω. Further, define
A+

ξ = ∂U+(Aξ) and A−
ξ = ∂U−(Aξ). Then for all ξ ∈ Ω we have Aξ = A+

ξ ∪ A−
ξ and, by

Lemma (2.1), A+
ξ ∩ A−

ξ = CAξ
=: Cξ.

We recall that for a metric space (X, d) and C, D ⊂ X , the Hausdorff distance is defined
as

dH(C, D) = max{sup
x∈C

d(x, D), sup
y∈D

d(y, C)}.

The convergence of a sequence {Cn}n∈N of subsets in X to A ⊂ X in this distance is denoted

either by Cn →H A or by limH
n→∞ Cn = A. Note that dH(C, D) < ε if and only if C ⊆ Bε(D)

and D ⊆ Bε(C), and that the Hausdorff distance defines a complete metric if one restricts
to compact subsets.

Lemma 5.7. If Aξ is thin, then limH
ξ′րξ A−

ξ′ = limH
ξ′րξ Aξ′ = A−

ξ and limH
ξ′ցξ A+

ξ′ =

limH
ξ′ցξ Aξ′ = A+

ξ .

Proof. We prove limH
ξ′րξ A−

ξ′ = limH
ξ′րξ Aξ′ = A−

ξ , the opposite case follows by symmetry.

Since A−
ξn

⊆ Aξn
, it suffices to show that for all ε > 0 there exists δ > 0 such for all

ξ′ ∈ (ξ − δ, ξ) we have

(5.1) Aξ′ ⊆ Bε(A
−
ξ ) and A−

ξ ⊆ Bε(A
−
ξ′) .

We start by showing the first inclusion. Fix ε > 0. Assume for a contradiction that there
exists a sequence ξn ր ξ such that Aξn

( Bε(A
−
ξ ) for all n ∈ N. Let zn ∈ Aξn

\Bε(A
−
ξ ) and

z = limn→∞ zn. Then z /∈ Bε(A
−
ξ ) and thus, since all the zn are below Aξ, we have z /∈ Aξ.

However, at the same time h(z) = limn→∞ h(zn) = limn→∞ ξn = ξ, a contradiction.
Conversely, in order to show the second inclusion in (5.1), assume for a contradiction that

there exists a sequence ξn ր ξ such that A−
ξ ( Bε(A

−
ξn

) for all n ∈ N. Let Kn = A−
ξ \Bε(A

−
ξn

)

and note that A−
ξ ∩Bε(A

−
ξn

) = A−
ξ ∩Bε(U−(A−

ξn
)), which is increasing in n. Then (Kn)n∈N

is a decreasing sequence of non-empty compact sets, such that K =
⋂

n∈N
Kn 6= ∅. Let

z ∈ K. Then Bε(z) ∩ A−
ξn

= ∅ and thus Bε(z) ⊆ U+(A−
ξn

) for all n ∈ N. This implies

h(z′) ≥ ξ for all z′ ∈ Bε(z), contradicting the fact that Bε(z) intersects U−(Aξ) and h < ξ
on U−(Aξ). �

Given a compactly generated thin annular continuum A, we let

(5.2) τ(A) = inf{diam(G) | G is a compact generator of A} .

Lemma 5.8. The function ξ 7→ τ(A−
ξ ) is lower semi-continuous from the left on Ω, that is,

lim inf
ξ′րξ

τ(A−
ξ′ ) ≥ τ(A−

ξ ) for all ξ ∈ Ω .
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Similarly, ξ 7→ τ(A+
ξ ) is lower semi-continuous from the right on Ω.

Proof. Let ξn ր ξ and assume without lose of generality that τ := limn→∞ τ(A−
ξn

) exists

and is finite. Choose generators Gξn
of Aξn

of diameter smaller than τ(A−
ξn

) + 1
n . Then,

using Lemma 5.7, it is straightforward to verify that any limit point G of (Gξn
)n∈N in the

Hausdorff metric is a compact generator of A−
ξ of diameter smaller than τ . �

It is easy to check that real-valued functions which are lower semi-continuous from one
side are also measurable. Consequently, since τ(Aξ) ≤ η(ξ) := τ(A−

ξ ) + τ(A+
ξ ), the function

η provides a measurable majorant for the minimal diameter of the generators of Aξ. Further,
A±

ξ are compactly generated if and only if Aξ is compactly generated, a fact which follows
from the topological considerations on thin annular continua exposed in the next section,
see Lemma 6.1. Altogether, this yields

Corollary 5.9. The map ξ 7→ τ(Aξ) has a measurable majorant η : T1 → R+ such that
η(ξ) < ∞ if Aξ is compactly generated.

We are now in the position to complete the proof of Theorem 2 by adapting the measure-
theoretic argument of M. Herman in [21, Theorem 5.4].

Proof of Theorem 2. Let f ∈ Homeo0(T2) and suppose h : T2 → T1 is a semiconjugacy
to the irrational rotation Rρ. We assume that h∗ = π∗

1 , such that there exist continuous

lifts ĥ : A → R of h and f̂ : A → A of f which satisfy

ĥ ◦ f̂ = Rρ ◦ ĥ .

Let F : R2 → R2 be a lift of f . Assume for a contradiction that f has no unique rotation
vector. Since the semiconjugacy is homotopic to π1, the first coordinate of any rotation
vector of f must be ρ. Therefore, similar to the proof of Corollary 5.4, this implies the
existence of two f -invariant ergodic probability measures µ1 and µ2 with

ρ1 =

∫

T2

π2(F (z) − z) dµ1(z) 6=

∫

T2

π2(F (z) − z) dµ2(z) = ρ2 .

As h−1{ξ} is compactly generated for Lebesgue-a.e. ξ ∈ T1, Corollary 5.9 yields the existence
of a finite-valued measurable majorant of ξ 7→ τ(h−1{ξ}). Hence, we can find a constant
C > 0 and a set ΩC ⊆ T1 of positive measure such that for all ξ ∈ ΩC the annular continuum
h−1{ξ} has a compact generator Gξ with diam(Gξ) ≤ C.

Both µ1 and µ2 must be mapped to the Lebesgue measure on T1 by h, since this is the
only invariant probability measure of Rρ. Hence, for almost every ξ ∈ T1 there exist points
z1, z2 ∈ h−1{ξ} which are generic with respect to µ1 and µ2, respectively. In particular, for
any lift ẑi ∈ R2 of zi we have that

(5.3) lim
n→∞

π2(F
n(ẑi) − ẑi)/n = ρi (i = 1, 2) .

Without loss of generality, we may assume that h−1{ξ} has compact generator Gξ and Rn
ρ (ξ)

visits ΩC infinitely many times, that is, Rni
ρ (ξ) ∈ ΩC for a strictly increasing sequence (ni)i∈N

of integers. Given lifts ẑ1, ẑ2 ∈ Gξ of z1, z2, Lemma 5.3 implies that

π2(F
ni(ẑ1)) − π2(F

ni(ẑ2) ≤ diam(Gr
ni
ρ (ξ)) + νGξ

+ νG
r

ni
ρ (ξ)

+ 1 ≤ νGξ
+ 2C + 1

for all i ∈ N. As ρ1 6= ρ2, this contradicts (5.3). �

6. Comments on the topology of thin annular continua.

The aim of this section is to give a basic classification for the topology of thin annular
continua in the context of compact generators, and to prove the result on foliations of T2

into essential annular continua mentioned in Remark 1.1(c). First, we have the following.

Lemma 6.1. Suppose A is a thin essential annular continuum which is compactly generated.
Then any thin essential annular continuum A′ ⊆ A is compactly generated and τ(A′) ≤ τ(A),
with τ defined as in (5.2). In particular, this holds for the circloid CA and for the annular
continua A− and A+ defined in the previous section.
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Proof. Suppose G0 is a compact generator of A and Â, Â′ are lifts of A and A′, respectively,

to Rd. Then it suffices to show that G′
0 = G0 ∩ Â′ is connected, since in this case G′

0 is a
compact generator of A′.

In order to do so, consider the closed-disk-compactification D of R2, obtained by adding

a circle at infinity. Let C be the closure of Â′ in D. Note that C is just the union of Â′

with two points in the unit circle. Suppose for a contradiction that G0 ∩ Â′ = G0 ∩ C is
not connected. Viewing D again as a subset of the plane allows to apply Lemma 2.6, which
implies that the union G0 ∪ C separates the plane. However, this is impossible since by

assumption Â has empty interior. �

We now investigate essential annular continua which are not compactly generated in more
detail. To that end, given X ⊂ R2, we denote by [X ]y the connected component of y in
X and define width(X) = sup {x1 − x2 | (x1, y1), (x2, y2) ∈ X}. For an essential annular

continuum A ⊂ A, we denote the lifts of A and CA by Â and ĈA. Then we define the set of
spikes of A as

SA :=
{[

Â \ ĈA

]
x

∣∣∣ x ∈ Â \ ĈA

}

and say that A has an infinite spike if there exists S ∈ SA with width(S) = ∞. Further we
let WSA

:= sup{width(S) | S ∈ SA}. We start with a general observation.

Lemma 6.2. If A is a thin annular continuum and S is a spike of A with width(S) < ∞,

then S ∩ ĈA 6= ∅.

Proof. As in the previous proof, we consider the closed-disk-compactification D of R2 and

the closure C of ĈA in D. Then [41, Theorem 2.16] implies that S intersects C, and since

S is bounded the intersection must be contained in ĈA. �

Corollary 6.3. Let A be an essential thin annular continuum. If CA is compactly generated
and WSA

< ∞, then A is compactly generated.

Proof. Let G′ be a generator of CA. For every spike S choose n ∈ Z such that S′ := T n(S)
intersects G′. Note that this is possible due to Lemma 6.2. Since WSA

< ∞, we have that

G :=
(
G′ ∪

⋃
S∈SA

S′
)

is a compact generator of A. �

Our next aim is to show that if CA is compactly generated, then WSA
= ∞ implies the

existence of an infinite spike.

Lemma 6.4. Let A be a thin annular continuum such that CA is compactly generated and
WSA

= ∞. Then there exists an infinite spike S ∈ SA.

We note that when CA has no compact generator, then WSA
may be infinite even if all

spikes are bounded. An example can be produced by attaching longer and longer spikes to
the pseudocircle constructed by Bing [29].

Proof. We assume that the supremum WSA
is obtained by spikes in U−(ĈA), the other

case is symmetric. Suppose for a contradiction that width(S) < ∞ for every S ∈ SA. Let

x0 ∈ Â \ U+(C bA) =
(
Â ∩ U−(ĈA)

)
∪ ĈA such that

π2(x0) = min

{
π2(x)

∣∣∣∣∣ x ∈
⋃

S∈SA

S ∩ U−(ĈA)

}
.

By changing coordinates if necessary, we can ensure that the map π2 on A reaches its
minimum outside of C bA. Hence, we may assume x0 /∈ C bA.

Let γx0(t) = x0 + t · (1, 0) and S0 ∈ SA such that x0 ∈ S0. Then due to Lemma 6.2 and
the fact that CA has a compact generator, we can consider a compact generator G of CA

that verifies G ∩ S0 6= ∅ and G ∩ T (S0) 6= ∅ (see Figure 6.1).
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T (S0)S0

G

S

γx0

Figure 6.1

Due to the definition of x0, we have that given any spike S ⊂ U−(ĈA) different from S0

the inclusion

S ⊂

(
U+(γx0(R)) ∩ U−

(⋃

n∈Z

T n(G)

))
\
⋃

n∈Z

T n(S0)

holds. Therefore width(S) < 2 · width(S0) + width(G). This contradicts WSA
= ∞. �

Altogether, we have now obtained the following basic classification concerning the exis-
tence of generators for essential thin annular and their circloids.

Proposition 6.5. Let A ⊂ A be an essential thin annular continuum. Then

(1) if A is not compactly generated then either
(1a) CA is not compactly generated, or
(1b) CA is compactly generated and A contains an infinite spike;

(2) if A compactly generated, then so is CA.

Note that Proposition 6.5 does not rule out the coexistence of an infinite spike and a
compact generator. In fact, this may happen, and a way to construct such examples is the
following. Let I = [0, 1] × {0} and J = {0} × [0, 1]. We consider K = J ∪ I ∪ T (J). Fix
x0 ∈ J \ I and x1 = T (x0) and and let γ : R+ = [0, +∞) → {(x, y) ∈ R2|0 < x < 1, y > 0}
be an injective curve that verifies

(i) γ([n, +∞)) ⊂ B 1
n
(K) for every n ∈ N;

(ii) limi γ(ti) = x0, limj γ(tj) = x1 for two strictly increasing sequences of positive
integers (ti)i∈N, (tj)j∈N.

Now let A = π(Ã) where Ã :=
⋃

n∈Z
T n(K ∪ γ(R+)). It is easy to see that A is a thin

essential annular continuum. Furthermore the set G = K∪γ(R+) is compact and connected,

and hence a generator of A. Finally the set S := Ã \ (R × {0}) is connected since S =⋃
n∈Z

T n((J ∪ T (J) \ I)∪ γ(R+)). Hence A has compact generator G and at the same time
contains the infinite spike S. What is not clear to us is whether similar examples can be
produced with an infinite spike that is not T -invariant.

Question 6.6. Suppose A is a thin annular continuum which contains an infinite spike S
with T n(S) ∩ S = ∅ for all n ∈ N. Does this imply that A has no compact generator?

As an example in the class of continua given in (1a), we have the Birkhoff attractor.
This is an essential thin circloid which has a segment as a rotation set for some map that
leaves it invariant (see e.g. [28]). Hence, due to Corollary 5.4 the Birkhoff attractor cannot
have a compact generator. For the class given in (1b) we can consider the continuum
given by A = π

(
R × {0} ∪

{(
x, 1

x

)
∈ R2 | x ≥ 1

})
, which contains the infinite spike S ={(

x, 1
x

)
∈ R2 | x ≥ 1

}
. Again, annular continua of this type can occur as invariant sets with

non-unique rotation number for annular homeomorphisms. Examples, which are basically
due to Walker [32], will be discussed in the next section.

Finally, as mentioned in Remark 1.1(c), we close with a result on the topology of essential
annular continua in foliations given by a semiconjugacy.

Proposition 6.7. In the situation of Theorem 1.1, the following are equivalent.
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(a) There exists a set Ω ⊆ T1 of positive Lebesgue measure such that for all ξ ∈ Ω
the fibre Aξ = h−1(ξ) is compactly generated.

(b) There exists a set Ω ⊆ T1 of positive Lebesgue measure such that for all ξ ∈ Ω
the fibre Aξ is thin and the circloid Cξ it contains is compactly generated.

The significance of this statement lies in the fact that it demonstrates that there is at
least one mechanism – compactly generated circloids with infinite spikes attached – which
can lead to the non-uniqueness of the rotation vector in the invariant case, but not in the
case of a semiconjugacy to an irrational rotation.

Proof of Proposition 6.7. By Proposition 6.5, if Aξ is compactly generated on a set of pos-
itive measure, then so is Cξ. Conversely, suppose the circloids Cξ are compactly generated
for all ξ ∈ Ω, where Ω ⊆ T1 has positive measure. For all ξ ∈ Ω, let Gξ be a compact
generator of Cξ with diam(Gξ) = τ(Cξ). Further, let τ be as in (5.2). Using Lemma 6.1, it
can be shown in exactly the same way as in Corollary 5.9 that the mapping ξ 7→ τ(Cξ) has
a measurable majorant η. Using this, we define

Ωn = {ξ ∈ T1 | η(ξ) ≤ n} .

Then Ω′ =
⋃

n∈N
Ωn has the same measure as Ω.

Fix any n ∈ N and any Lebesgue density point in Ωn. Then there exist sequences ξ−n and
ξ+
n such that ξ ∈ (ξ−n , ξ+

n ) for all n ∈ N and limn→∞ d(ξ−n , ξ+
n ) = 0. Exactly as in the proof

of Lemma 5.8, we have that G̃± = limH
n→∞ Gξ±

n
is a compact generator of A±

ξ , where we go

over to subsequences if necessary in order to force convergence. Consequently G̃ξ = G̃−
ξ ∪G̃+

ξ

is a compact generator of Aξ. Since Lebesgue density points have full measure in Ωn and
limn→∞ LebT1(Ωn) = LebT1(Ω), this proves the statement. �

7. Rotation intervals for thin annular continua: Construction of examples.

Our final objective is to construct examples of invariant thin essential annular continua
which have compactly generated circloid, at least one infinite spike and a non-trivial rotation
interval. As mentioned before, our construction is similar to that of Walker [32]. It leads to
the following statement.

Proposition 7.1. Given any segment I ⊂ R, there exists a map f ∈ Homeo(A) which leaves
invariant an essential thin annular continuum A ⊂ A such that CA has compact generator,
A has an infinite spike, and ρA(f) = I.

Proof. Let D ⊂ Diffeo+(T1) be the set of lifts G : R → R of orientation-preserving circle
diffeomorphisms g with a totally disconnected non-wandering set Ω(g). Note that this means
g either has rational rotation number and a totally disconnected set of periodic points, or g
is a Denjoy example (with irrational rotation number).

Our aim is to construct a family of examples of homeomorphisms fG,α of A, parametrised
by G ∈ D and α ∈ R, such that

• fG,α leaves invariant some annular continuum AG,α with compactly generated cir-
cloid and at least one infinite spike, and

• ρAG,α
(F ) = conv({α, ρ(G)}), where conv(X) denotes the convex hull of X , and ρ(G)

is the rotation number of G.

This will prove Proposition 7.1.

For any t ∈ [0,∞), let Rt = R × {t} and define i : (0, +∞) → R by i(x) = 1
x . Further,

let L = {Lp}p∈R be the C∞-foliation of R × (0, +∞) whose leaves are given by

Lp = graph(i) + (p − 1, 0)

for every p ∈ R, where graph(i) = {(x, i(x))|x > 0}. Hence, all leaves are horizontal
translates of each other, and Lp is the leaf passing through the point (p, 1), see Figure 7.1.
Let

p(x, y) = x −
1

y
+ 1



Torus homeomorphisms semiconjugate to irrational rotations 17

and note that thus (x, y) ∈ Lp(x,y) for all (x, y) ∈ R × (0,∞).

Now, consider

F1 : R × (0,∞) → R × (0,∞) , (x, y) 7→ (x + v(x, y), y) ,

where

v(x, y) = G(p(x, y)) − p(x, y) .

Notice that p(F1(x, y)) = x + v(x, y) + 1 − 1/y = p(x, y) + v(x, y) = G(p(x, y)), such that
F1(Lp) = LG(p). Hence, the map F1 permutes the leaves of the foliation L according to
the dynamics given by G, while leaving the second coordinate invariant. In particular, this
means that F1 preserves the set

T :=
⋃

p∈π−1(Ω(g))

Lp .

Further, F1 is a C1 diffeomorphism since p is C∞ and G is C1.

Given (x, y) ∈ R × (0,∞), let X(x, y) be the vector which is tangent to Lp(x,y) in the

point (x, y) and which is scaled such that its first coordinate is α − v(F−1
1 (x, y)) = α −

p(x, y) + G−1(p(x, y)). In explicit form, we have

X(x, y) =
(
α − v(F−1

1 (x, y)), t(x, y)
)

,

where t(x, y) = −
α−v(F−1

1 (x,y))
(x−p(x,y)+1)2 . Then X defines a C1-vector field on R × (0,∞).

Choose an increasing C1-function η : (0,∞) → [0,∞) such that η(y) = 0 for y ≥ 2/3 and

η(y) = 1 if 0 ≤ y ≤ 1/3 and let X̃(x, y) = η(y)X(x, y). Then again X̃ is a C1-vector field,

which induces a flow ΦX̃ on R× (0,∞). We denote the time-one-map of this flow by F2 and
define FG,α : R2 → R2 by

FG,α =

{
F2 ◦ F1(x, y) if y > 0
(x + α, y) if y ≤ 0

.

Figure 7.1. Two-step construction of the map FG,α. The flow ΦX̃ used in
order to define F2 moves points along the leaves of the foliation L. Due to
the geometry of L, orbits close to R0 remain near R0 for a long time and
move with constant speed α − (π1 ◦ F1(x, y) − x) in the x-direction, such
that π1 ◦ FG,α(x, y) − x = α.

See Figure 7.1 for a geometric intuition. By periodicity of the construction in the x-
direction, FG,α induces a map fG,α on A, and we claim that this has the properties stated
above. In order to see this, note that F1 preserves the horizontal lines Rt, t > 0, and
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since η(y) = 0 if y ≥ 2/3 this implies that FG,α preserves all the horizontal lines above

R2/3. Further, the flow ΦX̃ preserves the foliation L, even leaf by leaf, since by definition
it is a flow along the leaves of this foliation. Therefore, FG,α preserves the horizontal strip
continuum (R0 ∪ T ) ∩ (R × [0, 1]), which projects to an annular continuum AG,α with the
properties stated above.

Moreover, FG,α is bijective and a homeomorphism when restricted to either the open
upper half-plane or the closed lower half-plane. In order to show that it is a homeomorphism
of R2, it only remains to check the continuity of FG,α on the line R0. However, due to the

geometry of the foliation L and the definition of the vector field X̃, which coincides with
X in R × [0, 1/3], points which are close to R0 get mapped to points close to R0 again.

The reason is that orbits of ΦX̃ starting close to R0 travel with bounded speed along
the leaves of the foliation L, which are almost horizontal near R0. Furthermore, if these
orbits start sufficiently close to R0, then they will remain in the region R × [0, 1/3] until
time 1. Since the first coordinate of the vector field is equal to α − v(F−1

1 (x, y)), which
is constant along the leaves of the foliation as it only depends on p(x, y), we obtain that
π1(F2(x, y)) − x = α− v(F−1

1 (x, y) for sufficiently small y > 0 and all x ∈ R. However, this
means that π1(FG,α(x, y)) − x = α. Altogether, this shows the continuity of FG,α on R0.

Finally, we need to check that ρ(FG,α) = conv(α, G(α)). By going over to the inverses if
necessary, we may assume without loss of generality that ρ(G) > α. In this case, the line
R0 is a repeller, since in order to make up for the difference α − ρ(G) < 0 of the rotation
numbers, orbits close to R0 have to move to the left, and hence upwards, until they leave
the region R × [0, 1/3].

Consequently, all forward orbits starting strictly above R0 will remain bounded away from
R0. This means, however, that the part of the horizontal displacement π1 ◦ Fn

G,α(x, y) − x
which comes from the movement along the leaves is bounded independent of n. Hence, the
asymptotic speed of these orbits is determined by the permutation of the leaves by F1, which
implies that they have rotation number ρ(G). Hence, all rotation vectors are either ρ(G) or
α, and since the endpoints of the rotation interval are always realised by pointwise rotation
vectors, we obtain ρAG,α

(FG,α) = [α, ρ(G)]. �
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[20] J. Kwapisz. Poincaré rotation number for maps of the real line with almost periodic displacement.

Nonlinearity, 13(5):1841, 2000.
[21] M. Herman. Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le
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