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Abstract. We show that binary Toeplitz flows can be interpreted as Delone dynamical

systems induced by model sets and analyse the quantitative relations between the respective

system parameters. This has a number of immediate consequences for the theory of model

sets. In particular, we use our results in combination with special examples of irregular

Toeplitz flows from the literature to demonstrate that irregular proper model sets may be

uniquely ergodic and do not need to have positive entropy. This answers questions by

Schlottmann and Moody.

1. Introduction

Toeplitz flows have played an important role in the development of ergodic theory, since

they provide a wide class of minimal dynamical systems that may exhibit a variety of exotic

properties. Accordingly, they have often been employed to clarify fundamental questions

on dynamical systems and to provide examples for particular combinations of dynamical

properties, like strict ergodicity and positive entropy or minimality and absence of unique

ergodicity [14, 17, 25].

The aim of this article is to make this rich source of examples available in the context of

aperiodic order — often referred to as the mathematical theory of quasicrystals — and more

specifically for the study of (general) cut and project sets. Cut and project sets, introduced

by Meyer [18] in a somewhat different context, are arguably the most important class of

examples within the theory of quasicrystals. With a focus on proper (but not necessarily

regular) model sets their investigation has become a cornerstone of the theory, see e.g. the

survey papers [19, 20]. Recently, also the more general classes of repetitive Meyer sets [1, 15]

(see the survey [2] as well) and of weak model sets [4, 16] have been studied in some detail.

It is an elementary observation that any two-sided repetitive (or almost periodic) sequence

ξ = (ξn)n∈Z of 0’s and 1’s can be identified with a Delone subset of Z, for instance the one

given by D(ξ) = {n ∈ Z | ξn = 1}. Our main result, Theorem 1 in Section 2, shows that if ξ

is a Toeplitz sequence, then D(ξ) can always be interpreted as a model set arising from a cut

and project scheme (CPS). Not surprisingly, the internal group of this CPS is chosen as the

odometer associated with the Toeplitz sequence.

Moreover, we provide a quantitative analysis and show that the regularity and the scaling

exponents of the Toeplitz sequence can be computed either in terms of the measure of the

boundary of the windows in the CPS (in the case of irregular Toeplitz flows, Section 2) or in

terms of the box dimension of this boundary (for regular Toeplitz flows, Section 3). This ties
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together the principal quantities of both system classes and immediately allows to answer a

number of questions on model sets, which were – to the best of our knowledge – still open.

In particular, we thus obtain that a positive measure of the boundary of the window

of a cut and project set does neither imply positive topological entropy, nor the existence of

multiple ergodic measures (Section 4). Moreover, using Toeplitz examples due to Downarowicz

and Lacroix [10], we can then demonstrate that model sets may have any given countable

subgroup of R as their dynamical spectrum, provided it contains infinitely many rationals.

In particular, irrational eigenvalues may occur despite the fact that the underlying odometer

only has rational point spectrum, and this further implies the existence of non-continuous

eigenfunctions.

It is worth mentioning that the model sets provided by our construction are minimal and

satisfy the additional regularity feature of properness. In particular, they fall into both the

class of repetitive Meyer sets and the class of weak model sets mentioned above.

Our construction below deals with binary Toeplitz sequences, as this suffices to provide

the desired counterexamples. However, clearly, similar results can be achieved for Toeplitz

sequences over larger alphabets than {0, 1}. Indeed, for the purposes of the present paper it is

not hard to reduce the case of arbitrary Toeplitz sequences to binary sequences by identifying

all letters but one.

2. Binary Toeplitz sequences and model sets

Let us start by discussing Toeplitz sequences and flows. For background and references we

refer the reader to [9]. Let Σ = {0, 1}Z and denote by σ : Σ −−→ Σ the left shift. Suppose

ξ ∈ Σ is a Toeplitz sequence, which means that for all k ∈ Z there exists p ∈ N such that

ξk+np = ξk for all n ∈ Z. Then, the shift orbit closure Σξ = {σn(ξ) | n ∈ Z} is a minimal set

for the shift σ, and (Σξ, σ) is called the Toeplitz flow generated by ξ. Elements of Σξ which

are not Toeplitz sequences themselves are called Toeplitz orbitals. The latter necessarily exist

in any Σξ that is built from a non-periodic Toeplitz sequence ξ; compare [3, Cor. 4.2]. In the

remainder of this paper, we shall restrict our attention to non-periodic Toeplitz sequences.

In line with the standard literature, we call

Per(p, ξ) = {k ∈ Z | ξk = ξk+np for all n ∈ Z}

the p-skeleton of ξ and refer to its elements as p-periodic positions of ξ. A p ∈ N is an essential

period of ξ if Per(p′, ξ) 6= Per(p, ξ) for all p′ < p. A period structure for ξ is a sequence (p`)`∈N
of essential periods such that, for all ` ∈ N, p` is an essential period of ξ that divides p`+1

and that, together, they satisfy
⋃
`∈N Per(p`, ξ) = Z. Such a sequence always exists and can

be obtained, for example, by defining p` as the multiple of all essential periods occuring for

the positions in [−`, . . . , `]. The density of the p-skeleton is defined as

D(p) = #
(
Per(p, ξ) ∩ [0, p− 1]

)
/p.
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A Toeplitz sequence and the asociated flow are called regular, if lim`→∞D(p`) = 1 and

irregular otherwise. This distinction turns out to be independent of the choice of the period

structure.

Given a period structure (p`)`∈N, we let q` = p`/p`−1 for ` ≥ 1, with the convention that

p0 = 1. Then, the compact Abelian group Ω =
∏
`∈N Z/q`Z equipped with the addition

defined according to the carry over rule is called the odometer group with scale (q`)`∈N. We

denote the Haar measure on Ω by µ and let τ : Ω −−→ Ω with ω 7→ ω+(1, 0, 0, . . .) denote the

canonical minimal group rotation on Ω. We call (Ω, τ) the odometer associated1 to (Σξ, σ).

This odometer (Ω, τ) coincides with the maximal equicontinuous factor (MEF) of (Σξ, σ),

and the factor map β : Σξ −−→ Ω can be defined by

β(x) = ω :⇐⇒ Per
(
p`, σ

k(`,ω)(x)
)

= Per(p`, ξ), for all ` ∈ N,

where k(`, ω) =
∑`

i=1 ωipi−1; compare [10] for details. Given w ∈
∏`
i=1 Z/qiZ, we also let

k(`, w) =
∑`

i=1wipi−1.

Remark 1. There is an alternative equivalent description of the odometer, which is actually

closer to considerations in the quasicrystal literature, as e.g. in [7]. As this is instructive in

the context of our construction below we shortly discuss this: Let Ω′ be the inverse limit of

the system (Z/p`Z)`≥0, so the elements of Ω′ are the sequences (x`)`≥0 with x` ∈ Z/p`Z and

x`−1 = π`(x`) for each ` ∈ N. Here, π` : Z/p`Z −→ Z/p`−1Z is the canonical projection.

Then, Ω′ is an Abelian group under componentwise addition, and the map

Ω −−→ Ω ′, ω 7→ (k(`, ω))`≥0 ,

provides an isomorphism of topological groups. Under this ismomorphism, the map τ on Ω

corresponds to addition of 1 in each component of elements of Ω ′. ♦

Let us now turn to cut and project schemes (CPS) and model sets, where we refer to [3]

and references therein for background and general notions. In general, a CPS (G,H,L) is

given by a pair of locally compact Abelian groups G,H together with a discrete co-compact

subgroup L of G×H such that π : G×H → G is injective on L and πint : G×H → H maps

L to a dense subset of H. Given any subset (window) W of H, such a CPS produces a subset

of G, called a cut and project set, given by

f(W ) = π ((G×W ) ∩ L) .

Such a set is called a model set when W is relatively compact with non-empty interior. In

this case, f(W ) is always a Delone set. When, in addition, the boundary ∂W of the window

has zero measure in H, the model set is called regular. As a standard case, one considers

compact windows W that satisfy ∅ 6= W = int(W ), in which case they are called proper.

1We note that period structures of Toeplitz sequences are not uniquely defined, but all the odometers with

scales corresponding to different period structures of the same Toeplitz sequence are isomorphic.
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Since we consider Toeplitz sequences as weighted subsets of Z, the easiest way to describe

them as model sets works for a CPS of the form (G,H,L) where G = Z or R and H = Ω is

the odometer from above. So, we consider the situation summarised in the following diagram,

G
π←−−− Z×H

πint−−−→ H

∪ ∪ ∪ dense

Z 1−1←−−− L −−−→ πint(L)

‖ ‖

L
?−−−−−−−−−−−−−−−−→ L?

Further, L is a lattice in G×H that emerges as a diagonal embedding,

(1) L := {(n, n?) | n ∈ Z},

where n? := τn(0) defines the so-called ?-map ? : G = Z −−→ H. Clearly, the restriction of

π to L is one-to-one and the restriction of πint has dense range. Using the ?-map, a cut and

project set for (G,H,L) and window W can equally be written as

f(W ) = {x ∈ L | x? ∈W} .

Using these ingredients, our main result now reads as follows.

Theorem 1. Let Σ = {0, 1}Z and suppose ξ ∈ Σ is a non-periodic Toeplitz sequence with

period structure (p`)`∈N. Let (Ω, τ) be the associated odometer. Then,

D(ξ) = {n ∈ Z | ξn = 1}

is a model set for the CPS (Z, Ω,L) or (R, Ω,L), with the lattice L of Eq. (1) and the ?-map

defined above. Moreover, the corresponding window W ⊆ Ω is proper and satisfies

µ(∂W ) = 1− lim
`→∞

D(p`).

Proof. We discuss the case (Z, Ω,L) with L as in (1); the other case is analogous, because

we view D(ξ) as a subset of Z, so that the R-action emerges from the Z-action by a simple

suspension with a constant height function. In order to derive the window W for the CPS, we

denote cylinder sets in Ω either by [w] = [w1, . . . , w`] = {ω ∈ Ω | ωi = wi for 1 6 i 6 `} with

w ∈
∏`
i=1 Z/qiZ or, given ω ∈ Ω and ` ∈ N, by [ω]` = [ω1, . . . , ω`]. Note that µ

(
[w]
)

= 1/p`.

Consider

A(`, s) =
{
w ∈

∏̀
i=1

Z/qiZ
∣∣∣ k(`, w) is a p`-periodic position of ξ and ξk(`,w) = s

}
with s ∈ {0, 1}. Then, define U` =

⋃
w∈A(`,1)[w] and V` =

⋃
w∈A(`,0)[w]. Clearly, U` ⊂ U`+1

and V` ⊂ V`+1 hold for any `. Set U =
⋃
`∈N U` and V =

⋃
`∈N V`. Now, we let W = U and

claim that this window W satisfies the assertions of our theorem.
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First, we show that our CPS (Z, Ω,L) together with the window W produces the Delone

set D(ξ) as its model set, that is,

f(W ) := {n ∈ Z | τn(0) ∈W} = D(ξ).

In order to do so, fix k ∈ Z and suppose ξk = 1, so that k ∈ D(ξ). Let ` be the least integer

such that k is a p`-periodic position of ξ. Then, there exists a unique k′ ∈ [0, p` − 1] such

that k′ = k + np` for some n ∈ Z. This k′ is a p`-periodic position as well and we also have

ξk′ = 1. Further, we have k′ = k(`, w) for a unique w ∈
∏`
i=1 Z/qiZ. However, this means

that [w] ⊆ U ⊆ W by construction. Since τm(0) ∈ [w] for all m ∈ k(`, w) + p`Z (note that

τk(`,w)(0) = (w, 0, 0, . . .) and any cylinder of length ` is p`-periodic for τ), we in particular

have that τk(0) ∈ W , so that k ∈ f(W ). In a similar way, we obtain that ξk = 0 implies

τk(0) ∈ V and thus k /∈f(W ) (note here that V is open, so that V ⊆ Ω \W ). This proves

f(W ) = {k ∈ Z | ξk = 1} = D(ξ).

Next, we determine the measure of ∂W (and obtain properness as a byproduct). We have

#
(
A(`, 0) ∪A(`, 1)

)
= #{k ∈ [0, p` − 1] | k is a p`-periodic position} = D(p`) · p` .

This means that µ(U` ∪ V`) = D(p`), and thus

µ(U ∪ V ) = lim
`→∞

µ(U` ∪ V`) = lim
`→∞

D(p`).

Thus, it suffices to show that ∂W = Ω \ (U ∪ V ). By openess and disjointness of U and V ,

this is equivalent to (W = )U = Ω \ V and V = Ω \ U . As the situation is symmetric, we

restrict to prove W = Ω \ V . The inclusion W ⊂ Ω \ V is clear. It remains to show the

opposite inclusion. To that end, fix ω ∈ Ω \ V and κ ∈ N. We are going to show that U

intersects every cylinder neighbourhood [ω]κ of ω, so that ω ∈ U = W .

As
⋃
`∈N Per(p`, ω) = Z, there exists a least integer ` such that k = k(κ, ω1, . . . , ωκ) is a

p`-periodic position. First, suppose that ` ≤ κ. Then, k is a pκ-periodic position, and we

have [ω]κ ⊆ Uκ if ξk = 1 and [ω]κ ⊆ Vκ if ξk = 0. The latter is not possible, since we assume

ω /∈ V . Hence, we have that [ω]κ ⊆ U . Secondly, suppose that ` > κ. Then, k cannot be a

pκ-periodic position, and hence there exists n ∈ Z such that k′ = k + npκ satisfies ξk′ = 1.

Choose the least `′ ∈ N such that k′ is a p`′-periodic position and let v ∈
∏`′

i=1 Z/qiZ be such

that k′ = k(`′, v) mod p`′ . Set k′′ = k(`′, v). By construction, we have [v] ⊆ U`′ ⊆ U . At the

same time, we have vi = ωi for all 1 6 i 6 κ, since k′′ = k + npκ + mp`′ for some m ∈ Z.

Hence, we have that [v] ⊆ [ω]κ and thus U ∩ [ω]κ 6= ∅.

As mentioned already, the argument is completely symmetric with respect to U and V ,

and we also obtain V = Ω \ U . This then implies that U = int(W ), and since W = U by

definition, we obtain that W is proper. �

3. Regular Toeplitz flows

For the case of regular Toeplitz sequences, more information is available to relate the scaling

behaviour of D(p`) to the box dimension of the boundary of the window. In order to state the
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result, we assume that d is a metric on Ω that generates the product topology and is invariant

under the group rotation τ . Note that since cylinder sets in Ω are mapped to cylinder sets,

and τ is transitive on Ω, all cylinder sets of a given level ` have the same diameter d`. The

choice of the sequence d` defines the metric and is more or less arbitrary, as long as it is

decreasing in `. The box dimension of Ω depends on this choice and is given by

DimB(Ω) = lim
`→∞

log(p`)

log(d`)
.

If this limit does not exist, then one defines upper and lower box dimension DimB(Ω) and

DimB(Ω) by using the limit superior, respectively inferior. We also note that the canonical

choice for the metric d is given by d` = p−1`+1, but our statement is valid in general.

Theorem 2. Suppose that, in the situation of Theorem 1, we have lim`→∞D(p`) = 1. Then,

the window W can be chosen such that

DimB(∂W ) =

(
1 + lim

`→∞

log(1−D(p`))

log(p`)

)
DimB(Ω)

and

DimB(∂W ) =

(
1 + lim

`→∞

log(1−D(p`))

log(p`)

)
DimB(Ω).

Proof. The construction in the proof of Theorem 1 is completely independent of the value of

lim`→∞D(p`), and in particular applies also to the regular case. Hence, we may choose the

same window W as above and only need to determine the box dimension of ∂W .

To that end, note that ∂W = Ω \ (U ∪ V ) and U` ∪ V` ⊆ (U ∪ V ), so that Ω \ (U` ∪ V`)
contains ∂W . However, we have that

Ω \ (U` ∪ V`) =
⋃

w∈Z`\A(`,0)∪A(`,1)

[w] ,

so that this set is a union of N(`) = (1 − D(p`)) · p` cylinders of order `. Moreover, it is

not possible to cover ∂W with a smaller number of such cylinders, so that N(`) is the least

number of sets of diameter d` needed to cover ∂W . Hence, we obtain

DimB(∂W ) = lim
`→∞

log((1−D(p`)) · p`)
log d`

=

(
1 + lim

`→∞

log(1−D(p`))

log p`

)
·DimB(Ω) .

The analogous computation yields the relation for the lower box dimensions. �

Remark 2. Let us point out some further properties and directions as follows.

(a) As a consequence of our main theorem, a Toeplitz sequence is regular if and only if the

associated model set is regular.

(b) As it is well-known, regular Toeplitz flows are almost one-to-one extensions of their

MEF; compare [10]. In particular, they are uniquely ergodic and have pure point dynamical

spectrum with continuous eigenfunctions, which separate almost all points. Therefore, the
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general characterisation of dynamical systems coming from regular models sets provided in

[6] directly applies to provide a model set construction for these systems.

(c) As regular Toeplitz flows have pure point dynamical spectrum, they also exhibit pure

point diffraction by the general equivalence theorem, see [5] and references therein for details

and background. As they are uniquely ergodic, each individual sequence of the flow then

exhibits the same pure point diffraction. So, the method of [7] can be used to provide a CPS

for a regular Toeplitz sequence. This leads to an alternative, but equivalent, way in the spirit

of Remark 1, as can be seen from the example of the period doubling chain in [7]. ♦

4. Consequences for irregular Toeplitz flows

There has been quite some speculation on connections between irregularity of the model set

and occurrence of positive entropy or failure of unique ergodicity for the associated dynamical

systems. Indeed, Schlottmann asks whether irregularity of the model set implies failure of

unique ergodicity [24] and Moody has suggested that irregularity is related to positive entropy.

The suggestion of Moody is recorded in [23] (later subsumed in [22]) and is also discussed in

the introduction to [12]. When combined with examples of Toeplitz systems studied in the

past, our main theorem allows us to answer these speculations by presenting model sets with

various previously unknown features (such as irregularity combined with unique ergodicity

and zero entropy). This is discussed in this section. Let us emphasise that all Toeplitz flows

are minimal and that the model sets presented below are even proper (as Theorem 1 provides

proper model sets).

Arguably among the most interesting examples in our present context are irregular Toeplitz

flows with zero entropy [21], as these immediately imply the following statement.

Corollary 1. Positive measure of the boundary of a window of a CPS is not a sufficient

criterion for positive topological entropy of the associated Delone dynamical system. �

We note that there even exist irregular Toeplitz flows (and thus irregular model sets) whose

word complexity is only linear [11]. A number of further interesting examples are available

in the literature. Amongst these are the following.

• Irregular Toeplitz flows may be uniquely ergodic [25], so that a window for a CPS

with a boundary of positive measure does not contradict unique ergodicity of the

resulting Delone dynamical system. Moreover, the set of ergodic invariant measures

of an irregular Toeplitz flow may have any cardinality.

• Any countable subgroup of R that contains infinitely many rationals can be the dy-

namical spectrum of a Toeplitz flow [10], and thus of the Delone dynamical system

arising from a CPS. As all continuous eigenvalues of a Toeplitz flow are rational,

this gives in particular examples of model sets with (many) measurable eigenvalues

(see [8] as well for a recent study of Toeplitz systems of finite topological rank with

measurable eigenvalues).
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• Oxtoby’s original example of a Toeplitz flow with zero entropy in [21] is not uniquely

ergodic, and the same is true of the example in [11]. However, there also exist uniquely

ergodic irregular Toeplitz flows both with and without positive entropy [25]. In partic-

ular, there exist irregular model sets with uniguely ergodic minimal dynamical systems

with zero entropy.

Remark 3. There is an emerging theory of weak model sets, see for instance [4, 12, 16],

dealing with irregular windows for a given CPS. If the arising model sets satisfies a maximality

condition for its density, the associated dynamical systems will generally not be minimal.

Thus, the irregular Toeplitz sequences are, in this sense, never weak model sets of maximal

density. They rather provide a versatile class of examples to explore the possibilities that

emerge from missing out on the maximality property. ♦
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