Equivalent norms on grand and small Lebesgue spaces

David Pražák, Petr Honzík

Department of Mathematical Analysis
Charles University

Prague 2008
Outline

Grand Lebesgue space

Small Lebesgue space

Interpolation theorem

Compactness of Sobolev imbedding

Equivalent norms on grand and small Lebesgue spaces
Definition (of a class of weights)

Let us denote W the class of all functions $\varphi : (0, +\infty) \to (0, 1]$ which are increasing and there are constants $1 < C_1 \leq C_2 < \infty$ such that $C_1 \varphi(2^{-k}) \leq \varphi(2^{-k+1}) \leq C_2 \varphi(2^{-k})$ for all $k \in \mathbb{N}$. Furthermore, we assume that $\varphi(t) = 1$ for $t > 1$.
Definition
Let the measure of Ω is equal to 1 and $1 < p < +\infty$. Then for $\varphi \in \mathcal{W}$ we define the grand Lebesgue space

$$L^{p)}_{\varphi}(\Omega) = \{ f \in \mathcal{M}_0(\Omega) : \|f\|_{p,\varphi} = \sup_{0<\varepsilon<p-1} \varphi(\varepsilon)\|f\|_{p-\varepsilon} < +\infty \}.$$
Definition
Let the measure of Ω is equal to 1 and $1 < p < +\infty$. Then for $\varphi \in \mathcal{W}$ we define the grand Lebesgue space

$$L^p_\varphi(\Omega) = \{ f \in \mathcal{M}_0(\Omega) : \|f\|_{p,\varphi} = \sup_{0<\varepsilon<p-1} \varphi(\varepsilon)\|f\|_{p-\varepsilon} < +\infty \}.$$

This space with the weight $\varphi(\varepsilon) = \varepsilon^{1/(p-\varepsilon)}$ was introduced in the paper by T. Iwaniec and C. Sbordone in 1992 where they study the integrability of the Jacobian under minimal hypotheses.
Remark

Let Ω has finite measure, $1 < p < +\infty$ and $\varphi \in \mathcal{W}$. Then

$$L^p(\Omega) \subset L^p_{\varphi}(\Omega) \subset L^{p-\varepsilon}(\Omega), \quad \forall \varepsilon \in (0, p - 1).$$
Remark

Let Ω has finite measure, $1 < p < +\infty$ and $\varphi \in \mathcal{W}$. Then

$$L^p(\Omega) \subset L^p(\Omega) \subset L^{p-\varepsilon}(\Omega), \quad \forall \varepsilon \in (0, p - 1).$$

Definition

If we have a function f on Ω and $k \in \mathbb{N}$ we define f_k^* to be the restriction of f^* to the interval $[2^{-2^k+1}, 2^{-2^k-1+1}]$.
Theorem

Let $1 < p < +\infty$ and $\varphi \in \mathcal{W}$. Then

$$\|f\|_{p),\varphi} \approx \sup_{k \in \mathbb{N}} \varphi(2^{-k}) \|f_{k}\|_{p}$$

and

$$\|f\|_{p),\varphi} \approx \sup_{0 < t < 1} \varphi\left(\frac{1}{1 - \log t}\right) \left(\int_{t}^{1} (f^*(s))^p ds\right)^{1/p}.$$
Outline

Grand Lebesgue space

Small Lebesgue space

Interpolation theorem

Compactness of Sobolev imbedding

D. Pražák, P. Honzík

Charles University

Equivalent norms on grand and small Lebesgue spaces
Definition
Let the measure of Ω is equal to 1 and $1 < p < +\infty$. Then for $\varphi \in \mathcal{W}$ we define the small Lebesgue space $L^{(p)}(\Omega)$ as the space of all measurable functions f on Ω such that the following norm is finite:

$$\|f\|_{(p,\varphi)} = \inf_{f=\sum_{k=1}^{\infty} f_k} \sum_{k=1}^{\infty} \inf_{0<\varepsilon<p'-1} \varphi(\varepsilon) \|f_k\|_{p+\varepsilon}.$$
Definition

Let the measure of Ω is equal to 1 and $1 < p < +\infty$. Then for $\varphi \in \mathcal{W}$ we define the small Lebesgue space $L^{(p)}_\varphi(\Omega)$ as the space of all measurable functions f on Ω such that the following norm is finite:

$$\|f\|_{(p,\varphi)} = \inf_{f=\sum_{k=1}^{\infty} f_k} \sum_{k=1}^{\infty} \inf_{0<\varepsilon<p'-1} \frac{1}{\varphi(\varepsilon)} \|f_k\|_{p+\varepsilon}.$$

This space with the weight $\varphi(\varepsilon) = \varepsilon^{1/(p'-\varepsilon)}$ was found by A. Fiorenza in 2000 as the associate space of the grand Lebesgue space $L^{p'}_\varphi(\Omega)$.
Remark

Let Ω has finite measure, $1 < p < +\infty$ and $\varphi \in \mathcal{W}$. Then

$$L^{p+\varepsilon}(\Omega) \subset L^{p}(\varphi(\Omega)) \subset L^{p}(\Omega), \quad \forall \varepsilon > 0.$$
Theorem

Let $1 < p < +\infty$ and $\varphi \in \mathcal{W}$. Then

$$\|f\|_{(p, \varphi)} \approx \sum_{k \in \mathbb{N}} \frac{\|f_k^*\|_p}{\varphi(2^{-k})}$$

and, moreover, $\|f\|_{(p, \varphi)}$ is equivalent to the following norm:

$$\int_0^1 \left((1 - \log t) \varphi \left(\frac{1}{1 - \log t} \right) \right)^{-1} \left(\int_0^t (f^*(s))^p \, ds \right)^{1/p} \frac{dt}{t}.$$
Outline

Grand Lebesgue space

Small Lebesgue space

Interpolation theorem

Compactness of Sobolev imbedding

Equivalent norms on grand and small Lebesgue spaces
Definition
Let $\mathcal{X} = (X_0, X_1)$ be a compatible couple, $1 \leq q \leq +\infty$ and let w be a non-negative measurable function on $(0, +\infty)$. Then the space $\mathcal{X}_{w,q}$ consists of all functions f in $X_0 + X_1$ such that the following norm is finite:

$$
\|f\|_{\mathcal{X}_{w,q}} = \left(\int_0^\infty (w(t)K(f, t; \mathcal{X}))^q \frac{dt}{t} \right)^{1/q}, \quad 1 \leq q < \infty,
$$

$$
\|f\|_{\mathcal{X}_{w,\infty}} = \sup_{0 < t < \infty} w(t)K(f, t; \mathcal{X}), \quad q = \infty,
$$

where the K-functional is defined by

$$
K(f, t; \mathcal{X}) = \inf \{ \|f_0\|_{X_0} + t\|f_1\|_{X_1} : f = f_0 + f_1 \}.
$$
Theorem

Let $1 \leq q < p < +\infty$ and $\varphi \in \mathcal{W}$. Then

$$L^p_\varphi = (L^q, L^p)_{w, \infty}$$

where $w(t) = \frac{1}{t} \varphi\left(\frac{1}{1 - \log t}\right)$

with equivalence of norms.
Theorem

Let $1 < p < +\infty$ and $\varphi \in \mathcal{W}$. Then

$$L_\varphi^p = (L^p, L^\infty)_{w,1} \quad \text{where} \quad w(t) = \frac{1}{(1 - \log t) \varphi\left(\frac{1}{1 - \log t}\right)}$$

with equivalence of norms.
Theorem

Let \(1 \leq q_1 < p_1 < +\infty \), \(1 \leq q_2 < p_2 < +\infty \) and let \(T \) be a bounded linear operator such that

\[
T : L^{q_1}(\Omega_1) \to L^{q_2}(\Omega_2)
\]

and

\[
T : L^{p_1}(\Omega_1) \to L^{p_2}(\Omega_2).
\]

If \(\varphi \in \mathcal{W} \), then \(T : L^{p_1}(\Omega_1) \to L^{p_2}(\Omega_2) \).
Theorem

Let $1 < p_1, p_2 < +\infty$ and let T be a bounded linear operator such that

$$T : L^{p_1}(\Omega_1) \rightarrow L^{p_2}(\Omega_2)$$

and

$$L^\infty(\Omega_1) \rightarrow L^\infty(\Omega_2).$$

If $\varphi \in \mathcal{W}$, then $T : L^{(p_1)}(\Omega_1) \rightarrow L^{(p_2)}(\Omega_2)$.
Outline

Grand Lebesgue space

Small Lebesgue space

Interpolation theorem

Compactness of Sobolev imbedding

Equivalent norms on grand and small Lebesgue spaces
Theorem (A. Fiorenza, J. M. Rakotoson, 2005)

Let us have a connected bounded open domain Ω in \mathbb{R}^n with the Lipschitz boundary, let $1 < p < n$ and $\varphi \in \mathcal{V}$. Then the imbedding of $W^{1,1}_\varphi(\Omega)$ into $L^{p^*}(\Omega)$ is compact, where $p^* = np/(n - p)$ and

$$W^{1,1}_\varphi(\Omega) = \{ f \in W^{1,1}(\Omega) : \| f \|_1 + \| \nabla f \|_{(p, \varphi)} < +\infty \}.$$
Theorem

Let us have a connected bounded open domain Ω in \mathbb{R}^n with the Lipschitz boundary and let $1 < p < n$. If $\varphi \in \mathcal{W}$ then the imbedding of $W^{1,p}(\Omega)$ into $L^{p^*}(\Omega)$ is compact.
Proof.

Let us have a bounded sequence \(\{f_k\} \) in \(W^{1,p}(\Omega) \).
Proof.

- Let us have a bounded sequence \(\{f_k\} \) in \(W^{1,p}(\Omega) \).
- Fix an increasing sequence \(q_i \nearrow p^* \). Then by the Rellich-Kondrachov theorem we can choose a subsequence \(\{f_k\} \) such that it is cauchy in every \(L^{q_i} \).
Proof.

- Let us have a bounded sequence \(\{ f_k \} \) in \(W^{1,p}(\Omega) \).
- Fix an increasing sequence \(q_i \rightarrow p^* \). Then by the Rellich-Kondrachov theorem we can choose a subsequence \(\{ f_k \} \) such that it is cauchy in every \(L^{q_i} \).
- \(W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega) \Rightarrow \exists K > 0 : \| f_k \|_{p^*} \leq K, \ k \in \mathbb{N} \).
Proof.

- Let us have a bounded sequence \(\{f_k\} \) in \(W^{1,p}(\Omega) \).
- Fix an increasing sequence \(q_i \uparrow p^* \). Then by the Rellich-Kondrachov theorem we can choose a subsequence \(\{f_k\} \) such that it is cauchy in every \(L^{q_i} \).
- \(W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega) \Rightarrow \exists K > 0 : \|f_k\|_{p^*} \leq K, \ k \in \mathbb{N} \).
- Choose an arbitrary \(\delta > 0 \). Since \(\lim_{t \to 0^+} \varphi(t) = 0 \) there exists \(\varepsilon_0 > 0 \) such that \(\varphi(\varepsilon_0)K < \delta/4 \).
Proof.

- Let us have a bounded sequence \(\{f_k\} \) in \(W^{1,p}(\Omega) \).
- Fix an increasing sequence \(q_i \nearrow p^* \). Then by the Rellich-Kondrachov theorem we can choose a subsequence \(\{f_k\} \) such that it is cauchy in every \(L^{q_i} \).
- \(W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega) \Rightarrow \exists K > 0 : \|f_k\|_{p^*} \leq K, k \in \mathbb{N} \).
- Choose an arbitrary \(\delta > 0 \). Since \(\lim_{t \to 0^+} \varphi(t) = 0 \) there exists \(\varepsilon_0 > 0 \) such that \(\varphi(\varepsilon_0)K < \delta/4 \).
- Take \(l \in \mathbb{N} \) such that \((i, j \geq l) \Rightarrow \|f_i - f_j\|_{p^*-\varepsilon_0} < \delta/2 \).
Proof.

- Let us have a bounded sequence \(\{f_k\} \) in \(W^{1,p}(\Omega) \).
- Fix an increasing sequence \(q_i \nearrow p^* \). Then by the Rellich-Kondrachov theorem we can choose a subsequence \(\{f_k\} \) such that it is cauchy in every \(L^{q_i} \).
- \(W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega) \Rightarrow \exists K > 0 : \|f_k\|_{p^*} \leq K, \ k \in \mathbb{N} \).
- Choose an arbitrary \(\delta > 0 \). Since \(\lim_{t \to 0^+} \varphi(t) = 0 \) there exists \(\varepsilon_0 > 0 \) such that \(\varphi(\varepsilon_0)K < \delta/4 \).
- Take \(I \in \mathbb{N} \) such that \((i, j \geq I) \Rightarrow \|f_i - f_j\|_{p^* - \varepsilon_0} < \delta/2 \).
- For \(i, j \geq I \) we have:
 \[
 \|f_i - f_j\|_{L^{p^*}} = \sup_{0 < \varepsilon < p-1} \varphi(\varepsilon)\|f_i - f_j\|_{p^* - \varepsilon} \\
 \leq \sup_{0 < \varepsilon \leq \varepsilon_0} \ldots + \sup_{\varepsilon_0 < \varepsilon < p-1} \ldots \leq \varphi(\varepsilon_0)2K + \delta/2 \leq \delta.
 \]
Thank you for your attention.