Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 13 of order 243
General information on the group
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t2 − t + 1 |
| (t − 1)4 · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 28 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_2, a nilpotent element of degree 2
- b_2_1, an element of degree 2
- c_2_3, a Duflot regular element of degree 2
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- a_3_7, a nilpotent element of degree 3
- a_4_7, a nilpotent element of degree 4
- a_4_8, a nilpotent element of degree 4
- a_4_10, a nilpotent element of degree 4
- b_4_11, an element of degree 4
- a_5_14, a nilpotent element of degree 5
- a_5_15, a nilpotent element of degree 5
- a_5_18, a nilpotent element of degree 5
- a_5_19, a nilpotent element of degree 5
- a_6_21, a nilpotent element of degree 6
- a_6_22, a nilpotent element of degree 6
- a_6_25, a nilpotent element of degree 6
- b_6_26, an element of degree 6
- c_6_29, a Duflot regular element of degree 6
- a_7_33, a nilpotent element of degree 7
- a_7_38, a nilpotent element of degree 7
- a_7_39, a nilpotent element of degree 7
- a_8_50, a nilpotent element of degree 8
Ring relations
There are 14 "obvious" relations:
a_1_02, a_1_12, a_3_32, a_3_42, a_3_52, a_3_62, a_3_72, a_5_142, a_5_152, a_5_182, a_5_192, a_7_332, a_7_382, a_7_392
Apart from that, there are 280 minimal relations of maximal degree 16:
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- a_2_2·a_1_1
- a_2_2·a_1_0
- b_2_1·a_1_0
- a_2_02
- a_2_22
- − a_2_0·b_2_1 + a_1_1·a_3_3
- a_1_0·a_3_3
- a_1_1·a_3_4 − a_2_0·a_2_2
- a_1_0·a_3_4
- − a_2_2·b_2_1 + a_1_1·a_3_5
- a_1_0·a_3_5 − a_2_0·a_2_2
- a_1_1·a_3_6
- a_1_0·a_3_6 + a_2_0·a_2_2
- a_1_0·a_3_7
- a_2_0·a_3_3
- b_2_1·a_3_4 + a_2_2·a_3_3
- a_2_2·a_3_4
- a_2_0·a_3_4
- a_2_2·a_3_5
- a_2_2·a_3_3 + a_2_0·a_3_5
- a_2_2·a_3_6
- a_2_0·a_3_6
- − b_2_1·a_3_6 + a_2_0·a_3_7
- a_4_7·a_1_1 + a_2_2·a_3_3
- a_4_7·a_1_0
- − b_2_1·a_3_6 + a_4_8·a_1_1
- a_4_8·a_1_0
- a_4_10·a_1_1 + a_2_2·a_3_7
- a_4_10·a_1_0
- b_4_11·a_1_0
- a_3_3·a_3_4
- a_3_4·a_3_5
- a_3_4·a_3_6
- a_3_3·a_3_6
- a_3_6·a_3_7
- − a_3_5·a_3_6 + a_3_4·a_3_7
- b_2_1·a_4_7 − a_3_3·a_3_5
- a_2_2·a_4_7
- a_2_0·a_4_7
- a_3_5·a_3_6 + a_2_2·a_4_8
- a_2_0·a_4_8
- b_2_1·a_4_10 + a_3_5·a_3_7
- a_2_2·a_4_10
- a_3_5·a_3_6 + a_2_0·a_4_10
- − b_2_1·a_4_8 + a_2_0·b_4_11 + a_3_3·a_3_7
- a_3_5·a_3_6 + a_1_1·a_5_14
- a_1_0·a_5_14
- − b_2_1·a_4_8 + a_3_3·a_3_7 + a_1_1·a_5_15
- a_1_0·a_5_15
- − a_2_2·b_4_11 + a_1_1·a_5_18
- a_1_0·a_5_18
- a_1_0·a_5_19
- a_4_7·a_3_6
- a_4_7·a_3_5
- a_4_7·a_3_4
- a_4_7·a_3_3
- a_4_8·a_3_6
- a_4_8·a_3_4
- a_4_8·a_3_3
- a_4_10·a_3_7
- a_4_10·a_3_6
- a_4_10·a_3_5
- a_4_10·a_3_4
- a_4_10·a_3_3 + a_4_7·a_3_7
- b_4_11·a_3_6 − a_4_8·a_3_7
- b_4_11·a_3_4 − a_4_8·a_3_5 − a_4_7·a_3_7
- b_2_1·a_5_14 − a_4_8·a_3_5 − a_1_1·a_3_3·a_3_5
- a_2_2·a_5_14
- a_2_0·a_5_14
- a_4_8·a_3_5 + a_4_7·a_3_7 + a_2_2·a_5_15
- a_2_0·a_5_15
- − b_4_11·a_3_5 + b_2_1·a_5_18 − a_4_8·a_3_7
- a_2_2·a_5_18
- − a_4_8·a_3_5 − a_4_7·a_3_7 + a_2_0·a_5_18
- − a_4_8·a_3_7 + a_2_0·a_5_19
- a_6_21·a_1_1 − a_4_8·a_3_5 − a_4_7·a_3_7 − a_1_1·a_3_3·a_3_5
- a_6_21·a_1_0
- a_6_22·a_1_1 − a_4_8·a_3_7
- a_6_22·a_1_0
- a_6_25·a_1_1 + a_2_2·a_5_19 + a_1_1·a_3_3·a_3_5
- a_6_25·a_1_0
- b_6_26·a_1_1 + b_4_11·a_3_3 − b_2_1·a_5_15
- b_6_26·a_1_0
- a_4_72
- a_4_82
- a_4_7·a_4_8
- a_4_7·a_4_10
- a_4_102
- a_3_7·a_5_14 − a_4_8·a_4_10 + a_2_0·a_3_5·a_3_7
- a_3_6·a_5_14
- a_3_5·a_5_14
- a_3_4·a_5_14
- a_3_3·a_5_14
- a_3_6·a_5_15
- a_3_4·a_5_15
- − a_4_10·b_4_11 + a_3_7·a_5_18
- a_3_6·a_5_18 − a_4_8·a_4_10
- a_3_5·a_5_18 + a_4_8·a_4_10
- a_3_4·a_5_18
- − a_4_7·b_4_11 + a_3_3·a_5_18
- a_3_3·a_5_15 − b_4_11·a_1_1·a_3_7 + b_2_1·a_1_1·a_5_19 + b_2_1·a_1_1·a_5_15
- a_3_6·a_5_19
- a_3_4·a_5_19 + a_4_8·a_4_10
- − a_4_8·b_4_11 + a_3_3·a_5_19
- b_2_1·a_6_21 + a_3_5·a_5_15 − b_2_1·a_3_3·a_3_5 + b_2_1·a_1_1·a_5_18
- a_2_2·a_6_21
- a_2_0·a_6_21
- b_2_1·a_6_22 + a_3_7·a_5_15 + a_3_3·a_5_15
- − a_4_8·a_4_10 + a_2_2·a_6_22
- a_2_0·a_6_22
- b_2_1·a_6_25 + a_3_5·a_5_19 + b_2_1·a_3_3·a_3_5 − b_2_1·a_1_1·a_5_18
- a_2_2·a_6_25
- − a_4_8·a_4_10 + a_2_0·a_6_25
- a_4_7·b_4_11 + a_2_2·b_6_26 + a_3_5·a_5_15
- a_2_0·b_6_26 + a_3_3·a_5_15
- a_1_1·a_7_33 − a_4_8·a_4_10
- a_1_0·a_7_33
- a_4_7·b_4_11 + a_3_5·a_5_15 + a_1_1·a_7_38 − b_2_1·a_1_1·a_5_18
- a_1_0·a_7_38
- a_4_8·b_4_11 + a_3_7·a_5_15 + a_1_1·a_7_39
- a_1_0·a_7_39
- a_4_8·a_5_14
- a_4_7·a_5_14
- a_4_10·a_5_14
- a_4_7·a_5_18
- a_4_10·a_5_18
- − b_4_11·a_5_14 + a_4_8·a_5_18 + a_1_1·a_3_3·a_5_18
- a_4_8·a_5_19
- a_4_8·a_5_18 + a_4_7·a_5_19
- − b_4_11·a_5_14 + a_4_8·a_5_18 + a_4_7·a_5_15 + a_1_1·a_3_7·a_5_18 + a_1_1·a_3_5·a_5_19
- − a_4_8·a_5_15 − a_1_1·a_3_7·a_5_19 + a_1_1·a_3_3·a_5_19
- a_6_21·a_3_7 + a_4_10·a_5_15 − a_3_3·a_3_5·a_3_7 − a_1_1·a_3_7·a_5_18
- a_6_21·a_3_6
- a_6_21·a_3_5
- a_6_21·a_3_4
- − b_4_11·a_5_14 + a_6_21·a_3_3 + a_4_8·a_5_18 + a_4_7·a_5_15
- a_6_22·a_3_7 − a_4_8·a_5_15
- a_6_22·a_3_6
- a_6_22·a_3_5 − a_4_10·a_5_15 − a_4_7·a_5_15
- a_6_22·a_3_4
- a_6_22·a_3_3 + a_4_8·a_5_15
- a_6_25·a_3_7 + a_4_10·a_5_19 + a_3_3·a_3_5·a_3_7 + a_1_1·a_3_7·a_5_18
- a_6_25·a_3_6
- a_6_25·a_3_5
- a_6_25·a_3_4
- b_4_11·a_5_14 + a_6_25·a_3_3 + a_4_8·a_5_18
- b_6_26·a_3_6 − a_4_8·a_5_15
- b_6_26·a_3_4 − a_4_7·a_5_15
- b_6_26·a_3_3 − b_4_112·a_1_1 + b_2_1·b_4_11·a_3_7 − b_2_1·b_4_11·a_3_3 − b_2_12·a_5_19
- − b_4_11·a_5_14 + b_2_1·a_7_33 − a_4_10·a_5_15 + a_4_8·a_5_18 + a_1_1·a_3_7·a_5_18
+ b_2_1·a_1_1·a_3_3·a_3_5
- a_2_2·a_7_33
- a_2_0·a_7_33
- − b_6_26·a_3_5 + b_2_1·a_7_38 − b_2_12·a_5_18 − a_4_8·a_5_15
- a_2_2·a_7_38
- − b_4_11·a_5_14 + a_4_8·a_5_18 − a_4_7·a_5_15 + a_2_0·a_7_38
- − b_6_26·a_3_7 + b_4_11·a_5_15 − b_4_112·a_1_1 + b_2_1·a_7_39
- a_4_10·a_5_15 − a_4_8·a_5_18 + a_2_2·a_7_39
- − a_4_8·a_5_15 + a_2_0·a_7_39
- − b_4_11·a_5_14 + a_8_50·a_1_1 − a_4_10·a_5_15 − a_4_8·a_5_18 + a_4_7·a_5_15
− a_1_1·a_3_7·a_5_18 + b_2_1·a_1_1·a_3_3·a_3_5
- a_8_50·a_1_0
- a_5_14·a_5_18
- − a_5_14·a_5_15 + a_2_2·a_3_7·a_5_19 + a_2_0·a_3_5·a_5_19
- a_5_14·a_5_19 − a_5_14·a_5_15 + a_2_2·a_3_7·a_5_19 + a_2_0·a_2_2·c_6_29
- a_4_8·a_6_21 + a_2_2·a_3_7·a_5_19
- a_4_7·a_6_21
- a_4_10·a_6_21
- b_4_11·a_6_21 − a_5_15·a_5_18 + b_4_11·a_1_1·a_5_18 − b_2_1·a_3_3·a_5_18
- a_4_8·a_6_22
- − a_5_14·a_5_15 + a_4_7·a_6_22
- a_5_14·a_5_19 + a_4_10·a_6_22 + a_2_2·a_3_7·a_5_19
- b_4_11·a_6_22 − a_5_15·a_5_19 − c_6_29·a_1_1·a_3_3
- a_5_14·a_5_19 + a_4_8·a_6_25
- a_4_7·a_6_25
- a_4_10·a_6_25
- b_4_11·a_6_25 + a_5_18·a_5_19 − b_4_11·a_1_1·a_5_18 + b_2_1·a_3_3·a_5_18
- a_4_8·b_6_26 − b_4_11·a_1_1·a_5_19 + b_2_1·a_3_7·a_5_19 − b_2_1·a_3_3·a_5_19
- a_4_7·b_6_26 − b_4_11·a_1_1·a_5_18 + b_2_1·a_3_7·a_5_18 + b_2_1·a_3_5·a_5_19
− b_2_1·a_3_3·a_5_18
- a_5_14·a_5_19 + a_3_7·a_7_33 − a_1_1·a_3_3·a_3_5·a_3_7
- a_3_6·a_7_33
- a_3_5·a_7_33
- a_3_4·a_7_33
- a_3_3·a_7_33 − a_2_2·a_3_7·a_5_19
- − a_4_10·b_6_26 + a_3_7·a_7_38 − b_2_1·a_3_7·a_5_18
- − a_5_14·a_5_19 + a_3_6·a_7_38 + a_2_2·a_3_7·a_5_19
- a_5_14·a_5_19 + a_3_5·a_7_38 − a_2_2·a_3_7·a_5_19
- a_3_4·a_7_38
- a_3_3·a_7_38 − b_4_11·a_1_1·a_5_18 + b_2_1·a_3_7·a_5_18 + b_2_1·a_3_5·a_5_19
+ b_2_1·a_3_3·a_5_18
- − a_5_15·a_5_19 + a_3_7·a_7_39 + b_4_11·a_1_1·a_5_19 + b_4_11·a_1_1·a_5_15
− c_6_29·a_1_1·a_3_3
- a_3_6·a_7_39
- a_4_10·b_6_26 − a_5_15·a_5_18 + a_3_5·a_7_39 + b_4_11·a_1_1·a_5_18
- − a_5_14·a_5_15 + a_3_4·a_7_39
- a_3_3·a_7_39 − b_4_11·a_1_1·a_5_19 + b_4_11·a_1_1·a_5_15 + b_2_1·a_3_7·a_5_19
− b_2_1·a_3_3·a_5_19
- − a_4_10·b_6_26 + b_2_1·a_8_50 + a_5_15·a_5_18 − b_4_11·a_1_1·a_5_18 + b_2_1·a_3_7·a_5_18
− b_2_1·a_3_5·a_5_19 + b_2_12·a_3_3·a_3_5 + b_2_12·a_1_1·a_5_18 − c_6_29·a_1_1·a_3_5
- a_2_2·a_8_50
- a_5_14·a_5_19 + a_5_14·a_5_15 + a_2_0·a_8_50
- a_6_21·a_5_18
- a_6_21·a_5_14
- a_6_22·a_5_18 + a_6_21·a_5_19 − a_3_3·a_3_5·a_5_19 + a_1_1·a_5_18·a_5_19
− a_2_0·c_6_29·a_3_5
- a_6_22·a_5_19 − a_2_0·c_6_29·a_3_7
- a_6_22·a_5_15
- a_6_22·a_5_14
- a_6_25·a_5_18
- a_6_25·a_5_19 + a_3_3·a_3_5·a_5_19 − a_1_1·a_5_18·a_5_19
- a_6_25·a_5_15 + a_6_21·a_5_19 + a_6_21·a_5_15 − a_3_3·a_3_5·a_5_19 + a_1_1·a_5_18·a_5_19
- a_6_25·a_5_14
- b_6_26·a_5_15 + b_4_112·a_3_7 + b_4_112·a_3_3 − b_2_1·b_4_11·a_5_19
+ b_2_1·b_4_11·a_5_15 + b_2_12·c_6_29·a_1_1
- b_6_26·a_5_14 + a_3_5·a_3_7·a_5_19 + a_3_3·a_3_5·a_5_19 + a_1_1·a_5_18·a_5_19
+ b_2_1·a_1_1·a_3_7·a_5_18 + b_2_1·a_1_1·a_3_5·a_5_19 − b_2_1·a_1_1·a_3_3·a_5_18
- a_4_8·a_7_33
- a_4_7·a_7_33
- a_4_10·a_7_33
- b_4_11·a_7_33 + a_6_21·a_5_19 − a_3_3·a_3_5·a_5_19 + b_2_1·a_1_1·a_3_3·a_5_18
− a_2_0·c_6_29·a_3_5
- a_4_8·a_7_38 + a_3_5·a_3_7·a_5_19 − a_3_3·a_3_5·a_5_19 + a_1_1·a_5_18·a_5_19
- a_4_7·a_7_38
- a_4_10·a_7_38
- − b_6_26·a_5_18 + b_4_11·a_7_38 − b_2_1·b_4_11·a_5_18
- − a_6_21·a_5_15 + a_4_7·a_7_39 − a_3_5·a_3_7·a_5_19 − a_3_3·a_3_5·a_5_19
− a_1_1·a_5_18·a_5_19 − b_2_1·a_1_1·a_3_7·a_5_18 − b_2_1·a_1_1·a_3_5·a_5_19 + b_2_1·a_1_1·a_3_3·a_5_18
- − a_6_21·a_5_19 − a_6_21·a_5_15 + a_4_10·a_7_39 + a_3_3·a_3_5·a_5_19
− b_2_1·a_1_1·a_3_7·a_5_18 − b_2_1·a_1_1·a_3_5·a_5_19 + b_2_1·a_1_1·a_3_3·a_5_18 + a_2_0·c_6_29·a_3_5
- − b_6_26·a_5_19 + b_4_11·a_7_39 − b_4_112·a_3_7 + b_4_112·a_3_3 + b_2_1·b_4_11·a_5_19
− b_2_1·c_6_29·a_3_3
- − a_4_8·a_7_39 + a_1_1·a_3_7·a_7_39
- − a_6_21·a_5_15 + a_1_1·a_3_7·a_7_38 + a_1_1·a_3_5·a_7_39 + b_2_1·a_1_1·a_3_7·a_5_18
− b_2_1·a_1_1·a_3_5·a_5_19 + b_2_1·a_1_1·a_3_3·a_5_18
- a_8_50·a_3_7 + a_6_21·a_5_19 + a_6_21·a_5_15 + a_3_5·a_3_7·a_5_19 − a_3_3·a_3_5·a_5_19
+ b_2_1·a_3_3·a_3_5·a_3_7 + b_2_1·a_1_1·a_3_5·a_5_19 − b_2_1·a_1_1·a_3_3·a_5_18 − a_2_2·c_6_29·a_3_7 − a_2_0·c_6_29·a_3_5
- a_8_50·a_3_6
- a_8_50·a_3_5
- a_8_50·a_3_4
- a_8_50·a_3_3 + a_3_5·a_3_7·a_5_19 − a_3_3·a_3_5·a_5_19 + a_1_1·a_5_18·a_5_19
− b_2_1·a_1_1·a_3_3·a_5_18 + a_2_0·c_6_29·a_3_5
- a_6_212
- a_6_21·a_6_22 − a_2_0·a_5_18·a_5_19 − a_1_1·a_3_5·a_3_7·a_5_19
− a_1_1·a_3_3·a_3_5·a_5_19
- a_6_222
- a_6_252
- a_6_21·a_6_25
- a_6_22·a_6_25 + a_2_0·a_5_18·a_5_19 + a_1_1·a_3_5·a_3_7·a_5_19
+ a_1_1·a_3_3·a_3_5·a_5_19 − a_2_0·a_4_10·c_6_29
- b_6_262 + b_4_113 + b_2_1·b_4_11·b_6_26 + b_2_13·c_6_29
- a_5_18·a_7_33
- a_5_19·a_7_33 − a_1_1·a_3_3·a_3_5·a_5_19 − a_2_0·a_4_10·c_6_29
- a_5_15·a_7_33 + a_2_0·a_5_18·a_5_19
- a_5_14·a_7_33
- a_5_18·a_7_38
- − a_6_25·b_6_26 + a_5_19·a_7_38 + b_4_11·a_1_1·a_7_38 + b_2_1·a_5_18·a_5_19
+ b_2_1·b_4_11·a_1_1·a_5_18 + b_2_12·a_3_7·a_5_18 + b_2_12·a_3_5·a_5_19 − b_2_12·a_3_3·a_5_18
- a_6_21·b_6_26 + a_5_15·a_7_38 − b_4_11·a_3_7·a_5_18 − b_4_11·a_1_1·a_7_38
− b_2_1·a_5_18·a_5_19 + b_2_12·a_3_7·a_5_18 + b_2_12·a_3_5·a_5_19 − b_2_12·a_3_3·a_5_18 − b_2_1·c_6_29·a_1_1·a_3_5
- a_5_14·a_7_38
- a_6_25·b_6_26 − a_6_21·b_6_26 + a_5_18·a_7_39 − b_2_1·b_4_11·a_1_1·a_5_18
+ b_2_12·a_3_7·a_5_18 + b_2_12·a_3_5·a_5_19 − b_2_12·a_3_3·a_5_18 + c_6_29·a_3_3·a_3_5 − b_2_1·c_6_29·a_1_1·a_3_5
- − a_6_22·b_6_26 − b_4_11·a_3_7·a_5_19 + b_4_11·a_1_1·a_7_39 − b_4_112·a_1_1·a_3_7
+ b_2_1·a_3_7·a_7_39 − b_2_1·b_4_11·a_1_1·a_5_19 − b_2_1·b_4_11·a_1_1·a_5_15 − b_2_1·c_6_29·a_1_1·a_3_7 − b_2_1·c_6_29·a_1_1·a_3_3
- − a_6_21·b_6_26 − b_4_11·a_3_7·a_5_18 − b_2_1·a_5_18·a_5_19 + b_2_1·a_3_7·a_7_38
+ b_2_1·a_3_5·a_7_39 − b_2_1·b_4_11·a_1_1·a_5_18 + b_2_12·a_3_7·a_5_18 − b_2_12·a_3_5·a_5_19 + b_2_12·a_3_3·a_5_18 − b_2_1·c_6_29·a_1_1·a_3_5
- − a_6_22·b_6_26 + a_5_19·a_7_39 − b_4_11·a_1_1·a_7_39 + b_4_112·a_1_1·a_3_7
− b_2_1·b_4_11·a_1_1·a_5_19 − b_2_1·b_4_11·a_1_1·a_5_15 + c_6_29·a_3_3·a_3_7 + c_6_29·a_1_1·a_5_15 − b_2_1·c_6_29·a_1_1·a_3_7 − b_2_1·c_6_29·a_1_1·a_3_3
- − a_6_22·b_6_26 + a_5_15·a_7_39 + b_4_112·a_1_1·a_3_7 − b_2_1·b_4_11·a_1_1·a_5_19
− b_2_1·b_4_11·a_1_1·a_5_15 − b_2_1·c_6_29·a_1_1·a_3_3
- a_5_14·a_7_39 − a_2_0·a_5_18·a_5_19 − a_1_1·a_3_5·a_3_7·a_5_19
− a_1_1·a_3_3·a_3_5·a_5_19
- a_4_8·a_8_50 − a_1_1·a_3_3·a_3_5·a_5_19 − a_2_0·a_4_10·c_6_29
- a_4_7·a_8_50
- a_4_10·a_8_50
- − a_6_25·b_6_26 + a_6_21·b_6_26 + b_4_11·a_8_50 + b_4_11·a_3_7·a_5_18
− b_2_1·a_5_18·a_5_19 − b_2_1·b_4_11·a_1_1·a_5_18 − b_2_12·a_3_7·a_5_18 − b_2_12·a_3_5·a_5_19 − b_2_12·a_3_3·a_5_18 − c_6_29·a_3_3·a_3_5 − c_6_29·a_1_1·a_5_18 + b_2_1·c_6_29·a_1_1·a_3_5
- a_6_25·a_7_33
- a_6_21·a_7_33
- a_6_22·a_7_33
- b_6_26·a_7_38 + b_4_112·a_5_18 + b_2_12·c_6_29·a_3_5 + c_6_29·a_1_1·a_3_3·a_3_7
- a_6_25·a_7_38
- a_6_21·a_7_38
- a_6_22·a_7_38 − a_3_7·a_5_18·a_5_19 − a_3_3·a_5_18·a_5_19 − c_6_29·a_1_1·a_3_5·a_3_7
+ c_6_29·a_1_1·a_3_3·a_3_5
- b_6_26·a_7_39 + b_4_112·a_5_19 − b_4_112·a_5_15 − b_4_113·a_1_1 + b_2_1·b_4_11·a_7_39
− b_2_1·b_4_11·c_6_29·a_1_1 + b_2_12·c_6_29·a_3_7
- b_6_26·a_7_33 + a_6_25·a_7_39 + b_4_11·a_1_1·a_3_7·a_5_18 + b_2_1·a_3_5·a_3_7·a_5_19
+ b_2_1·a_3_3·a_3_5·a_5_19 − b_2_1·a_1_1·a_5_18·a_5_19 − b_2_12·a_1_1·a_3_7·a_5_18 − b_2_12·a_1_1·a_3_5·a_5_19 + b_2_12·a_1_1·a_3_3·a_5_18 + a_4_7·c_6_29·a_3_7 − a_2_0·c_6_29·a_5_18 − c_6_29·a_1_1·a_3_5·a_3_7
- a_6_22·a_7_39 − b_4_11·a_1_1·a_3_7·a_5_19 + b_2_1·a_1_1·a_3_7·a_7_39
+ c_6_29·a_1_1·a_3_3·a_3_7
- b_6_26·a_7_33 + a_6_21·a_7_39 + b_4_11·a_1_1·a_3_7·a_5_18 − b_2_1·a_3_5·a_3_7·a_5_19
− b_2_1·a_3_3·a_3_5·a_5_19 + b_2_1·a_1_1·a_3_7·a_7_38 + b_2_1·a_1_1·a_3_5·a_7_39 + b_2_12·a_1_1·a_3_7·a_5_18 − b_2_12·a_1_1·a_3_5·a_5_19 + b_2_12·a_1_1·a_3_3·a_5_18
- − b_6_26·a_7_33 + a_6_21·a_7_39 − a_3_7·a_5_18·a_5_19 + a_3_3·a_5_18·a_5_19
+ a_1_1·a_5_18·a_7_39 − b_4_11·a_1_1·a_3_7·a_5_18 − b_2_1·a_3_5·a_3_7·a_5_19 − b_2_1·a_3_3·a_3_5·a_5_19 + b_2_1·a_1_1·a_5_18·a_5_19 + b_2_12·a_1_1·a_3_7·a_5_18 + b_2_12·a_1_1·a_3_5·a_5_19 − b_2_12·a_1_1·a_3_3·a_5_18 − c_6_29·a_1_1·a_3_5·a_3_7
- a_8_50·a_5_18
- a_8_50·a_5_19 + a_3_3·a_5_18·a_5_19 + b_2_1·a_3_3·a_3_5·a_5_19
+ b_2_1·a_1_1·a_5_18·a_5_19 − a_4_7·c_6_29·a_3_7 − a_2_2·c_6_29·a_5_19 + a_2_0·c_6_29·a_5_18
- a_8_50·a_5_15 − a_3_7·a_5_18·a_5_19 − a_3_3·a_5_18·a_5_19 − b_4_11·a_1_1·a_3_7·a_5_18
− b_2_1·a_1_1·a_5_18·a_5_19 − b_2_12·a_1_1·a_3_7·a_5_18 − b_2_12·a_1_1·a_3_5·a_5_19 + b_2_12·a_1_1·a_3_3·a_5_18 + a_2_0·c_6_29·a_5_18 − c_6_29·a_1_1·a_3_5·a_3_7 − c_6_29·a_1_1·a_3_3·a_3_5
- a_8_50·a_5_14
- a_7_33·a_7_38
- a_7_33·a_7_39 + a_1_1·a_3_7·a_5_18·a_5_19 − a_1_1·a_3_3·a_5_18·a_5_19
+ b_2_1·a_1_1·a_3_5·a_3_7·a_5_19 + b_2_1·a_1_1·a_3_3·a_3_5·a_5_19
- a_7_38·a_7_39 + b_4_11·a_5_18·a_5_19 + b_4_11·a_3_7·a_7_38 − b_4_112·a_1_1·a_5_18
+ b_2_1·a_5_18·a_7_39 − b_2_1·b_4_11·a_3_7·a_5_18 + b_2_1·c_6_29·a_3_5·a_3_7 + b_2_1·c_6_29·a_1_1·a_5_18
- b_6_26·a_8_50 − b_4_11·a_5_18·a_5_19 + b_4_112·a_1_1·a_5_18
− b_2_1·b_4_11·a_3_7·a_5_18 − b_2_12·a_5_18·a_5_19 + b_2_12·a_3_7·a_7_38 + b_2_12·a_3_5·a_7_39 − b_2_12·b_4_11·a_1_1·a_5_18 + b_2_13·a_3_7·a_5_18 − b_2_13·a_3_5·a_5_19 + b_2_13·a_3_3·a_5_18 − c_6_29·a_1_1·a_7_38 − b_2_1·c_6_29·a_3_5·a_3_7 − b_2_1·c_6_29·a_3_3·a_3_5
- a_6_25·a_8_50
- a_6_21·a_8_50
- a_6_22·a_8_50 − a_1_1·a_3_7·a_5_18·a_5_19 + b_2_1·a_1_1·a_3_5·a_3_7·a_5_19
+ b_2_1·a_1_1·a_3_3·a_3_5·a_5_19 − a_2_0·a_6_25·c_6_29 + a_2_0·c_6_29·a_3_5·a_3_7
- a_8_50·a_7_39 + a_3_7·a_5_18·a_7_39 − b_2_1·a_3_7·a_5_18·a_5_19
+ b_2_1·a_3_3·a_5_18·a_5_19 + b_2_1·a_1_1·a_5_18·a_7_39 + b_2_12·a_3_5·a_3_7·a_5_19 + b_2_12·a_3_3·a_3_5·a_5_19 + b_2_12·a_1_1·a_5_18·a_5_19 + b_2_12·a_1_1·a_3_7·a_7_38 + b_2_12·a_1_1·a_3_5·a_7_39 − b_2_13·a_1_1·a_3_7·a_5_18 − a_2_2·c_6_29·a_7_39 − c_6_29·a_3_3·a_3_5·a_3_7 + c_6_29·a_1_1·a_3_3·a_5_18
- a_8_50·a_7_38
- a_8_50·a_7_33
- a_8_502
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_6_29, a Duflot regular element of degree 6
- b_4_113 − b_2_12·b_4_112 − b_2_16 + b_2_13·c_6_29, an element of degree 12
- b_2_1, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 16, 18].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 4.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- c_2_3 → c_2_1, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- a_4_7 → 0, an element of degree 4
- a_4_8 → 0, an element of degree 4
- a_4_10 → 0, an element of degree 4
- b_4_11 → 0, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- a_5_18 → 0, an element of degree 5
- a_5_19 → 0, an element of degree 5
- a_6_21 → 0, an element of degree 6
- a_6_22 → 0, an element of degree 6
- a_6_25 → 0, an element of degree 6
- b_6_26 → 0, an element of degree 6
- c_6_29 → c_2_23, an element of degree 6
- a_7_33 → 0, an element of degree 7
- a_7_38 → 0, an element of degree 7
- a_7_39 → 0, an element of degree 7
- a_8_50 → 0, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_2_0 → − a_1_2·a_1_3, an element of degree 2
- a_2_2 → − a_1_0·a_1_2, an element of degree 2
- b_2_1 → c_2_8, an element of degree 2
- c_2_3 → c_2_6, an element of degree 2
- a_3_3 → c_2_9·a_1_2 − c_2_8·a_1_3, an element of degree 3
- a_3_4 → − a_1_0·a_1_2·a_1_3, an element of degree 3
- a_3_5 → a_1_1·a_1_2·a_1_3 + c_2_8·a_1_0, an element of degree 3
- a_3_6 → − a_1_1·a_1_2·a_1_3, an element of degree 3
- a_3_7 → − c_2_9·a_1_3 − c_2_9·a_1_2 − c_2_8·a_1_3 + c_2_8·a_1_1 + c_2_7·a_1_2, an element of degree 3
- a_4_7 → − c_2_9·a_1_0·a_1_2 + c_2_8·a_1_0·a_1_3, an element of degree 4
- a_4_8 → − c_2_9·a_1_1·a_1_2 + c_2_8·a_1_1·a_1_3 − c_2_7·a_1_2·a_1_3, an element of degree 4
- a_4_10 → c_2_9·a_1_0·a_1_3 + c_2_9·a_1_0·a_1_2 + c_2_8·a_1_0·a_1_3 − c_2_8·a_1_0·a_1_1
− c_2_7·a_1_0·a_1_2, an element of degree 4
- b_4_11 → − c_2_92 + c_2_8·c_2_9 − c_2_7·c_2_8, an element of degree 4
- a_5_14 → − c_2_9·a_1_0·a_1_1·a_1_2 − c_2_8·a_1_0·a_1_2·a_1_3 + c_2_8·a_1_0·a_1_1·a_1_3
− c_2_7·a_1_0·a_1_2·a_1_3, an element of degree 5
- a_5_15 → c_2_92·a_1_3 − c_2_8·c_2_9·a_1_3 − c_2_7·c_2_9·a_1_2 + c_2_7·c_2_8·a_1_3
− c_2_7·c_2_8·a_1_2, an element of degree 5
- a_5_18 → − c_2_92·a_1_0 + c_2_8·c_2_9·a_1_0 − c_2_7·c_2_8·a_1_0, an element of degree 5
- a_5_19 → − c_2_92·a_1_1 + c_2_8·c_2_9·a_1_1 + c_2_7·c_2_9·a_1_3 + c_2_7·c_2_9·a_1_2
+ c_2_7·c_2_8·a_1_3 − c_2_7·c_2_8·a_1_1 + c_2_72·a_1_2, an element of degree 5
- a_6_21 → − c_2_92·a_1_0·a_1_3 − c_2_92·a_1_0·a_1_2 + c_2_8·c_2_9·a_1_0·a_1_3
+ c_2_82·a_1_0·a_1_3 + c_2_7·c_2_9·a_1_0·a_1_2 − c_2_7·c_2_8·a_1_0·a_1_3, an element of degree 6
- a_6_22 → − c_2_92·a_1_1·a_1_3 + c_2_8·c_2_9·a_1_1·a_1_3 + c_2_7·c_2_9·a_1_2·a_1_3
+ c_2_7·c_2_9·a_1_1·a_1_2 − c_2_7·c_2_8·a_1_2·a_1_3 − c_2_7·c_2_8·a_1_1·a_1_3 + c_2_7·c_2_8·a_1_1·a_1_2 − c_2_72·a_1_2·a_1_3, an element of degree 6
- a_6_25 → c_2_92·a_1_0·a_1_2 + c_2_92·a_1_0·a_1_1 − c_2_8·c_2_9·a_1_0·a_1_1
− c_2_82·a_1_0·a_1_3 − c_2_7·c_2_9·a_1_0·a_1_3 − c_2_7·c_2_9·a_1_0·a_1_2 − c_2_7·c_2_8·a_1_0·a_1_3 + c_2_7·c_2_8·a_1_0·a_1_2 + c_2_7·c_2_8·a_1_0·a_1_1 − c_2_72·a_1_0·a_1_2, an element of degree 6
- b_6_26 → c_2_93 − c_2_8·c_2_92 − c_2_7·c_2_82, an element of degree 6
- c_6_29 → − c_2_7·c_2_92 + c_2_7·c_2_8·c_2_9 + c_2_72·c_2_8 + c_2_73, an element of degree 6
- a_7_33 → − c_2_92·a_1_0·a_1_1·a_1_3 − c_2_92·a_1_0·a_1_1·a_1_2
+ c_2_8·c_2_9·a_1_0·a_1_1·a_1_3 + c_2_8·c_2_9·a_1_0·a_1_1·a_1_2 + c_2_82·a_1_0·a_1_2·a_1_3 + c_2_7·c_2_9·a_1_0·a_1_1·a_1_2 + c_2_7·c_2_8·a_1_0·a_1_2·a_1_3 − c_2_7·c_2_8·a_1_0·a_1_1·a_1_3 − c_2_72·a_1_0·a_1_2·a_1_3, an element of degree 7
- a_7_38 → c_2_93·a_1_0 + c_2_8·c_2_92·a_1_0 + c_2_82·c_2_9·a_1_0 + c_2_7·c_2_82·a_1_0, an element of degree 7
- a_7_39 → c_2_93·a_1_3 − c_2_93·a_1_2 + c_2_93·a_1_1 − c_2_8·c_2_92·a_1_3
+ c_2_8·c_2_92·a_1_2 − c_2_8·c_2_92·a_1_1 − c_2_7·c_2_92·a_1_3 + c_2_7·c_2_92·a_1_2 − c_2_7·c_2_8·c_2_9·a_1_3 + c_2_7·c_2_82·a_1_3 − c_2_7·c_2_82·a_1_1 − c_2_72·c_2_9·a_1_2 + c_2_72·c_2_8·a_1_3 − c_2_72·c_2_8·a_1_2, an element of degree 7
- a_8_50 → − c_2_93·a_1_0·a_1_2 − c_2_93·a_1_0·a_1_1 + c_2_8·c_2_92·a_1_0·a_1_3
− c_2_8·c_2_92·a_1_0·a_1_1 − c_2_82·c_2_9·a_1_0·a_1_3 − c_2_82·c_2_9·a_1_0·a_1_2 − c_2_82·c_2_9·a_1_0·a_1_1 − c_2_83·a_1_0·a_1_3 + c_2_7·c_2_92·a_1_0·a_1_3 − c_2_7·c_2_92·a_1_0·a_1_2 − c_2_7·c_2_8·c_2_9·a_1_0·a_1_2 + c_2_7·c_2_82·a_1_0·a_1_3 − c_2_7·c_2_82·a_1_0·a_1_2 − c_2_7·c_2_82·a_1_0·a_1_1 + c_2_72·c_2_9·a_1_0·a_1_2 − c_2_72·c_2_8·a_1_0·a_1_3 − c_2_73·a_1_0·a_1_2, an element of degree 8
|