The Cohomology of the Groups of Order 243

In total, there are 67 groups of order 243


Groups numbered according to the Small Groups library

1–67


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67

Links to incomplete cohomology computations are marked red.


Groups with a custom name

Direct product 81gp3 x C_3

Direct product 81gp4 x C_3

Direct product 81gp6 x C_3

Direct product 81gp7 x C_3

Direct product 81gp8 x C_3

Direct product 81gp9 x C_3

Direct product 81gp10 x C_3

Direct product E27*C3 x C_3

Direct product E27 x C_3 x C_3

Direct product E27 x C_9

Direct product M27 x C_3 x C_3

Direct product M27 x C_9

Extraspecial 3-group of order 243 and exponent 3

Extraspecial 3-group of order 243 and exponent 9

Modular group of order 243




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009