Cohomology of group number 3 of order 243

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243


General information on the group

  • The group has 2 minimal generators and exponent 9.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t2  +  1) · (t7  +  t5  +  t4  +  2·t3  +  t2  +  1)

    (t  +  1) · (t  −  1)3 · (t2  −  t  +  1)2 · (t2  +  t  +  1)2
  • The a-invariants are -∞,-∞,-6,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring generators

The cohomology ring has 30 minimal generators of maximal degree 7:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_2, a nilpotent element of degree 2
  4. b_2_0, an element of degree 2
  5. b_2_1, an element of degree 2
  6. b_2_3, an element of degree 2
  7. a_3_2, a nilpotent element of degree 3
  8. a_3_3, a nilpotent element of degree 3
  9. a_3_4, a nilpotent element of degree 3
  10. a_3_5, a nilpotent element of degree 3
  11. a_3_6, a nilpotent element of degree 3
  12. a_3_7, a nilpotent element of degree 3
  13. a_4_7, a nilpotent element of degree 4
  14. a_4_9, a nilpotent element of degree 4
  15. b_4_8, an element of degree 4
  16. b_4_11, an element of degree 4
  17. a_5_10, a nilpotent element of degree 5
  18. a_5_12, a nilpotent element of degree 5
  19. a_5_13, a nilpotent element of degree 5
  20. a_5_14, a nilpotent element of degree 5
  21. a_5_15, a nilpotent element of degree 5
  22. a_5_16, a nilpotent element of degree 5
  23. a_6_16, a nilpotent element of degree 6
  24. b_6_19, an element of degree 6
  25. b_6_20, an element of degree 6
  26. c_6_21, a Duflot regular element of degree 6
  27. c_6_22, a Duflot regular element of degree 6
  28. a_7_25, a nilpotent element of degree 7
  29. a_7_26, a nilpotent element of degree 7
  30. a_7_27, a nilpotent element of degree 7

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring relations

There are 17 "obvious" relations:
   a_1_02, a_1_12, a_3_22, a_3_32, a_3_42, a_3_52, a_3_62, a_3_72, a_5_102, a_5_122, a_5_132, a_5_142, a_5_152, a_5_162, a_7_252, a_7_262, a_7_272

Apart from that, there are 333 minimal relations of maximal degree 14:

  1. a_1_0·a_1_1
  2. a_2_2·a_1_1
  3. a_2_2·a_1_0
  4. b_2_0·a_1_1
  5. b_2_1·a_1_0
  6. b_2_3·a_1_1
  7. b_2_3·a_1_0
  8. a_2_22
  9. b_2_0·b_2_1
  10. a_1_1·a_3_2
  11.  − a_2_2·b_2_0 + a_1_0·a_3_2
  12.  − a_2_2·b_2_1 + a_1_1·a_3_3
  13. a_1_0·a_3_3
  14. a_1_1·a_3_4
  15.  − b_2_0·b_2_3 + a_1_0·a_3_4
  16. a_1_1·a_3_5
  17. a_1_0·a_3_5
  18. a_1_1·a_3_6
  19. b_2_0·b_2_3 − a_2_2·b_2_0 + a_1_0·a_3_6
  20.  − b_2_1·b_2_3 + a_1_1·a_3_7
  21. a_1_0·a_3_7
  22. a_2_2·a_3_2
  23. b_2_1·a_3_2
  24. a_2_2·a_3_3
  25. b_2_0·a_3_3
  26. b_2_3·a_3_2 + a_2_2·a_3_4
  27. b_2_1·a_3_4
  28. b_2_3·a_3_4
  29. a_2_2·a_3_5
  30. b_2_0·a_3_5
  31.  − b_2_3·a_3_2 + a_2_2·a_3_6
  32. b_2_1·a_3_6 − b_2_1·a_3_5
  33. b_2_3·a_3_6 − b_2_3·a_3_2
  34. b_2_3·a_3_3 + a_2_2·a_3_7
  35. b_2_0·a_3_7
  36. b_2_3·a_3_7
  37. a_4_7·a_1_1
  38. b_2_3·a_3_2 + a_4_7·a_1_0
  39.  − b_2_3·a_3_3 + a_4_9·a_1_1
  40.  − b_2_3·a_3_2 + a_4_9·a_1_0
  41. b_4_8·a_1_1 − b_2_1·a_3_5
  42. b_4_8·a_1_0 − b_2_0·a_3_6 − b_2_0·a_3_4 + b_2_0·a_3_2
  43. b_4_11·a_1_1 + b_2_3·a_3_3 + b_2_1·a_3_5
  44. b_4_11·a_1_0 − b_2_3·a_3_2
  45. a_3_2·a_3_3
  46. a_3_3·a_3_4
  47. a_3_4·a_3_5
  48. a_3_2·a_3_5
  49.  − a_2_2·b_2_32 + a_3_5·a_3_6
  50. a_3_3·a_3_6 − a_3_3·a_3_5
  51.  − a_2_2·b_2_32 − a_3_6·a_3_7 + a_3_5·a_3_7
  52.  − a_2_2·b_2_32 + a_3_4·a_3_7
  53. a_3_2·a_3_7
  54. a_2_2·a_4_7
  55. b_2_0·a_4_7 − a_3_2·a_3_4 + b_2_0·a_1_0·a_3_4
  56. b_2_1·a_4_7 − a_3_3·a_3_5 − b_2_1·a_1_1·a_3_3
  57. a_2_2·a_4_9
  58. b_2_0·a_4_9 + a_3_2·a_3_6 − a_3_2·a_3_4
  59. b_2_1·a_4_9 + a_3_3·a_3_7 + a_3_3·a_3_5
  60. a_2_2·b_4_8 + a_3_3·a_3_5 + a_3_2·a_3_6 + a_3_2·a_3_4
  61. b_2_3·b_4_8 − a_3_6·a_3_7 + a_3_4·a_3_6 + a_3_2·a_3_4
  62. a_2_2·b_4_11 − a_2_2·b_2_32 − a_3_3·a_3_5
  63. b_2_0·b_4_11 − a_3_2·a_3_6
  64. b_2_1·b_4_11 + b_2_1·b_4_8 − a_3_3·a_3_7 + a_3_3·a_3_5 − b_2_1·a_1_1·a_3_7
       + b_2_1·a_1_1·a_3_3
  65. b_2_3·b_4_11 − b_2_33 + b_2_3·a_4_9 − b_2_3·a_4_7 + a_3_6·a_3_7
  66. a_3_3·a_3_5 + a_1_1·a_5_10 + b_2_1·a_1_1·a_3_7
  67. a_1_0·a_5_10 + b_2_0·a_1_0·a_3_4 − b_2_0·a_1_0·a_3_2
  68. a_3_3·a_3_5 + a_1_1·a_5_12 − b_2_1·a_1_1·a_3_7 + b_2_1·a_1_1·a_3_3
  69.  − a_3_2·a_3_6 − a_3_2·a_3_4 + a_1_0·a_5_12 − b_2_0·a_1_0·a_3_2
  70.  − a_2_2·b_2_32 + a_1_1·a_5_13
  71. a_1_0·a_5_13 + b_2_0·a_1_0·a_3_2
  72. a_1_1·a_5_14 + b_2_1·a_1_1·a_3_7
  73. a_3_4·a_3_6 + a_3_2·a_3_4 + a_1_0·a_5_14 + b_2_0·a_1_0·a_3_4 − b_2_0·a_1_0·a_3_2
  74.  − a_3_6·a_3_7 − a_3_3·a_3_5 + a_1_1·a_5_15 + b_2_1·a_1_1·a_3_3
  75. a_2_2·b_2_32 + a_1_0·a_5_15 − b_2_0·a_1_0·a_3_4
  76.  − a_2_2·b_2_32 − a_3_6·a_3_7 − a_3_3·a_3_5 + a_1_1·a_5_16
  77.  − a_2_2·b_2_32 + a_3_4·a_3_6 − a_3_2·a_3_6 + a_1_0·a_5_16
  78. a_4_7·a_3_5
  79. a_4_7·a_3_4
  80. a_4_7·a_3_3
  81. a_4_7·a_3_2 − a_1_0·a_3_2·a_3_4
  82. a_4_9·a_3_7 + a_4_7·a_3_7 − a_1_1·a_3_3·a_3_7
  83. a_4_9·a_3_6 − a_4_7·a_3_7 − a_4_7·a_3_6 + a_1_1·a_3_3·a_3_7 + a_1_0·a_3_2·a_3_4
  84. a_4_9·a_3_5 − a_4_7·a_3_7 + a_1_1·a_3_3·a_3_7
  85. a_4_9·a_3_4 − a_4_7·a_3_6 + a_1_0·a_3_2·a_3_4
  86. a_4_9·a_3_3
  87. a_4_9·a_3_2
  88. b_4_11·a_3_7 + b_4_8·a_3_7 + a_4_7·a_3_7
  89. b_4_11·a_3_6 + b_4_8·a_3_5 + a_4_7·a_3_7 − a_1_1·a_3_3·a_3_7
  90. b_4_11·a_3_5 + b_4_8·a_3_5 − b_2_32·a_3_5 + a_4_7·a_3_7 − a_1_1·a_3_3·a_3_7
  91. b_4_11·a_3_4 + a_4_7·a_3_6 − a_1_0·a_3_2·a_3_4
  92. b_4_11·a_3_3 + b_4_8·a_3_3 + a_1_1·a_3_3·a_3_7
  93. b_4_11·a_3_2
  94. a_2_2·a_5_10 + a_1_1·a_3_3·a_3_7 + a_1_0·a_3_2·a_3_4
  95. b_2_0·a_5_10 + b_2_02·a_3_6 − b_2_02·a_3_4 + b_2_02·a_3_2 + a_1_0·a_3_2·a_3_4
  96.  − b_4_8·a_3_3 + b_2_1·a_5_10 + b_2_12·a_3_7 − b_2_12·a_3_5 − a_1_1·a_3_3·a_3_7
  97. b_2_3·a_5_10 − a_4_7·a_3_7 + a_1_1·a_3_3·a_3_7 + a_1_0·a_3_2·a_3_4
  98. a_2_2·a_5_12 − a_1_1·a_3_3·a_3_7
  99. b_4_8·a_3_2 + b_2_0·a_5_12 − b_2_02·a_3_6 − b_2_02·a_3_4 − a_1_0·a_3_2·a_3_4
  100.  − b_4_8·a_3_3 + b_2_1·a_5_12 − b_2_12·a_3_7 + b_2_12·a_3_3 + a_1_1·a_3_3·a_3_7
  101. b_2_3·a_5_12 − b_2_32·a_3_5 − a_4_7·a_3_7 − a_4_7·a_3_6 − a_1_0·a_3_2·a_3_4
  102. a_2_2·a_5_13
  103. b_2_0·a_5_13 + b_2_02·a_3_2 − a_1_0·a_3_2·a_3_4
  104. b_4_8·a_3_5 + b_2_1·a_5_13
  105.  − a_4_7·a_3_6 + a_2_2·a_5_14 + a_1_1·a_3_3·a_3_7 − a_1_0·a_3_2·a_3_4
  106.  − b_4_8·a_3_4 + b_2_0·a_5_14 + b_2_02·a_3_6 − b_2_02·a_3_4 + b_2_02·a_3_2
       + a_1_0·a_3_2·a_3_4
  107.  − b_4_8·a_3_5 + b_2_1·a_5_14 + b_2_12·a_3_7 − b_2_12·a_3_5
  108. b_2_3·a_5_14 − b_2_3·a_5_13 − b_2_32·a_3_5 − a_1_0·a_3_2·a_3_4
  109. a_4_7·a_3_7 + a_2_2·a_5_15 − a_1_1·a_3_3·a_3_7 − a_1_0·a_3_2·a_3_4
  110. b_2_0·a_5_15 + b_2_02·a_3_6 − b_2_02·a_3_2
  111.  − b_4_8·a_3_7 − b_4_8·a_3_5 + b_4_8·a_3_3 + b_2_1·a_5_15 + b_2_12·a_3_5 + b_2_12·a_3_3
       + a_1_1·a_3_3·a_3_7
  112. a_4_7·a_3_7 − a_4_7·a_3_6 + a_2_2·a_5_16 − a_1_1·a_3_3·a_3_7 + a_1_0·a_3_2·a_3_4
  113. b_4_8·a_3_6 − b_4_8·a_3_5 + b_2_0·a_5_16 − b_2_02·a_3_6 − b_2_02·a_3_4 + b_2_02·a_3_2
  114.  − b_4_8·a_3_7 − b_4_8·a_3_5 + b_4_8·a_3_3 + b_2_1·a_5_16 + a_1_1·a_3_3·a_3_7
  115. b_2_3·a_5_16 − b_2_3·a_5_13 + b_2_32·a_3_5 + a_4_7·a_3_7 − a_4_7·a_3_6
       − a_1_1·a_3_3·a_3_7 − a_1_0·a_3_2·a_3_4
  116. a_6_16·a_1_1 + a_4_7·a_3_7 − a_1_1·a_3_3·a_3_7
  117. a_6_16·a_1_0 − a_4_7·a_3_6
  118. b_6_19·a_1_1 − b_2_12·a_3_5 − a_4_7·a_3_7 − a_1_1·a_3_3·a_3_7
  119. b_6_19·a_1_0 + b_4_8·a_3_6 − b_4_8·a_3_5 + b_4_8·a_3_4 − b_4_8·a_3_2 − b_2_02·a_3_6
       − b_2_02·a_3_4 + b_2_02·a_3_2 + a_4_7·a_3_6
  120. b_6_20·a_1_1 − b_4_8·a_3_5 − a_4_7·a_3_7 − a_1_1·a_3_3·a_3_7
  121. b_6_20·a_1_0 + b_4_8·a_3_6 − b_4_8·a_3_5 + b_4_8·a_3_4 − b_4_8·a_3_2 + a_4_7·a_3_6
       + a_1_0·a_3_2·a_3_4
  122. a_4_72
  123. a_4_92
  124. a_4_7·a_4_9
  125.  − a_4_9·b_4_11 + a_4_7·b_4_11 + b_2_32·a_4_9 − b_2_32·a_4_7 − a_3_7·a_5_10 + a_3_5·a_5_10
       + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
  126.  − b_4_112 − b_4_8·b_4_11 + b_2_34 − a_4_9·b_4_11 − a_4_9·b_4_8 + a_4_7·b_4_8
       − b_2_32·a_4_9 − b_2_32·a_4_7 + a_3_7·a_5_10 + a_3_4·a_5_10 + b_2_0·a_3_2·a_3_4
  127. a_3_3·a_5_10 + b_2_1·a_3_3·a_3_7 + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
  128.  − b_4_112 − b_4_8·b_4_11 + b_2_34 + a_4_9·b_4_11 − a_4_9·b_4_8 + a_4_7·b_4_11
       + a_4_7·b_4_8 + b_2_32·a_4_7 + a_3_6·a_5_10 + a_3_2·a_5_10 + b_2_1·a_1_1·a_5_10
       + b_2_12·a_1_1·a_3_7 + b_2_0·a_3_2·a_3_4
  129. b_4_112 + b_4_8·b_4_11 − b_2_34 − a_4_9·b_4_11 + a_4_9·b_4_8 − a_4_7·b_4_11
       − a_4_7·b_4_8 − b_2_32·a_4_7 − a_3_6·a_5_10 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
       + b_2_0·a_1_0·a_5_12 − b_2_02·a_1_0·a_3_2
  130. a_4_9·b_4_11 + a_4_7·b_4_11 − b_2_32·a_4_9 − b_2_32·a_4_7 + a_3_7·a_5_12
       − b_2_1·a_3_3·a_3_7 + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
  131. b_4_112 + b_4_8·b_4_11 − b_2_34 − a_4_9·b_4_8 − a_4_7·b_4_11 + a_4_7·b_4_8
       − b_2_32·a_4_9 − b_2_32·a_4_7 + a_3_6·a_5_12 + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
       − b_2_0·a_3_2·a_3_4
  132. a_4_9·b_4_11 − b_2_32·a_4_9 + a_3_7·a_5_10 + a_3_5·a_5_12 + b_2_1·a_1_1·a_5_10
       + b_2_12·a_1_1·a_3_7
  133.  − a_4_7·b_4_11 − a_4_7·b_4_8 + b_2_32·a_4_7 + a_3_4·a_5_12 + b_2_0·a_3_2·a_3_4
  134. a_3_3·a_5_12 − b_2_1·a_3_3·a_3_7
  135. b_4_112 + b_4_8·b_4_11 − b_2_34 − a_4_9·b_4_11 + a_4_9·b_4_8 − a_4_7·b_4_11
       − a_4_7·b_4_8 − b_2_32·a_4_7 − a_3_6·a_5_10 + a_3_2·a_5_12 − b_2_1·a_1_1·a_5_10
       − b_2_12·a_1_1·a_3_7
  136. b_4_112 + b_4_8·b_4_11 − b_2_34 − a_4_9·b_4_11 + a_4_9·b_4_8 − a_4_7·b_4_11
       − a_4_7·b_4_8 − b_2_32·a_4_7 + a_3_6·a_5_13 − a_3_6·a_5_10 − b_2_1·a_1_1·a_5_10
       − b_2_12·a_1_1·a_3_7 + b_2_0·a_3_2·a_3_4
  137. b_2_32·a_4_7 + a_3_5·a_5_13
  138. a_3_4·a_5_13 − b_2_0·a_3_2·a_3_4
  139.  − a_4_7·b_4_11 + b_2_32·a_4_7 + a_3_3·a_5_13 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  140. a_3_2·a_5_13
  141.  − b_4_112 − b_4_8·b_4_11 + b_2_34 − a_4_9·b_4_11 − a_4_9·b_4_8 + a_4_7·b_4_8
       − b_2_32·a_4_9 − b_2_32·a_4_7 + a_3_7·a_5_10 + b_2_0·a_1_0·a_5_14 + b_2_02·a_1_0·a_3_4
       − b_2_02·a_1_0·a_3_2
  142.  − a_4_9·b_4_11 − a_4_7·b_4_11 + b_2_32·a_4_9 + b_2_32·a_4_7 + a_3_7·a_5_14 + a_3_7·a_5_13
       − a_3_7·a_5_10 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  143.  − a_4_9·b_4_11 − a_4_7·b_4_11 + b_2_32·a_4_9 − b_2_32·a_4_7 − a_3_7·a_5_10 + a_3_5·a_5_14
       − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  144.  − b_4_112 − b_4_8·b_4_11 + b_2_34 − a_4_9·b_4_11 − a_4_9·b_4_8 + a_4_7·b_4_8
       − b_2_32·a_4_9 − b_2_32·a_4_7 + a_3_7·a_5_10 + a_3_4·a_5_14 + b_2_0·a_3_2·a_3_4
  145. a_4_7·b_4_11 − b_2_32·a_4_7 + a_3_3·a_5_14 + b_2_1·a_3_3·a_3_7 − b_2_1·a_1_1·a_5_10
       − b_2_12·a_1_1·a_3_7
  146. b_4_112 + b_4_8·b_4_11 − b_2_34 + a_4_9·b_4_8 + a_4_7·b_4_8 − b_2_32·a_4_9
       + b_2_32·a_4_7 + a_3_7·a_5_10 + a_3_6·a_5_10 + a_3_2·a_5_14 + b_2_1·a_1_1·a_5_10
       + b_2_12·a_1_1·a_3_7 + b_2_0·a_3_2·a_3_4
  147. a_4_9·b_4_11 + a_4_7·b_4_11 − b_2_32·a_4_9 − b_2_32·a_4_7 + a_3_7·a_5_10
       + b_2_1·a_1_1·a_5_15 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7 + b_2_12·a_1_1·a_3_3
  148. a_3_7·a_5_15 + a_3_7·a_5_13 + a_3_7·a_5_10 − b_2_1·a_3_3·a_3_7
  149.  − b_4_112 − b_4_8·b_4_11 + b_2_34 + a_4_9·b_4_11 − a_4_9·b_4_8 − a_4_7·b_4_11
       + a_4_7·b_4_8 − a_3_7·a_5_13 + a_3_6·a_5_15 + a_3_6·a_5_10 − b_2_0·a_3_2·a_3_4
  150. a_4_7·b_4_11 + b_2_32·a_4_9 − b_2_32·a_4_7 − a_3_7·a_5_13 + a_3_5·a_5_15
       − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  151.  − b_4_112 − b_4_8·b_4_11 + b_2_34 − a_4_9·b_4_11 − a_4_9·b_4_8 + a_4_7·b_4_8
       − b_2_32·a_4_9 − b_2_32·a_4_7 + a_3_7·a_5_10 + a_3_4·a_5_15
  152.  − a_4_9·b_4_11 + b_2_32·a_4_9 + a_3_3·a_5_15 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  153.  − b_4_112 − b_4_8·b_4_11 + b_2_34 + a_4_9·b_4_11 − a_4_9·b_4_8 + a_4_7·b_4_11
       + a_4_7·b_4_8 + b_2_32·a_4_7 + a_3_6·a_5_10 + a_3_2·a_5_15 + b_2_1·a_1_1·a_5_10
       + b_2_12·a_1_1·a_3_7 − b_2_0·a_3_2·a_3_4
  154.  − a_4_9·b_4_11 − a_4_7·b_4_11 + b_2_32·a_4_9 + b_2_32·a_4_7 + a_3_7·a_5_16 + a_3_7·a_5_13
       − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  155. a_4_9·b_4_11 − b_2_32·a_4_9 − a_3_7·a_5_13 + a_3_7·a_5_10 + a_3_6·a_5_16 − a_3_6·a_5_10
  156. a_4_7·b_4_11 − a_3_7·a_5_13 + a_3_5·a_5_16 + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
  157. b_4_112 + b_4_8·b_4_11 − b_2_34 + a_4_9·b_4_11 + a_4_9·b_4_8 − a_4_7·b_4_11
       − a_4_7·b_4_8 + b_2_32·a_4_9 − b_2_32·a_4_7 − a_3_7·a_5_10 − a_3_6·a_5_14 + a_3_6·a_5_10
       + a_3_4·a_5_16 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  158.  − a_4_9·b_4_11 + b_2_32·a_4_9 + a_3_3·a_5_16
  159.  − b_4_112 − b_4_8·b_4_11 + b_2_34 − a_4_9·b_4_11 + a_4_9·b_4_8 − a_4_7·b_4_8
       − b_2_32·a_4_9 − b_2_32·a_4_7 − a_3_7·a_5_10 − a_3_6·a_5_10 + a_3_2·a_5_16
       − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  160. a_2_2·a_6_16
  161.  − b_4_112 − b_4_8·b_4_11 + b_2_34 + a_4_9·b_4_11 − a_4_9·b_4_8 − b_2_32·a_4_7
       + b_2_0·a_6_16 + a_3_6·a_5_10 + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
       − b_2_0·a_3_2·a_3_4 − b_2_02·a_1_0·a_3_2
  162. a_4_9·b_4_11 + a_4_7·b_4_11 − b_2_32·a_4_9 − b_2_32·a_4_7 + b_2_1·a_6_16 − a_3_7·a_5_10
       − b_2_12·a_1_1·a_3_7 + b_2_12·a_1_1·a_3_3
  163. a_4_9·b_4_8 − a_4_7·b_4_11 + a_4_7·b_4_8 + b_2_32·a_4_7 + a_2_2·b_6_19 − a_3_7·a_5_10
       + a_3_6·a_5_10
  164. b_4_112 − b_4_8·b_4_11 + b_4_82 − b_2_34 + b_2_0·b_6_19 − b_2_02·b_4_8 − a_4_9·b_4_11
       − a_4_9·b_4_8 − a_4_7·b_4_11 − a_4_7·b_4_8 − b_2_32·a_4_7 + b_2_0·a_3_2·a_3_4
       + b_2_02·a_1_0·a_3_4
  165. b_2_1·b_6_19 − b_2_12·b_4_8 + a_4_9·b_4_11 + a_4_7·b_4_11 − b_2_32·a_4_9 − b_2_32·a_4_7
       + b_2_1·a_3_3·a_3_7 − b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7 − b_2_12·a_1_1·a_3_3
  166. b_4_112 + b_4_8·b_4_11 + b_2_3·b_6_19 − b_2_34 − a_4_9·b_4_11 + a_4_9·b_4_8
       + a_4_7·b_4_11 + a_4_7·b_4_8 + b_2_3·a_6_16 + b_2_32·a_4_9 + b_2_32·a_4_7 + a_3_6·a_5_14
       − a_3_6·a_5_10 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  167. b_4_112 + b_4_8·b_4_11 − b_2_34 − a_4_9·b_4_11 − a_4_9·b_4_8 + b_2_32·a_4_7
       + a_2_2·b_6_20 − a_3_7·a_5_10 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
  168.  − b_4_112 + b_4_82 + b_2_34 + b_2_0·b_6_20 + a_4_9·b_4_11 + a_4_7·b_4_11 + a_4_7·b_4_8
       + b_2_32·a_4_7 − a_3_6·a_5_10 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
       − b_2_0·a_3_2·a_3_4 − b_2_02·a_1_0·a_3_2
  169.  − b_4_112 + b_2_34 + b_2_1·b_6_20 + a_4_7·b_4_11 + b_2_32·a_4_9 + b_2_32·a_4_7
       + a_3_7·a_5_10 + b_2_1·a_3_3·a_3_7 + b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_3
  170.  − b_4_112 − b_4_8·b_4_11 + b_2_3·b_6_20 − a_4_9·b_4_11 − a_4_9·b_4_8 + b_2_3·a_6_16
       + b_2_32·a_4_9 − b_2_32·a_4_7 − a_3_7·a_5_13 + a_3_7·a_5_10 + a_3_6·a_5_14 − a_3_6·a_5_10
       + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
  171. a_4_9·b_4_11 − a_4_7·b_4_11 − b_2_32·a_4_9 + b_2_32·a_4_7 + a_3_7·a_5_10 + a_1_1·a_7_25
       + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7
  172.  − b_4_112 − b_4_8·b_4_11 + b_2_34 + a_4_9·b_4_11 − a_4_7·b_4_8 − b_2_32·a_4_7
       − a_3_7·a_5_10 − a_3_6·a_5_10 + a_1_0·a_7_25 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
       − b_2_02·a_1_0·a_3_4
  173. a_4_7·b_4_11 − b_2_32·a_4_7 + a_1_1·a_7_26 + b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7
       + b_2_12·a_1_1·a_3_3
  174.  − a_4_9·b_4_8 + a_4_7·b_4_11 − a_4_7·b_4_8 − b_2_32·a_4_7 + a_3_7·a_5_10 − a_3_6·a_5_10
       + a_1_0·a_7_26 − b_2_1·a_1_1·a_5_10 − b_2_12·a_1_1·a_3_7 − b_2_02·a_1_0·a_3_4
       − b_2_02·a_1_0·a_3_2
  175.  − a_4_7·b_4_11 + b_2_32·a_4_7 + a_3_7·a_5_13 + a_1_1·a_7_27 − b_2_1·a_1_1·a_5_10
       + b_2_12·a_1_1·a_3_7
  176.  − b_4_112 − b_4_8·b_4_11 + b_2_34 + a_4_7·b_4_11 + a_4_7·b_4_8 + b_2_32·a_4_9
       + b_2_32·a_4_7 + a_3_7·a_5_10 + a_3_6·a_5_14 − a_3_6·a_5_10 + a_1_0·a_7_27
       + b_2_1·a_1_1·a_5_10 + b_2_12·a_1_1·a_3_7 − b_2_02·a_1_0·a_3_2
  177. a_4_9·a_5_12 − a_4_7·a_5_10 − b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
  178. a_4_9·a_5_10 + a_4_7·a_5_12 − b_2_1·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_3_4
  179. b_4_11·a_5_13 + b_4_8·a_5_13 − b_2_32·a_5_13 − b_2_02·a_5_12 + b_2_03·a_3_6
       + b_2_03·a_3_4 + a_4_9·a_5_13 − a_4_9·a_5_10 + a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
  180. a_4_7·a_5_13 + b_2_0·a_1_0·a_3_2·a_3_4
  181. b_4_11·a_5_14 − b_4_11·a_5_12 + b_4_11·a_5_10 − b_4_8·a_5_13 − b_2_32·a_5_13
       + b_2_12·a_5_13 + b_2_12·a_5_10 + b_2_13·a_3_7 − b_2_13·a_3_5 + b_2_02·a_5_12
       − b_2_03·a_3_6 − b_2_03·a_3_4 + a_4_9·a_5_14 + a_4_9·a_5_10 + a_4_7·a_5_10
       + b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
  182.  − a_4_9·a_5_10 + a_4_7·a_5_10 + a_1_0·a_3_2·a_5_14 + b_2_1·a_1_1·a_3_3·a_3_7
  183. a_4_7·a_5_14 − a_4_7·a_5_10
  184. a_4_9·a_5_15 − a_4_7·a_5_10 − b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
  185.  − b_4_11·a_5_12 + b_4_11·a_5_10 + b_2_33·a_3_5 + b_2_12·a_5_15 − b_2_12·a_5_10
       − b_2_13·a_3_7 − b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_1·a_1_1·a_3_3·a_3_7
  186.  − a_4_9·a_5_10 + a_1_1·a_3_3·a_5_15
  187. b_4_11·a_5_15 − b_4_11·a_5_10 + b_4_8·a_5_15 − b_4_8·a_5_10 − b_2_32·a_5_15
       + b_2_02·a_5_14 − b_2_02·a_5_12 − b_2_03·a_3_6 + b_2_03·a_3_2 + a_4_9·a_5_13
       + a_4_9·a_5_10 − a_4_7·a_5_10 − b_2_1·a_1_1·a_3_3·a_3_7
  188. a_4_9·a_5_13 + a_4_7·a_5_15 − a_4_7·a_5_10 − b_2_1·a_1_1·a_3_3·a_3_7
       + b_2_0·a_1_0·a_3_2·a_3_4
  189. a_4_9·a_5_16 + a_4_9·a_5_14 + a_4_9·a_5_13 − a_4_7·a_5_10 − b_2_1·a_1_1·a_3_3·a_3_7
       + b_2_0·a_1_0·a_3_2·a_3_4
  190.  − b_4_11·a_5_10 − b_4_8·a_5_10 + b_2_02·a_5_16 + b_2_02·a_5_14 + b_2_02·a_5_12
       − b_2_03·a_3_6 − b_2_03·a_3_2 − a_4_7·a_5_10 + b_2_0·a_1_0·a_3_2·a_3_4
  191. b_4_11·a_5_16 − b_4_11·a_5_10 + b_4_8·a_5_15 − b_4_8·a_5_10 − b_2_32·a_5_13
       + b_2_33·a_3_5 − b_2_12·a_5_13 + b_2_12·a_5_10 + b_2_13·a_3_7 − b_2_13·a_3_5
       + b_2_02·a_5_14 − b_2_02·a_5_12 − b_2_03·a_3_6 + b_2_03·a_3_2 + a_4_9·a_5_13
       + a_4_9·a_5_10 + a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
  192. a_4_9·a_5_14 − a_4_9·a_5_13 + a_4_9·a_5_10 + a_4_7·a_5_16
  193. b_4_8·a_5_13 − b_2_13·a_3_5 − b_2_02·a_5_12 + b_2_03·a_3_6 + b_2_03·a_3_4
       + a_4_7·a_5_10 + b_2_1·c_6_21·a_1_1
  194.  − b_4_11·a_5_12 + b_4_11·a_5_10 − b_4_8·a_5_16 + b_4_8·a_5_15 + b_4_8·a_5_14 + b_4_8·a_5_13
       + b_4_8·a_5_12 − b_4_8·a_5_10 + b_2_33·a_3_5 + b_2_12·a_5_13 − b_2_02·a_5_14
       + b_2_03·a_3_6 − a_4_9·a_5_10 − b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
       + b_2_0·c_6_22·a_1_0
  195. a_6_16·a_3_7 − a_4_9·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
  196. a_6_16·a_3_6 − a_4_9·a_5_14 + a_4_9·a_5_13 + a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
  197. a_6_16·a_3_5 − a_4_9·a_5_13
  198. a_6_16·a_3_4 − a_4_9·a_5_10 + a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
       + b_2_0·a_1_0·a_3_2·a_3_4
  199. a_6_16·a_3_3 − a_4_9·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
  200. a_6_16·a_3_2 − a_4_9·a_5_10 + a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
       − b_2_0·a_1_0·a_3_2·a_3_4
  201. b_6_19·a_3_7 − b_4_11·a_5_12 + b_4_11·a_5_10 + b_2_33·a_3_5 − b_2_12·a_5_13
       + b_2_12·a_5_10 + b_2_13·a_3_7 − b_2_13·a_3_5 + a_4_9·a_5_10
  202. b_6_19·a_3_6 − b_4_11·a_5_10 − b_4_8·a_5_16 + b_4_8·a_5_15 − b_4_8·a_5_10 + b_2_12·a_5_10
       + b_2_13·a_3_7 − b_2_13·a_3_5 − b_2_02·a_5_14 − b_2_03·a_3_6 + b_2_03·a_3_4
       − b_2_03·a_3_2 + a_4_9·a_5_14 − a_4_9·a_5_13 − a_4_7·a_5_10 − b_2_1·a_1_1·a_3_3·a_3_7
       − b_2_0·a_1_0·a_3_2·a_3_4
  203. b_6_19·a_3_5 + b_2_12·a_5_13 + a_4_9·a_5_13 + a_4_9·a_5_10
  204. b_6_19·a_3_4 + b_4_11·a_5_12 + b_4_11·a_5_10 + b_4_8·a_5_14 + b_4_8·a_5_13 − b_4_8·a_5_10
       − b_2_33·a_3_5 − b_2_12·a_5_13 − b_2_12·a_5_10 − b_2_13·a_3_7 + b_2_13·a_3_5
       − b_2_02·a_5_14 − b_2_02·a_5_12 − b_2_03·a_3_4 − b_2_03·a_3_2 − a_4_7·a_5_10
       − b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
  205. b_6_19·a_3_3 − b_2_12·a_5_10 − b_2_13·a_3_7 + b_2_13·a_3_5 − b_2_1·a_1_1·a_3_3·a_3_7
  206. b_6_19·a_3_2 − b_4_11·a_5_12 − b_4_11·a_5_10 − b_4_8·a_5_12 − b_4_8·a_5_10 + b_2_33·a_3_5
       − b_2_02·a_5_14 − b_2_02·a_5_12 − b_2_03·a_3_4 − b_2_03·a_3_2 − a_4_9·a_5_10
       + b_2_1·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_3_4
  207. b_6_20·a_3_7 − b_4_11·a_5_12 − b_4_8·a_5_15 − b_4_8·a_5_13 + b_4_8·a_5_10 + b_2_33·a_3_5
       − b_2_12·a_5_13 − b_2_02·a_5_14 − b_2_02·a_5_12 − b_2_03·a_3_4 − b_2_03·a_3_2
       + a_4_9·a_5_10 − a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
  208. b_6_20·a_3_6 + b_4_11·a_5_10 − b_4_8·a_5_16 + b_4_8·a_5_15 + b_4_8·a_5_13 + b_4_8·a_5_10
       − b_2_12·a_5_13 + b_2_12·a_5_10 + b_2_13·a_3_7 − b_2_13·a_3_5 + a_4_9·a_5_14
       − a_4_9·a_5_13 − a_4_9·a_5_10 − a_4_7·a_5_10 − b_2_0·a_1_0·a_3_2·a_3_4
  209. b_6_20·a_3_5 + b_4_8·a_5_13 − b_2_33·a_3_5 − b_2_02·a_5_12 + b_2_03·a_3_6
       + b_2_03·a_3_4 + a_4_9·a_5_13 + a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
  210. b_6_20·a_3_4 + b_4_11·a_5_12 + b_4_11·a_5_10 + b_4_8·a_5_14 + b_4_8·a_5_13 − b_4_8·a_5_10
       − b_2_33·a_3_5 − b_2_12·a_5_13 − b_2_12·a_5_10 − b_2_13·a_3_7 + b_2_13·a_3_5
       − b_2_02·a_5_12 + b_2_03·a_3_6 + b_2_03·a_3_4 + a_4_9·a_5_10 + a_4_7·a_5_10
       + b_2_1·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_3_4
  211. b_6_20·a_3_3 − b_4_11·a_5_12 − b_4_11·a_5_10 + b_2_33·a_3_5 + b_2_12·a_5_13
       + b_2_12·a_5_10 + b_2_13·a_3_7 − b_2_13·a_3_5 − a_4_9·a_5_10 − a_4_7·a_5_10
       + b_2_0·a_1_0·a_3_2·a_3_4
  212. b_6_20·a_3_2 − b_4_11·a_5_12 − b_4_11·a_5_10 − b_4_8·a_5_12 − b_4_8·a_5_10 + b_2_33·a_3_5
       − b_2_02·a_5_14 + b_2_02·a_5_12 + b_2_03·a_3_6 − b_2_03·a_3_2 − a_4_9·a_5_10
       + b_2_1·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_3_4
  213.  − a_4_9·a_5_10 + a_2_2·a_7_25 − b_2_0·a_1_0·a_3_2·a_3_4
  214. b_4_11·a_5_12 − b_4_11·a_5_10 − b_4_8·a_5_16 + b_4_8·a_5_15 + b_4_8·a_5_14 + b_4_8·a_5_13
       − b_2_33·a_3_5 + b_2_12·a_5_13 + b_2_0·a_7_25 − b_2_02·a_5_12 − b_2_03·a_3_4
       + b_2_03·a_3_2 + a_4_9·a_5_10 − a_4_7·a_5_10
  215.  − b_4_11·a_5_10 − b_4_8·a_5_13 + b_2_1·a_7_25 + b_2_12·a_5_13 − b_2_12·a_5_10
       − b_2_13·a_3_7 − b_2_13·a_3_5 + b_2_02·a_5_12 − b_2_03·a_3_6 − b_2_03·a_3_4
       + a_4_9·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_3_4 − b_2_1·c_6_22·a_1_1
  216. b_2_3·a_7_25 − b_2_32·a_5_13 − a_4_9·a_5_14 + a_4_9·a_5_13 + a_4_9·a_5_10 + a_4_7·a_5_10
       + b_2_1·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_3_4
  217. a_2_2·a_7_26 + b_2_1·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_3_4
  218. b_4_11·a_5_10 − b_4_8·a_5_16 + b_4_8·a_5_15 + b_4_8·a_5_14 + b_4_8·a_5_13 − b_4_8·a_5_12
       − b_4_8·a_5_10 + b_2_12·a_5_13 + b_2_0·a_7_26 − b_2_02·a_5_14 − b_2_03·a_3_6
       + b_2_03·a_3_2 + a_4_9·a_5_10 + a_4_7·a_5_10 + b_2_0·a_1_0·a_3_2·a_3_4
       + b_2_0·c_6_21·a_1_0
  219. b_4_11·a_5_12 + b_4_11·a_5_10 + b_4_8·a_5_13 − b_2_33·a_3_5 + b_2_1·a_7_26
       − b_2_12·a_5_10 + b_2_13·a_3_5 + b_2_13·a_3_3 − b_2_02·a_5_12 + b_2_03·a_3_6
       + b_2_03·a_3_4 + a_4_9·a_5_10 − a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
       − b_2_0·a_1_0·a_3_2·a_3_4 + b_2_1·c_6_22·a_1_1
  220. b_2_3·a_7_26 − b_2_32·a_5_15 − b_2_32·a_5_13 − b_2_33·a_3_5 + a_4_9·a_5_14
       + a_4_9·a_5_10 + a_4_7·a_5_10
  221. a_4_9·a_5_14 − a_4_9·a_5_13 + a_4_9·a_5_10 + a_4_7·a_5_10 + a_2_2·a_7_27
       − b_2_0·a_1_0·a_3_2·a_3_4
  222.  − b_4_11·a_5_12 + b_4_11·a_5_10 − b_4_8·a_5_16 + b_4_8·a_5_15 − b_4_8·a_5_14 − b_4_8·a_5_13
       + b_2_33·a_3_5 − b_2_12·a_5_10 − b_2_13·a_3_7 + b_2_13·a_3_5 + b_2_0·a_7_27
       − b_2_03·a_3_6 − b_2_03·a_3_4 − a_4_9·a_5_10 + a_4_7·a_5_10 + b_2_1·a_1_1·a_3_3·a_3_7
  223.  − b_4_11·a_5_10 + b_4_8·a_5_15 + b_4_8·a_5_13 − b_4_8·a_5_10 + b_2_1·a_7_27
       + b_2_12·a_5_10 − b_2_13·a_3_5 + b_2_02·a_5_14 + b_2_02·a_5_12 + b_2_03·a_3_4
       + b_2_03·a_3_2 + b_2_1·a_1_1·a_3_3·a_3_7
  224. b_2_3·a_7_27 − b_2_32·a_5_15 + b_2_32·a_5_13 − b_2_33·a_3_5 − a_4_9·a_5_14
       + a_4_9·a_5_10 + b_2_0·a_1_0·a_3_2·a_3_4
  225. a_5_12·a_5_15 − a_5_10·a_5_15 + a_5_10·a_5_12 − b_2_3·a_3_5·a_5_15 − b_2_12·a_3_3·a_3_7
       + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7 − b_2_0·a_3_2·a_5_14 + b_2_02·a_3_2·a_3_4
       − b_2_02·a_1_0·a_5_14 − b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  226. a_5_10·a_5_16 − a_5_10·a_5_15 + a_5_10·a_5_14 + a_5_10·a_5_13 + a_5_10·a_5_12
       − b_2_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_5_15 − b_2_12·a_1_1·a_5_10
       − b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3 + b_2_02·a_3_2·a_3_4
       − b_2_02·a_1_0·a_5_14 − b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  227.  − a_5_14·a_5_15 + a_5_13·a_5_16 + a_5_13·a_5_15 − a_5_13·a_5_14 − a_5_10·a_5_14
       − a_5_10·a_5_13 + a_5_10·a_5_12 + b_2_3·a_3_5·a_5_15 + b_2_3·a_3_5·a_5_13
       − b_2_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_5_15 − b_2_12·a_1_1·a_5_10
       − b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3 − b_2_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_2
  228. a_5_15·a_5_16 − a_5_14·a_5_15 − a_5_13·a_5_15 − a_5_13·a_5_14 − a_5_12·a_5_13
       − a_5_10·a_5_14 − a_5_10·a_5_12 + b_2_1·a_3_3·a_5_15 + b_2_12·a_3_3·a_3_7
       + b_2_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_5_12 + b_2_03·a_1_0·a_3_2
  229. a_5_14·a_5_15 − a_5_13·a_5_15 + a_5_10·a_5_14 − b_2_3·a_3_5·a_5_15 − b_2_1·a_3_3·a_5_15
       + b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7 − b_2_0·a_3_2·a_5_14
       − b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_4
       + c_6_21·a_1_1·a_3_7
  230.  − a_5_13·a_5_14 − a_5_10·a_5_13 − b_2_3·a_3_5·a_5_13 − b_2_12·a_1_1·a_5_10
       − b_2_13·a_1_1·a_3_7 − b_2_0·a_3_2·a_5_14 − b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_2 + c_6_21·a_1_1·a_3_3
  231. a_5_14·a_5_16 + a_5_14·a_5_15 − a_5_13·a_5_15 + a_5_12·a_5_14 − a_5_12·a_5_13
       − a_5_10·a_5_13 − a_5_10·a_5_12 − b_2_3·a_3_5·a_5_15 + b_2_3·a_3_5·a_5_13
       − b_2_1·a_3_3·a_5_15 − b_2_12·a_3_3·a_3_7 − b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14
       − b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_4 − b_2_03·a_1_0·a_3_2 + c_6_22·a_1_0·a_3_4
  232.  − a_5_13·a_5_14 − a_5_12·a_5_16 + a_5_12·a_5_14 + a_5_10·a_5_15 + a_5_10·a_5_13
       + a_5_10·a_5_12 − b_2_3·a_3_5·a_5_13 + b_2_12·a_3_3·a_3_7 + b_2_12·a_1_1·a_5_15
       − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3 − b_2_0·a_3_2·a_5_14
       − b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_4
       + c_6_22·a_1_0·a_3_2
  233. a_4_9·a_6_16
  234. b_4_8·a_6_16 − a_5_13·a_5_14 + a_5_12·a_5_14 + a_5_12·a_5_13 − a_5_10·a_5_15
       − a_5_10·a_5_13 + b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_15 + b_2_12·a_1_1·a_5_10
       + b_2_13·a_1_1·a_3_7 − b_2_13·a_1_1·a_3_3 − b_2_0·a_3_2·a_5_14 + b_2_02·a_3_2·a_3_4
       − b_2_02·a_1_0·a_5_14 − b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  235. b_2_32·a_6_16 + a_5_14·a_5_15 + a_5_13·a_5_15 − a_5_12·a_5_13 + a_5_10·a_5_14
       − a_5_10·a_5_13 + b_2_3·a_3_5·a_5_15 + b_2_3·a_3_5·a_5_13 − b_2_1·a_3_3·a_5_15
       + b_2_12·a_3_3·a_3_7 + b_2_12·a_1_1·a_5_15 + b_2_13·a_1_1·a_3_3 − b_2_0·a_3_2·a_5_14
       + b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14 − b_2_02·a_1_0·a_5_12
       − b_2_03·a_1_0·a_3_4 − b_2_03·a_1_0·a_3_2
  236. b_4_11·a_6_16 + a_5_14·a_5_15 + a_5_13·a_5_15 − a_5_13·a_5_14 + a_5_10·a_5_15
       + a_5_10·a_5_14 − a_5_10·a_5_13 + b_2_3·a_3_5·a_5_15 − b_2_3·a_3_5·a_5_13
       − b_2_12·a_3_3·a_3_7 + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7 + b_2_0·a_3_2·a_5_14
       + b_2_02·a_1_0·a_5_14 − b_2_02·a_1_0·a_5_12 + b_2_03·a_1_0·a_3_4
  237. a_4_7·a_6_16
  238. a_4_9·b_6_19 + a_5_13·a_5_14 − a_5_12·a_5_16 − a_5_12·a_5_14 + a_5_10·a_5_15
       + a_5_10·a_5_14 − a_5_10·a_5_12 + b_2_1·a_3_3·a_5_15 + b_2_12·a_3_3·a_3_7
       + b_2_12·a_1_1·a_5_15 + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7
       + b_2_13·a_1_1·a_3_3 + b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14
       + b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_4
  239. b_4_11·b_6_19 + b_4_8·b_6_19 + b_2_03·b_4_8 − a_5_14·a_5_15 − a_5_13·a_5_15
       − a_5_13·a_5_14 + a_5_12·a_5_16 − a_5_12·a_5_14 − a_5_12·a_5_13 − a_5_10·a_5_15
       + a_5_10·a_5_14 + a_5_10·a_5_13 − a_5_10·a_5_12 + b_2_3·a_3_5·a_5_15 − b_2_3·a_3_5·a_5_13
       − b_2_1·a_3_3·a_5_15 + b_2_12·a_3_3·a_3_7 + b_2_0·a_3_2·a_5_14 − b_2_02·a_3_2·a_3_4
       − b_2_02·a_1_0·a_5_12 + b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2 − b_2_02·c_6_22
  240. a_4_7·b_6_19 + a_5_13·a_5_14 − a_5_12·a_5_14 − a_5_10·a_5_13 − a_5_10·a_5_12
       − b_2_3·a_3_5·a_5_13 + b_2_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7
       + b_2_0·a_3_2·a_5_14 − b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_14
       − b_2_02·a_1_0·a_5_12 + b_2_03·a_1_0·a_3_4
  241. a_4_9·b_6_20 + a_5_13·a_5_14 − a_5_12·a_5_16 − a_5_12·a_5_14 − a_5_12·a_5_13
       − a_5_10·a_5_15 + a_5_10·a_5_14 + a_5_10·a_5_13 + b_2_3·a_3_5·a_5_15 + b_2_3·a_3_5·a_5_13
       − b_2_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_5_15 − b_2_12·a_1_1·a_5_10
       − b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3 − b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_2
  242. b_4_8·b_6_20 + b_2_13·b_4_8 − b_2_02·b_6_19 − b_2_03·b_4_8 + a_5_13·a_5_14
       − a_5_12·a_5_14 + a_5_10·a_5_15 + a_5_10·a_5_14 + a_5_10·a_5_13 − b_2_3·a_3_5·a_5_13
       + b_2_1·a_3_3·a_5_15 − b_2_12·a_1_1·a_5_15 − b_2_13·a_1_1·a_3_3 + b_2_0·a_3_2·a_5_14
       − b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_2 − b_2_12·c_6_21
       − b_2_02·c_6_22
  243.  − b_4_8·b_6_19 + b_2_12·b_6_20 − b_2_03·b_4_8 + a_5_12·a_5_14 − a_5_10·a_5_15
       − a_5_10·a_5_14 − a_5_10·a_5_13 + a_5_10·a_5_12 − b_2_3·a_3_5·a_5_13
       + b_2_12·a_1_1·a_5_15 − b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7
       + b_2_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
       + b_2_02·c_6_22
  244. b_4_11·b_6_20 − b_2_35 − b_2_13·b_4_8 − a_5_14·a_5_15 − a_5_13·a_5_15 + a_5_13·a_5_14
       + a_5_12·a_5_16 − a_5_10·a_5_12 − b_2_3·a_3_5·a_5_15 + b_2_3·a_3_5·a_5_13
       + b_2_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_5_15 + b_2_12·a_1_1·a_5_10
       + b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3 − b_2_0·a_3_2·a_5_14 − b_2_02·a_3_2·a_3_4
       − b_2_02·a_1_0·a_5_14 − b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_4
       − b_2_03·a_1_0·a_3_2 + b_2_12·c_6_21
  245. a_4_7·b_6_20 + a_5_13·a_5_14 − a_5_12·a_5_14 − a_5_12·a_5_13 + a_5_10·a_5_13
       − a_5_10·a_5_12 + b_2_3·a_3_5·a_5_13 + b_2_1·a_3_3·a_5_15 − b_2_12·a_1_1·a_5_10
       − b_2_13·a_1_1·a_3_7 − b_2_0·a_3_2·a_5_14 − b_2_02·a_3_2·a_3_4
  246.  − a_5_13·a_5_14 − a_5_12·a_5_13 + a_5_10·a_5_13 + b_2_1·a_1_1·a_7_25
       − b_2_12·a_1_1·a_5_15 + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7
       − b_2_13·a_1_1·a_3_3 − b_2_0·a_3_2·a_5_14 + b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_2
  247. a_5_10·a_5_12 + b_2_1·a_3_3·a_5_15 + b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_15
       − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7 − b_2_13·a_1_1·a_3_3 + b_2_0·a_3_2·a_5_14
       + b_2_0·a_1_0·a_7_25 − b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_4
  248. a_5_14·a_5_15 − a_5_13·a_5_15 + a_5_13·a_5_14 − a_5_10·a_5_15 + a_5_10·a_5_14
       − a_5_10·a_5_13 + a_3_7·a_7_25 − b_2_3·a_3_5·a_5_15 + b_2_3·a_3_5·a_5_13
       − b_2_1·a_3_3·a_5_15 − b_2_12·a_1_1·a_5_15 − b_2_13·a_1_1·a_3_3
       − b_2_02·a_1_0·a_5_12 + b_2_03·a_1_0·a_3_2 + c_6_22·a_1_1·a_3_7
  249. a_5_14·a_5_16 + a_5_14·a_5_15 − a_5_13·a_5_15 + a_5_13·a_5_14 − a_5_12·a_5_13
       + a_5_10·a_5_14 − a_5_10·a_5_12 + a_3_6·a_7_25 − b_2_3·a_3_5·a_5_15 − b_2_1·a_3_3·a_5_15
       − b_2_12·a_1_1·a_5_15 − b_2_13·a_1_1·a_3_3 − b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_2
  250. a_5_13·a_5_14 + a_5_12·a_5_13 + a_3_5·a_7_25 − b_2_3·a_3_5·a_5_13 + b_2_0·a_3_2·a_5_14
       − b_2_02·a_1_0·a_5_12 + b_2_03·a_1_0·a_3_2
  251.  − a_5_14·a_5_16 − a_5_14·a_5_15 + a_5_13·a_5_15 − a_5_12·a_5_13 − a_5_10·a_5_14
       − a_5_10·a_5_12 + a_3_4·a_7_25 + b_2_3·a_3_5·a_5_15 − b_2_1·a_3_3·a_5_15
       + b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7 − b_2_0·a_3_2·a_5_14
       − b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  252. a_5_12·a_5_13 + a_5_10·a_5_13 + a_3_3·a_7_25 − b_2_3·a_3_5·a_5_13 − b_2_1·a_3_3·a_5_15
       + b_2_02·a_3_2·a_3_4 + c_6_22·a_1_1·a_3_3
  253. a_5_13·a_5_14 + a_5_12·a_5_16 − a_5_12·a_5_14 − a_5_10·a_5_15 − a_5_10·a_5_13
       + a_5_10·a_5_12 + a_3_2·a_7_25 + b_2_3·a_3_5·a_5_13 − b_2_1·a_3_3·a_5_15
       + b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7
       − b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14 − b_2_03·a_1_0·a_3_4
       + b_2_03·a_1_0·a_3_2
  254.  − a_5_14·a_5_15 + a_5_13·a_5_15 + a_5_12·a_5_13 − a_5_10·a_5_15 − a_5_10·a_5_14
       + a_5_10·a_5_13 + a_3_7·a_7_26 + b_2_3·a_3_5·a_5_15 − b_2_3·a_3_5·a_5_13
       + b_2_12·a_1_1·a_5_15 − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7
       + b_2_13·a_1_1·a_3_3 + b_2_0·a_3_2·a_5_14 − b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14
       + b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_4 − c_6_22·a_1_1·a_3_7
  255. a_5_14·a_5_16 + a_5_14·a_5_15 − a_5_13·a_5_15 + a_5_13·a_5_14 − a_5_12·a_5_16
       + a_5_12·a_5_13 + a_5_10·a_5_15 + a_3_6·a_7_26 − b_2_3·a_3_5·a_5_15 − b_2_3·a_3_5·a_5_13
       − b_2_12·a_3_3·a_3_7 − b_2_02·a_1_0·a_5_14 − b_2_02·a_1_0·a_5_12
       − b_2_03·a_1_0·a_3_4 − b_2_03·a_1_0·a_3_2 + c_6_21·a_1_0·a_3_4 − c_6_21·a_1_0·a_3_2
  256. a_5_13·a_5_14 + a_5_10·a_5_13 + a_3_5·a_7_26 − b_2_3·a_3_5·a_5_15 + b_2_12·a_1_1·a_5_15
       − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3 + b_2_0·a_3_2·a_5_14
       + b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_2
  257.  − a_5_14·a_5_16 − a_5_14·a_5_15 + a_5_13·a_5_15 − a_5_13·a_5_14 + a_5_12·a_5_14
       − a_5_12·a_5_13 − a_5_10·a_5_13 + a_3_4·a_7_26 + b_2_3·a_3_5·a_5_15 + b_2_3·a_3_5·a_5_13
       − b_2_1·a_3_3·a_5_15 + b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7
       − b_2_0·a_3_2·a_5_14 + b_2_02·a_1_0·a_5_12 − b_2_03·a_1_0·a_3_2 − c_6_21·a_1_0·a_3_4
  258.  − a_5_12·a_5_13 − a_5_10·a_5_13 + a_3_3·a_7_26 + b_2_3·a_3_5·a_5_13 + b_2_12·a_3_3·a_3_7
       − b_2_02·a_3_2·a_3_4 − c_6_22·a_1_1·a_3_3
  259. a_5_13·a_5_14 + a_5_12·a_5_16 − a_5_12·a_5_14 − a_5_10·a_5_15 − a_5_10·a_5_13
       + a_5_10·a_5_12 + a_3_2·a_7_26 + b_2_3·a_3_5·a_5_13 − b_2_1·a_3_3·a_5_15
       + b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7
       − b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12
       − b_2_03·a_1_0·a_3_4 − c_6_21·a_1_0·a_3_2
  260.  − a_5_13·a_5_14 + a_5_12·a_5_13 − a_5_10·a_5_13 + b_2_3·a_3_5·a_5_13 + b_2_1·a_1_1·a_7_27
       − b_2_13·a_1_1·a_3_7 − b_2_0·a_3_2·a_5_14 − b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_12
       − b_2_03·a_1_0·a_3_2
  261.  − a_5_13·a_5_14 − a_5_12·a_5_13 − a_5_10·a_5_14 + a_5_10·a_5_12 + b_2_12·a_3_3·a_3_7
       − b_2_12·a_1_1·a_5_15 − b_2_13·a_1_1·a_3_3 + b_2_0·a_3_2·a_5_14 + b_2_0·a_1_0·a_7_27
       + b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_4
  262.  − a_5_13·a_5_14 − a_5_12·a_5_13 + a_5_10·a_5_15 − a_5_10·a_5_13 + a_3_7·a_7_27
       + b_2_1·a_3_3·a_5_15 + b_2_12·a_3_3·a_3_7 + b_2_12·a_1_1·a_5_15
       + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3 − b_2_0·a_3_2·a_5_14
       + b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12
       − b_2_03·a_1_0·a_3_4
  263.  − a_5_14·a_5_16 + a_5_14·a_5_15 − a_5_13·a_5_15 + a_5_13·a_5_14 + a_5_12·a_5_13
       − a_5_10·a_5_13 + a_3_6·a_7_27 − b_2_3·a_3_5·a_5_15 − b_2_3·a_3_5·a_5_13
       + b_2_12·a_3_3·a_3_7 + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7
       + b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14 − b_2_03·a_1_0·a_3_4
       + b_2_03·a_1_0·a_3_2
  264.  − a_5_14·a_5_15 + a_5_13·a_5_15 − a_5_13·a_5_14 − a_5_10·a_5_14 − a_5_10·a_5_13
       + a_3_5·a_7_27 + b_2_1·a_3_3·a_5_15 − b_2_12·a_3_3·a_3_7 + b_2_12·a_1_1·a_5_15
       − b_2_12·a_1_1·a_5_10 − b_2_13·a_1_1·a_3_7 + b_2_13·a_1_1·a_3_3
       − b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  265.  − a_5_14·a_5_16 − a_5_14·a_5_15 + a_5_13·a_5_15 − a_5_13·a_5_14 + a_5_12·a_5_13
       + a_5_10·a_5_14 − a_5_10·a_5_12 + a_3_4·a_7_27 + b_2_3·a_3_5·a_5_15 + b_2_1·a_3_3·a_5_15
       + b_2_12·a_3_3·a_3_7 − b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_14
       + b_2_02·a_1_0·a_5_12 + b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  266. a_5_12·a_5_13 + a_5_10·a_5_15 + a_3_3·a_7_27 − b_2_3·a_3_5·a_5_13 + b_2_1·a_3_3·a_5_15
       + b_2_12·a_1_1·a_5_15 + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7
       + b_2_13·a_1_1·a_3_3 − b_2_02·a_3_2·a_3_4 − b_2_02·a_1_0·a_5_14
       − b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  267.  − a_5_13·a_5_14 + a_5_12·a_5_16 + a_5_12·a_5_14 − a_5_10·a_5_15 − a_5_10·a_5_14
       + a_5_10·a_5_12 + a_3_2·a_7_27 − b_2_12·a_3_3·a_3_7 − b_2_12·a_1_1·a_5_15
       + b_2_12·a_1_1·a_5_10 + b_2_13·a_1_1·a_3_7 − b_2_13·a_1_1·a_3_3
       − b_2_02·a_3_2·a_3_4 + b_2_02·a_1_0·a_5_14 + b_2_02·a_1_0·a_5_12
       + b_2_03·a_1_0·a_3_4 + b_2_03·a_1_0·a_3_2
  268. a_6_16·a_5_13 − b_2_3·a_4_7·a_5_15 − b_2_1·a_1_1·a_3_3·a_5_15
       + b_2_0·a_1_0·a_3_2·a_5_14 + b_2_02·a_1_0·a_3_2·a_3_4 + a_2_2·c_6_21·a_3_7
  269. a_6_16·a_5_15 − a_6_16·a_5_10 − b_2_0·a_1_0·a_3_2·a_5_14 − a_2_2·c_6_21·a_3_7
  270. a_6_16·a_5_14 − a_6_16·a_5_12 − b_2_3·a_4_7·a_5_15 + b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_12·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_5_14 − a_2_2·c_6_21·a_3_7
  271. a_6_16·a_5_16 − a_6_16·a_5_12 − a_6_16·a_5_10 + b_2_1·a_1_1·a_3_3·a_5_15
       + b_2_12·a_1_1·a_3_3·a_3_7 − b_2_02·a_1_0·a_3_2·a_3_4 − a_2_2·c_6_22·a_3_4
       − a_2_2·c_6_21·a_3_7
  272. b_6_19·a_5_14 + b_6_19·a_5_13 + b_6_19·a_5_12 − b_6_19·a_5_10 − b_2_13·a_5_15
       − b_2_13·a_5_13 − b_2_14·a_3_5 − b_2_14·a_3_3 + b_2_03·a_5_14 + b_2_03·a_5_12
       + b_2_04·a_3_6 − b_2_04·a_3_4 − a_6_16·a_5_12 − a_6_16·a_5_10
       + b_2_12·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_5_14 − b_2_0·c_6_22·a_3_4
       + b_2_0·c_6_22·a_3_2 − b_2_02·c_6_22·a_1_0
  273. b_6_19·a_5_16 − b_6_19·a_5_15 + b_6_19·a_5_12 − b_6_19·a_5_10 + b_2_13·a_5_15
       + b_2_13·a_5_13 + b_2_13·a_5_10 + b_2_14·a_3_7 + b_2_14·a_3_3 + b_2_03·a_5_16
       + b_2_03·a_5_12 − b_2_04·a_3_6 − b_2_04·a_3_4 + a_6_16·a_5_12 + a_6_16·a_5_10
       + b_2_1·a_1_1·a_3_3·a_5_15 − b_2_0·a_1_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_3_2·a_3_4
       + b_2_0·c_6_22·a_3_6 + b_2_0·c_6_22·a_3_2 − b_2_02·c_6_22·a_1_0 + a_2_2·c_6_22·a_3_4
  274. b_6_20·a_5_10 + b_6_19·a_5_15 − b_6_19·a_5_13 + b_6_19·a_5_12 − b_2_13·a_5_15
       + b_2_13·a_5_13 − b_2_13·a_5_10 − b_2_14·a_3_7 − b_2_14·a_3_3 + b_2_03·a_5_16
       + b_2_03·a_5_14 − b_2_03·a_5_12 + b_2_04·a_3_4 − a_6_16·a_5_12 + a_6_16·a_5_10
       − b_2_3·a_4_7·a_5_15 + b_2_1·a_1_1·a_3_3·a_5_15 − b_2_02·a_1_0·a_3_2·a_3_4
       − b_2_1·c_6_21·a_3_3 + b_2_0·c_6_22·a_3_2 + b_2_02·c_6_22·a_1_0 − a_2_2·c_6_21·a_3_7
  275. b_6_20·a_5_13 − b_6_19·a_5_13 − b_2_33·a_5_13 + b_2_13·a_5_13 + b_2_14·a_3_5
       + b_2_03·a_5_12 − b_2_04·a_3_6 − b_2_04·a_3_4 + a_6_16·a_5_12
       − b_2_1·a_1_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_5_14
       + b_2_1·c_6_21·a_3_5 − b_2_12·c_6_21·a_1_1
  276. b_6_20·a_5_12 − b_6_19·a_5_15 + b_6_19·a_5_12 − b_6_19·a_5_10 − b_2_34·a_3_5
       + b_2_13·a_5_15 + b_2_13·a_5_13 − b_2_13·a_5_10 − b_2_14·a_3_7 + b_2_14·a_3_5
       + b_2_14·a_3_3 − b_2_03·a_5_16 + b_2_03·a_5_14 + b_2_04·a_3_4 − b_2_04·a_3_2
       + a_6_16·a_5_12 + b_2_3·a_4_7·a_5_15 − b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_0·a_1_0·a_3_2·a_5_14 − b_2_1·c_6_21·a_3_3 + b_2_12·c_6_21·a_1_1
       − b_2_0·c_6_22·a_3_2 − b_2_02·c_6_22·a_1_0 − a_2_2·c_6_21·a_3_7
  277. b_6_20·a_5_15 + b_6_19·a_5_13 + b_6_19·a_5_10 − b_2_33·a_5_15 − b_2_13·a_5_15
       − b_2_13·a_5_13 + b_2_13·a_5_10 + b_2_14·a_3_7 − b_2_14·a_3_5 − b_2_14·a_3_3
       + b_2_03·a_5_16 − b_2_03·a_5_12 + b_2_04·a_3_6 + b_2_04·a_3_4 + a_6_16·a_5_12
       − a_6_16·a_5_10 + b_2_3·a_4_7·a_5_15 + b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_0·a_1_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_3_2·a_3_4 − b_2_1·c_6_21·a_3_7
       − b_2_1·c_6_21·a_3_5 + b_2_1·c_6_21·a_3_3 − b_2_12·c_6_21·a_1_1 − b_2_02·c_6_22·a_1_0
  278. b_6_20·a_5_14 + b_6_19·a_5_15 − b_6_19·a_5_13 + b_6_19·a_5_10 − b_2_33·a_5_13
       − b_2_34·a_3_5 + b_2_13·a_5_15 − b_2_13·a_5_10 − b_2_14·a_3_7 − b_2_14·a_3_5
       + b_2_14·a_3_3 + b_2_03·a_5_16 + b_2_03·a_5_12 + b_2_04·a_3_6 + b_2_04·a_3_4
       + b_2_04·a_3_2 − a_6_16·a_5_10 − b_2_3·a_4_7·a_5_15 + b_2_12·a_1_1·a_3_3·a_3_7
       + b_2_0·a_1_0·a_3_2·a_5_14 + b_2_02·a_1_0·a_3_2·a_3_4 − b_2_1·c_6_21·a_3_5
       − b_2_0·c_6_22·a_3_4
  279. b_6_20·a_5_16 − b_6_19·a_5_13 − b_6_19·a_5_12 + b_6_19·a_5_10 − b_2_33·a_5_13
       + b_2_34·a_3_5 + b_2_13·a_5_10 + b_2_14·a_3_7 + b_2_03·a_5_16 + b_2_03·a_5_14
       + b_2_04·a_3_6 − b_2_04·a_3_4 + b_2_04·a_3_2 + a_6_16·a_5_10 + b_2_3·a_4_7·a_5_15
       − b_2_1·a_1_1·a_3_3·a_5_15 − b_2_12·a_1_1·a_3_3·a_3_7 − b_2_02·a_1_0·a_3_2·a_3_4
       − b_2_1·c_6_21·a_3_7 − b_2_1·c_6_21·a_3_5 + b_2_1·c_6_21·a_3_3 − b_2_12·c_6_21·a_1_1
       + b_2_0·c_6_22·a_3_6 − b_2_0·c_6_22·a_3_2 − b_2_02·c_6_22·a_1_0 + a_2_2·c_6_22·a_3_4
       − a_2_2·c_6_21·a_3_7
  280. a_6_16·a_5_10 + a_4_9·a_7_25 + b_2_3·a_4_7·a_5_15 − b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_12·a_1_1·a_3_3·a_3_7 + b_2_02·a_1_0·a_3_2·a_3_4 + a_2_2·c_6_22·a_3_7
       + a_2_2·c_6_22·a_3_4 − a_2_2·c_6_21·a_3_7
  281.  − b_6_19·a_5_15 − b_6_19·a_5_12 − b_6_19·a_5_10 + b_4_8·a_7_25 − b_2_14·a_3_5
       − b_2_03·a_5_16 + a_6_16·a_5_10 + b_2_1·a_1_1·a_3_3·a_5_15 + b_2_0·a_1_0·a_3_2·a_5_14
       + b_2_02·a_1_0·a_3_2·a_3_4 − b_2_1·c_6_22·a_3_5 + b_2_1·c_6_21·a_3_5
       + b_2_1·c_6_21·a_3_3 + b_2_12·c_6_21·a_1_1 − b_2_0·c_6_22·a_3_6 − b_2_0·c_6_22·a_3_4
       − b_2_0·c_6_22·a_3_2 + b_2_02·c_6_22·a_1_0 − a_2_2·c_6_21·a_3_7
  282. b_6_19·a_5_13 + b_6_19·a_5_12 + b_2_12·a_7_25 + b_2_13·a_5_15 + b_2_13·a_5_13
       + b_2_13·a_5_10 + b_2_14·a_3_7 − b_2_14·a_3_5 + b_2_14·a_3_3 + b_2_03·a_5_12
       − b_2_04·a_3_2 + a_6_16·a_5_12 − a_6_16·a_5_10 − b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_12·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_5_14 + b_2_02·a_1_0·a_3_2·a_3_4
       − b_2_12·c_6_22·a_1_1 − b_2_12·c_6_21·a_1_1 + b_2_0·c_6_22·a_3_2
       − b_2_02·c_6_22·a_1_0 − a_2_2·c_6_21·a_3_7
  283. b_6_19·a_5_13 − b_2_14·a_3_5 + b_2_02·a_7_25 − b_2_03·a_5_16 + b_2_03·a_5_14
       − b_2_03·a_5_12 + a_6_16·a_5_12 − a_6_16·a_5_10 + b_2_3·a_4_7·a_5_15
       + b_2_1·a_1_1·a_3_3·a_5_15 − b_2_0·a_1_0·a_3_2·a_5_14 + b_2_12·c_6_21·a_1_1
       − b_2_02·c_6_22·a_1_0 − a_2_2·c_6_21·a_3_7
  284. b_6_19·a_5_15 − b_6_19·a_5_13 + b_6_19·a_5_12 + b_6_19·a_5_10 + b_4_11·a_7_25
       − b_2_33·a_5_13 − b_2_14·a_3_5 + b_2_03·a_5_12 + b_2_04·a_3_6 + b_2_04·a_3_4
       + b_2_04·a_3_2 − a_6_16·a_5_12 − a_6_16·a_5_10 + b_2_3·a_4_7·a_5_15
       + b_2_1·a_1_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_5_14
       + b_2_1·c_6_22·a_3_5 − b_2_1·c_6_21·a_3_5 − b_2_1·c_6_21·a_3_3 + b_2_12·c_6_21·a_1_1
       + b_2_0·c_6_22·a_3_2 + b_2_02·c_6_22·a_1_0 − a_2_2·c_6_22·a_3_7 + a_2_2·c_6_22·a_3_4
  285.  − a_6_16·a_5_12 + a_6_16·a_5_10 + a_4_7·a_7_25 − b_2_3·a_4_7·a_5_15
       − b_2_12·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_3_2·a_3_4
       − a_2_2·c_6_22·a_3_4
  286.  − a_6_16·a_5_12 + a_6_16·a_5_10 + a_4_9·a_7_26 + b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_12·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_3_2·a_3_4
       − a_2_2·c_6_22·a_3_7 + a_2_2·c_6_22·a_3_4 + a_2_2·c_6_21·a_3_7 − a_2_2·c_6_21·a_3_4
  287. b_4_8·a_7_26 + b_2_13·a_5_15 + b_2_13·a_5_10 + b_2_14·a_3_7 + b_2_14·a_3_5
       + b_2_14·a_3_3 + b_2_03·a_5_16 + b_2_03·a_5_14 + b_2_03·a_5_12 + b_2_04·a_3_4
       + b_2_04·a_3_2 − a_6_16·a_5_12 + a_6_16·a_5_10 − b_2_3·a_4_7·a_5_15
       − b_2_0·a_1_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_3_2·a_3_4 + b_2_1·c_6_22·a_3_5
       − b_2_1·c_6_21·a_3_5 + b_2_1·c_6_21·a_3_3 − b_2_12·c_6_21·a_1_1 − b_2_0·c_6_22·a_3_6
       − b_2_0·c_6_22·a_3_4 − b_2_0·c_6_22·a_3_2 + b_2_0·c_6_21·a_3_6 + b_2_0·c_6_21·a_3_4
       − b_2_0·c_6_21·a_3_2 − b_2_02·c_6_22·a_1_0
  288. b_4_11·a_7_26 − b_2_33·a_5_15 − b_2_33·a_5_13 − b_2_34·a_3_5 − b_2_13·a_5_15
       − b_2_13·a_5_10 − b_2_14·a_3_7 − b_2_14·a_3_5 − b_2_14·a_3_3 + a_6_16·a_5_12
       + a_6_16·a_5_10 + b_2_3·a_4_7·a_5_15 − b_2_12·a_1_1·a_3_3·a_3_7
       − b_2_0·a_1_0·a_3_2·a_5_14 − b_2_1·c_6_22·a_3_5 + b_2_1·c_6_21·a_3_5
       − b_2_1·c_6_21·a_3_3 + b_2_12·c_6_21·a_1_1 + a_2_2·c_6_22·a_3_7 + a_2_2·c_6_22·a_3_4
       − a_2_2·c_6_21·a_3_7 − a_2_2·c_6_21·a_3_4
  289. a_4_7·a_7_26 − b_2_3·a_4_7·a_5_15 − b_2_1·a_1_1·a_3_3·a_5_15
       + b_2_12·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_5_14 + b_2_02·a_1_0·a_3_2·a_3_4
       − a_2_2·c_6_22·a_3_4 + a_2_2·c_6_21·a_3_4
  290. a_6_16·a_5_12 + a_4_9·a_7_27 − b_2_1·a_1_1·a_3_3·a_5_15 − b_2_0·a_1_0·a_3_2·a_5_14
       − b_2_02·a_1_0·a_3_2·a_3_4 + a_2_2·c_6_21·a_3_7
  291. b_6_19·a_5_13 + b_4_8·a_7_27 + b_2_13·a_5_15 + b_2_13·a_5_13 − b_2_13·a_5_10
       − b_2_14·a_3_7 − b_2_14·a_3_5 + b_2_14·a_3_3 + b_2_03·a_5_14 − b_2_03·a_5_12
       − b_2_04·a_3_6 + b_2_04·a_3_2 + a_6_16·a_5_12 − a_6_16·a_5_10 + b_2_3·a_4_7·a_5_15
       − b_2_0·a_1_0·a_3_2·a_5_14 + b_2_1·c_6_21·a_3_7 − b_2_1·c_6_21·a_3_3
       − b_2_0·c_6_22·a_3_6 + b_2_0·c_6_22·a_3_4 − a_2_2·c_6_21·a_3_7
  292. b_6_19·a_5_15 − b_6_19·a_5_12 + b_6_19·a_5_10 + b_2_12·a_7_27 − b_2_13·a_5_15
       − b_2_13·a_5_10 + b_2_14·a_3_7 + b_2_14·a_3_5 − b_2_14·a_3_3 − b_2_03·a_5_12
       + b_2_04·a_3_6 + b_2_04·a_3_4 − a_6_16·a_5_12 + b_2_3·a_4_7·a_5_15
       + b_2_1·a_1_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_3_3·a_3_7 − b_2_12·c_6_21·a_1_1
       − b_2_0·c_6_22·a_3_2 + a_2_2·c_6_21·a_3_7
  293. b_6_19·a_5_13 − b_6_19·a_5_12 + b_6_19·a_5_10 − b_2_13·a_5_15 + b_2_13·a_5_10
       + b_2_14·a_3_7 − b_2_14·a_3_3 + b_2_02·a_7_27 + b_2_03·a_5_12 + b_2_04·a_3_2
       + a_6_16·a_5_12 + a_6_16·a_5_10 − b_2_3·a_4_7·a_5_15 − b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_12·a_1_1·a_3_3·a_3_7 − b_2_0·a_1_0·a_3_2·a_5_14 − b_2_02·a_1_0·a_3_2·a_3_4
       + b_2_12·c_6_21·a_1_1 − b_2_0·c_6_22·a_3_2 + b_2_02·c_6_22·a_1_0 − a_2_2·c_6_21·a_3_7
  294. a_6_16·a_5_12 + b_2_3·a_4_7·a_5_15 + a_1_1·a_3_3·a_7_27 + b_2_1·a_1_1·a_3_3·a_5_15
       − b_2_12·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_5_14 + b_2_02·a_1_0·a_3_2·a_3_4
  295. b_4_11·a_7_27 − b_2_33·a_5_15 + b_2_33·a_5_13 − b_2_34·a_3_5 − b_2_13·a_5_15
       − b_2_13·a_5_13 + b_2_13·a_5_10 + b_2_14·a_3_7 − b_2_14·a_3_3 − a_6_16·a_5_12
       + b_2_1·a_1_1·a_3_3·a_5_15 + b_2_12·a_1_1·a_3_3·a_3_7 + b_2_0·a_1_0·a_3_2·a_5_14
       + b_2_02·a_1_0·a_3_2·a_3_4 − b_2_1·c_6_21·a_3_7 + b_2_1·c_6_21·a_3_3
       + b_2_12·c_6_21·a_1_1 − a_2_2·c_6_22·a_3_4 + a_2_2·c_6_21·a_3_7
  296.  − a_6_16·a_5_12 − a_6_16·a_5_10 − b_2_3·a_4_7·a_5_15 + a_1_0·a_3_2·a_7_27
       + b_2_12·a_1_1·a_3_3·a_3_7 − b_2_02·a_1_0·a_3_2·a_3_4
  297.  − a_6_16·a_5_10 + a_4_7·a_7_27 − b_2_3·a_4_7·a_5_15 − b_2_0·a_1_0·a_3_2·a_5_14
       − a_2_2·c_6_22·a_3_4 − a_2_2·c_6_21·a_3_7
  298. a_6_162
  299.  − b_6_202 + b_6_19·b_6_20 + b_2_36 − b_2_13·b_6_20 + b_2_14·b_4_8 − b_2_03·b_6_19
       − b_2_04·b_4_8 + a_6_16·b_6_19 − b_2_3·a_5_13·a_5_15 − b_2_32·a_3_5·a_5_15
       − b_2_32·a_3_5·a_5_13 − b_2_12·a_3_3·a_5_15 + b_2_12·a_1_1·a_7_25
       + b_2_13·a_1_1·a_5_15 − b_2_13·a_1_1·a_5_10 − b_2_14·a_1_1·a_3_3
       − b_2_02·a_3_2·a_5_14 + b_2_02·a_1_0·a_7_25 − b_2_03·a_3_2·a_3_4
       + b_2_03·a_1_0·a_5_14 + b_2_03·a_1_0·a_5_12 + b_2_04·a_1_0·a_3_2
       + b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21 − b_2_03·c_6_22 − c_6_22·a_3_2·a_3_4
       − c_6_21·a_3_3·a_3_7 + b_2_1·c_6_21·a_1_1·a_3_7 − b_2_1·c_6_21·a_1_1·a_3_3
       + b_2_0·c_6_22·a_1_0·a_3_4 + b_2_0·c_6_22·a_1_0·a_3_2
  300. b_6_202 + b_6_192 − b_2_36 + a_5_10·a_7_25 − b_2_3·a_5_13·a_5_15
       + b_2_32·a_3_5·a_5_15 − b_2_13·a_1_1·a_5_15 − b_2_14·a_1_1·a_3_3
       − b_2_03·a_3_2·a_3_4 − b_2_1·b_4_8·c_6_21 − b_2_0·b_4_8·c_6_22 + c_6_22·a_3_2·a_3_4
       + c_6_22·a_1_1·a_5_10 − c_6_21·a_3_3·a_3_7 − c_6_21·a_1_1·a_5_10
       − b_2_1·c_6_21·a_1_1·a_3_7 + b_2_0·c_6_22·a_1_0·a_3_2
  301.  − b_6_202 + b_6_19·b_6_20 + b_2_36 − b_2_13·b_6_20 + b_2_14·b_4_8 − b_2_03·b_6_19
       − b_2_04·b_4_8 + a_6_16·b_6_19 + a_5_13·a_7_25 − b_2_3·a_5_13·a_5_15
       − b_2_32·a_3_5·a_5_15 − b_2_32·a_3_5·a_5_13 − b_2_12·a_3_3·a_5_15
       + b_2_13·a_1_1·a_5_15 − b_2_13·a_1_1·a_5_10 − b_2_14·a_1_1·a_3_3
       − b_2_02·a_3_2·a_5_14 + b_2_03·a_1_0·a_5_14 − b_2_03·a_1_0·a_5_12
       + b_2_04·a_1_0·a_3_4 + b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21 − b_2_03·c_6_22
       − c_6_22·a_3_2·a_3_4 − c_6_22·a_1_0·a_5_15 − c_6_21·a_3_3·a_3_7 − c_6_21·a_1_1·a_5_10
       + c_6_21·a_1_0·a_5_15 + b_2_1·c_6_21·a_1_1·a_3_7 − b_2_0·c_6_22·a_1_0·a_3_4
       − b_2_0·c_6_21·a_1_0·a_3_4
  302. b_6_202 − b_6_19·b_6_20 − b_6_192 − b_2_36 − b_2_13·b_6_20 − b_2_14·b_4_8
       + b_2_04·b_4_8 − a_6_16·b_6_20 + a_6_16·b_6_19 + a_5_12·a_7_25 − b_2_3·a_5_13·a_5_15
       − b_2_32·a_3_5·a_5_15 + b_2_12·a_3_3·a_5_15 + b_2_12·a_1_1·a_7_25
       + b_2_13·a_3_3·a_3_7 − b_2_13·a_1_1·a_5_15 + b_2_14·a_1_1·a_3_7
       − b_2_03·a_1_0·a_5_12 + b_2_04·a_1_0·a_3_4 + b_2_04·a_1_0·a_3_2 − b_2_1·b_4_8·c_6_21
       + b_2_13·c_6_21 − b_2_0·b_4_8·c_6_22 − b_2_03·c_6_22 + c_6_22·a_3_2·a_3_4
       + c_6_22·a_1_1·a_5_10 + c_6_22·a_1_0·a_5_12 − c_6_21·a_3_3·a_3_7 − c_6_21·a_1_1·a_5_10
       − b_2_1·c_6_22·a_1_1·a_3_7 − b_2_1·c_6_22·a_1_1·a_3_3 − b_2_1·c_6_21·a_1_1·a_3_7
       + b_2_0·c_6_22·a_1_0·a_3_4 − b_2_0·c_6_22·a_1_0·a_3_2
  303. b_6_202 + b_6_19·b_6_20 − b_2_36 + b_2_13·b_6_20 + b_2_14·b_4_8 − b_2_04·b_4_8
       + a_6_16·b_6_20 − a_6_16·b_6_19 + a_5_15·a_7_25 − b_2_32·a_3_5·a_5_13
       − b_2_12·a_3_3·a_5_15 − b_2_13·a_3_3·a_3_7 − b_2_13·a_1_1·a_5_15
       − b_2_14·a_1_1·a_3_7 + b_2_14·a_1_1·a_3_3 + b_2_02·a_3_2·a_5_14
       + b_2_03·a_1_0·a_5_14 − b_2_03·a_1_0·a_5_12 − b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21
       − b_2_0·b_4_8·c_6_22 + b_2_03·c_6_22 + c_6_22·a_3_2·a_3_4 + c_6_22·a_1_1·a_5_15
       + c_6_22·a_1_0·a_5_15 + c_6_21·a_3_3·a_3_7 − c_6_21·a_1_1·a_5_15 + c_6_21·a_1_1·a_5_10
       + b_2_0·c_6_22·a_1_0·a_3_4 + b_2_0·c_6_22·a_1_0·a_3_2
  304.  − b_6_202 + b_6_19·b_6_20 + b_2_36 − b_2_13·b_6_20 + b_2_14·b_4_8 − b_2_03·b_6_19
       − b_2_04·b_4_8 − a_6_16·b_6_19 + a_5_14·a_7_25 − b_2_3·a_5_13·a_5_15
       − b_2_32·a_3_5·a_5_15 + b_2_32·a_3_5·a_5_13 + b_2_12·a_3_3·a_5_15
       − b_2_12·a_1_1·a_7_25 − b_2_13·a_1_1·a_5_10 + b_2_14·a_1_1·a_3_3
       − b_2_02·a_3_2·a_5_14 + b_2_03·a_3_2·a_3_4 + b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21
       − b_2_03·c_6_22 − c_6_22·a_3_2·a_3_4 + c_6_22·a_1_0·a_5_14 − c_6_21·a_3_3·a_3_7
       + c_6_21·a_1_1·a_5_10 − b_2_1·c_6_22·a_1_1·a_3_7 − b_2_1·c_6_21·a_1_1·a_3_7
       − b_2_1·c_6_21·a_1_1·a_3_3 + b_2_0·c_6_22·a_1_0·a_3_2
  305. b_6_202 + b_6_19·b_6_20 − b_6_192 − b_2_36 − b_2_13·b_6_20 + b_2_14·b_4_8
       − b_2_03·b_6_19 − b_2_04·b_4_8 + a_6_16·b_6_20 + a_5_16·a_7_25 − b_2_3·a_5_13·a_5_15
       + b_2_13·a_1_1·a_5_15 + b_2_13·a_1_1·a_5_10 − b_2_14·a_1_1·a_3_7
       − b_2_14·a_1_1·a_3_3 + b_2_02·a_3_2·a_5_14 + b_2_03·a_3_2·a_3_4
       + b_2_03·a_1_0·a_5_12 − b_2_04·a_1_0·a_3_2 − b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21
       + b_2_0·b_4_8·c_6_22 − b_2_03·c_6_22 − c_6_22·a_3_2·a_3_4 + c_6_22·a_1_1·a_5_15
       + c_6_22·a_1_0·a_5_15 + c_6_22·a_1_0·a_5_14 + c_6_21·a_3_3·a_3_7 − c_6_21·a_1_1·a_5_15
       + c_6_21·a_1_1·a_5_10 + c_6_21·a_1_0·a_5_15 + b_2_1·c_6_22·a_1_1·a_3_3
       + b_2_0·c_6_22·a_1_0·a_3_4 + b_2_0·c_6_22·a_1_0·a_3_2 − b_2_0·c_6_21·a_1_0·a_3_4
  306. b_6_192 − b_2_13·b_6_20 + b_2_03·b_6_19 − a_6_16·b_6_20 + a_5_10·a_7_26
       + b_2_3·a_5_13·a_5_15 + b_2_32·a_3_5·a_5_15 + b_2_12·a_3_3·a_5_15
       − b_2_12·a_1_1·a_7_25 + b_2_13·a_1_1·a_5_15 − b_2_13·a_1_1·a_5_10
       − b_2_14·a_1_1·a_3_3 + b_2_02·a_3_2·a_5_14 + b_2_03·a_3_2·a_3_4
       + b_2_03·a_1_0·a_5_12 − b_2_04·a_1_0·a_3_4 − b_2_04·a_1_0·a_3_2 + b_2_0·b_4_8·c_6_22
       − b_2_03·c_6_22 − c_6_22·a_1_1·a_5_10 + c_6_21·a_3_3·a_3_7 + c_6_21·a_1_1·a_5_10
       − b_2_1·c_6_21·a_1_1·a_3_7 + b_2_0·c_6_22·a_1_0·a_3_2 + b_2_0·c_6_21·a_1_0·a_3_4
       − b_2_0·c_6_21·a_1_0·a_3_2
  307.  − b_6_202 − b_6_192 + b_2_36 + a_6_16·b_6_20 + a_5_13·a_7_26 − b_2_3·a_5_13·a_5_15
       + b_2_32·a_3_5·a_5_15 + b_2_32·a_3_5·a_5_13 − b_2_13·a_1_1·a_5_10
       − b_2_14·a_1_1·a_3_7 − b_2_02·a_3_2·a_5_14 + b_2_03·a_1_0·a_5_12
       − b_2_04·a_1_0·a_3_2 + b_2_1·b_4_8·c_6_21 + b_2_0·b_4_8·c_6_22 + c_6_22·a_3_2·a_3_4
       + c_6_22·a_1_0·a_5_15 − c_6_21·a_1_1·a_5_10 − c_6_21·a_1_0·a_5_15
       + b_2_1·c_6_21·a_1_1·a_3_7 − b_2_0·c_6_22·a_1_0·a_3_4 − b_2_0·c_6_22·a_1_0·a_3_2
       + b_2_0·c_6_21·a_1_0·a_3_4 + b_2_0·c_6_21·a_1_0·a_3_2
  308.  − b_6_202 − b_6_19·b_6_20 − b_6_192 + b_2_36 − b_2_14·b_4_8 − b_2_03·b_6_19
       + b_2_04·b_4_8 + a_5_12·a_7_26 + b_2_32·a_3_5·a_5_15 + b_2_12·a_3_3·a_5_15
       − b_2_12·a_1_1·a_7_25 − b_2_13·a_1_1·a_5_15 + b_2_13·a_1_1·a_5_10
       + b_2_14·a_1_1·a_3_7 − b_2_14·a_1_1·a_3_3 − b_2_02·a_3_2·a_5_14
       − b_2_03·a_1_0·a_5_14 + b_2_04·a_1_0·a_3_4 + b_2_04·a_1_0·a_3_2 + b_2_1·b_4_8·c_6_21
       + b_2_13·c_6_21 − c_6_22·a_1_1·a_5_10 + c_6_22·a_1_0·a_5_12 + c_6_21·a_1_1·a_5_10
       − c_6_21·a_1_0·a_5_12 + b_2_1·c_6_22·a_1_1·a_3_7 + b_2_1·c_6_22·a_1_1·a_3_3
  309. b_6_202 + b_6_19·b_6_20 − b_2_36 + b_2_13·b_6_20 + b_2_14·b_4_8 − b_2_04·b_4_8
       + a_6_16·b_6_20 + a_5_15·a_7_26 + b_2_32·a_3_5·a_5_15 − b_2_32·a_3_5·a_5_13
       − b_2_12·a_3_3·a_5_15 + b_2_12·a_1_1·a_7_25 + b_2_13·a_3_3·a_3_7
       + b_2_13·a_1_1·a_5_10 − b_2_14·a_1_1·a_3_3 + b_2_02·a_3_2·a_5_14
       + b_2_03·a_3_2·a_3_4 − b_2_03·a_1_0·a_5_14 − b_2_03·a_1_0·a_5_12
       + b_2_04·a_1_0·a_3_4 − b_2_04·a_1_0·a_3_2 − b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21
       − b_2_0·b_4_8·c_6_22 + b_2_03·c_6_22 − c_6_22·a_1_1·a_5_15 + c_6_22·a_1_0·a_5_15
       + c_6_21·a_3_3·a_3_7 + c_6_21·a_1_1·a_5_15 + c_6_21·a_1_1·a_5_10 − c_6_21·a_1_0·a_5_15
       − b_2_1·c_6_21·a_1_1·a_3_7 − b_2_0·c_6_22·a_1_0·a_3_4 + b_2_0·c_6_22·a_1_0·a_3_2
  310. b_6_19·b_6_20 + b_2_14·b_4_8 + b_2_03·b_6_19 − b_2_04·b_4_8 + a_5_14·a_7_26
       − b_2_32·a_3_5·a_5_15 − b_2_32·a_3_5·a_5_13 − b_2_12·a_3_3·a_5_15
       + b_2_12·a_1_1·a_7_25 − b_2_13·a_3_3·a_3_7 − b_2_13·a_1_1·a_5_10
       − b_2_14·a_1_1·a_3_7 − b_2_03·a_3_2·a_3_4 − b_2_03·a_1_0·a_5_14
       + b_2_03·a_1_0·a_5_12 − b_2_13·c_6_21 + b_2_0·b_4_8·c_6_22 + c_6_22·a_3_2·a_3_4
       + c_6_22·a_1_0·a_5_14 + c_6_21·a_3_3·a_3_7 + c_6_21·a_1_1·a_5_10 − c_6_21·a_1_0·a_5_14
       + b_2_1·c_6_22·a_1_1·a_3_7 − b_2_1·c_6_21·a_1_1·a_3_3
  311.  − b_6_202 + b_6_19·b_6_20 − b_6_192 + b_2_36 + b_2_14·b_4_8 + b_2_03·b_6_19
       − b_2_04·b_4_8 + a_6_16·b_6_20 − a_6_16·b_6_19 + a_5_16·a_7_26 − b_2_32·a_3_5·a_5_15
       + b_2_32·a_3_5·a_5_13 + b_2_12·a_3_3·a_5_15 + b_2_13·a_3_3·a_3_7
       − b_2_13·a_1_1·a_5_15 − b_2_13·a_1_1·a_5_10 − b_2_14·a_1_1·a_3_7
       − b_2_14·a_1_1·a_3_3 − b_2_02·a_3_2·a_5_14 − b_2_03·a_1_0·a_5_12
       + b_2_04·a_1_0·a_3_4 + b_2_04·a_1_0·a_3_2 + b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21
       − b_2_0·b_4_8·c_6_22 − c_6_22·a_1_1·a_5_15 + c_6_22·a_1_0·a_5_14 − c_6_22·a_1_0·a_5_12
       + c_6_21·a_1_1·a_5_15 + c_6_21·a_1_1·a_5_10 − c_6_21·a_1_0·a_5_14 − c_6_21·a_1_0·a_5_12
       − b_2_1·c_6_22·a_1_1·a_3_3 + b_2_1·c_6_21·a_1_1·a_3_7 + b_2_1·c_6_21·a_1_1·a_3_3
       − b_2_0·c_6_22·a_1_0·a_3_2 − b_2_0·c_6_21·a_1_0·a_3_4 − b_2_0·c_6_21·a_1_0·a_3_2
  312.  − b_6_192 + b_2_13·b_6_20 − b_2_03·b_6_19 − a_6_16·b_6_20 − a_6_16·b_6_19
       + b_2_3·a_5_13·a_5_15 + b_2_32·a_3_5·a_5_15 + b_2_1·a_3_3·a_7_27
       + b_2_12·a_3_3·a_5_15 − b_2_13·a_1_1·a_5_15 − b_2_13·a_1_1·a_5_10
       + b_2_14·a_1_1·a_3_7 + b_2_14·a_1_1·a_3_3 + b_2_02·a_3_2·a_5_14
       − b_2_03·a_3_2·a_3_4 − b_2_03·a_1_0·a_5_14 − b_2_03·a_1_0·a_5_12
       − b_2_04·a_1_0·a_3_2 − b_2_0·b_4_8·c_6_22 + b_2_03·c_6_22 + c_6_21·a_3_3·a_3_7
       − b_2_1·c_6_21·a_1_1·a_3_7 + b_2_1·c_6_21·a_1_1·a_3_3 − b_2_0·c_6_22·a_1_0·a_3_4
       − b_2_0·c_6_22·a_1_0·a_3_2
  313. b_6_202 + b_6_19·b_6_20 + b_6_192 − b_2_36 + b_2_14·b_4_8 + b_2_03·b_6_19
       − b_2_04·b_4_8 − a_6_16·b_6_19 + b_2_32·a_3_5·a_5_15 − b_2_32·a_3_5·a_5_13
       + b_2_12·a_1_1·a_7_25 + b_2_13·a_3_3·a_3_7 + b_2_13·a_1_1·a_5_15
       + b_2_14·a_1_1·a_3_3 + b_2_0·a_3_2·a_7_27 + b_2_02·a_3_2·a_5_14 − b_2_03·a_3_2·a_3_4
       + b_2_03·a_1_0·a_5_14 − b_2_03·a_1_0·a_5_12 − b_2_04·a_1_0·a_3_4
       − b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21 + c_6_22·a_3_2·a_3_4 − b_2_1·c_6_21·a_1_1·a_3_7
       − b_2_0·c_6_22·a_1_0·a_3_4 − b_2_0·c_6_22·a_1_0·a_3_2
  314. b_6_19·b_6_20 + b_6_192 − b_2_13·b_6_20 + b_2_14·b_4_8 − b_2_03·b_6_19
       − b_2_04·b_4_8 − a_6_16·b_6_20 + a_6_16·b_6_19 − b_2_3·a_5_13·a_5_15
       + b_2_32·a_3_5·a_5_15 − b_2_32·a_3_5·a_5_13 − b_2_12·a_3_3·a_5_15
       + b_2_12·a_1_1·a_7_27 − b_2_12·a_1_1·a_7_25 + b_2_13·a_1_1·a_5_10
       + b_2_14·a_1_1·a_3_7 + b_2_14·a_1_1·a_3_3 + b_2_03·a_1_0·a_5_14
       + b_2_04·a_1_0·a_3_4 − b_2_04·a_1_0·a_3_2 − b_2_13·c_6_21 − b_2_0·b_4_8·c_6_22
       − b_2_03·c_6_22 + c_6_22·a_3_2·a_3_4 − c_6_21·a_3_3·a_3_7 − b_2_1·c_6_21·a_1_1·a_3_7
       − b_2_1·c_6_21·a_1_1·a_3_3 + b_2_0·c_6_22·a_1_0·a_3_4 + b_2_0·c_6_22·a_1_0·a_3_2
  315.  − b_6_202 + b_6_19·b_6_20 + b_6_192 + b_2_36 + b_2_13·b_6_20 + b_2_14·b_4_8
       − b_2_04·b_4_8 − a_6_16·b_6_20 − b_2_32·a_3_5·a_5_13 − b_2_12·a_3_3·a_5_15
       − b_2_12·a_1_1·a_7_25 − b_2_13·a_3_3·a_3_7 − b_2_13·a_1_1·a_5_15
       − b_2_14·a_1_1·a_3_7 + b_2_14·a_1_1·a_3_3 − b_2_02·a_3_2·a_5_14
       + b_2_02·a_1_0·a_7_27 + b_2_03·a_3_2·a_3_4 − b_2_03·a_1_0·a_5_14
       + b_2_04·a_1_0·a_3_4 + b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21 + b_2_0·b_4_8·c_6_22
       + b_2_03·c_6_22 + b_2_0·c_6_22·a_1_0·a_3_4
  316.  − b_6_192 + b_2_13·b_6_20 − b_2_03·b_6_19 − a_6_16·b_6_20 + a_5_10·a_7_27
       + b_2_3·a_5_13·a_5_15 + b_2_32·a_3_5·a_5_15 − b_2_12·a_3_3·a_5_15
       + b_2_12·a_1_1·a_7_25 + b_2_13·a_3_3·a_3_7 + b_2_13·a_1_1·a_5_15
       − b_2_14·a_1_1·a_3_7 + b_2_03·a_1_0·a_5_12 + b_2_04·a_1_0·a_3_4
       − b_2_04·a_1_0·a_3_2 − b_2_0·b_4_8·c_6_22 + b_2_03·c_6_22 − c_6_22·a_3_2·a_3_4
       − c_6_21·a_3_3·a_3_7 + b_2_1·c_6_21·a_1_1·a_3_3
  317.  − b_6_202 + b_6_19·b_6_20 + b_6_192 + b_2_36 + b_2_13·b_6_20 + b_2_14·b_4_8
       − b_2_04·b_4_8 + a_6_16·b_6_20 + a_5_13·a_7_27 + b_2_32·a_3_5·a_5_15
       + b_2_12·a_3_3·a_5_15 − b_2_12·a_1_1·a_7_25 − b_2_13·a_3_3·a_3_7
       + b_2_13·a_1_1·a_5_10 − b_2_14·a_1_1·a_3_3 − b_2_02·a_3_2·a_5_14
       + b_2_03·a_3_2·a_3_4 + b_2_03·a_1_0·a_5_14 + b_2_03·a_1_0·a_5_12
       + b_2_04·a_1_0·a_3_2 + b_2_1·b_4_8·c_6_21 − b_2_13·c_6_21 + b_2_0·b_4_8·c_6_22
       + b_2_03·c_6_22 + c_6_22·a_3_2·a_3_4 + c_6_21·a_3_3·a_3_7 − c_6_21·a_1_1·a_5_15
       + c_6_21·a_1_0·a_5_15 − b_2_1·c_6_21·a_1_1·a_3_7 − b_2_0·c_6_21·a_1_0·a_3_4
  318.  − b_6_192 + b_2_13·b_6_20 − b_2_03·b_6_19 − a_6_16·b_6_20 + a_6_16·b_6_19
       + a_5_12·a_7_27 + b_2_3·a_5_13·a_5_15 + b_2_32·a_3_5·a_5_13 − b_2_12·a_3_3·a_5_15
       − b_2_13·a_3_3·a_3_7 − b_2_14·a_1_1·a_3_7 − b_2_14·a_1_1·a_3_3
       − b_2_02·a_3_2·a_5_14 + b_2_03·a_1_0·a_5_14 − b_2_04·a_1_0·a_3_4
       − b_2_04·a_1_0·a_3_2 − b_2_0·b_4_8·c_6_22 + b_2_03·c_6_22 − c_6_22·a_3_2·a_3_4
       + c_6_22·a_1_0·a_5_12 − c_6_21·a_3_3·a_3_7 − b_2_1·c_6_21·a_1_1·a_3_7
       − b_2_1·c_6_21·a_1_1·a_3_3 − b_2_0·c_6_22·a_1_0·a_3_2
  319.  − b_6_19·b_6_20 + b_6_192 − b_2_13·b_6_20 − b_2_14·b_4_8 + b_2_04·b_4_8
       − a_6_16·b_6_19 + a_5_15·a_7_27 + b_2_3·a_5_13·a_5_15 + b_2_32·a_3_5·a_5_15
       + b_2_32·a_3_5·a_5_13 − b_2_13·a_3_3·a_3_7 + b_2_14·a_1_1·a_3_7
       + b_2_14·a_1_1·a_3_3 + b_2_02·a_3_2·a_5_14 − b_2_03·a_1_0·a_5_14
       − b_2_03·a_1_0·a_5_12 − b_2_04·a_1_0·a_3_2 + b_2_13·c_6_21 − b_2_03·c_6_22
       + c_6_22·a_3_2·a_3_4 + c_6_22·a_1_0·a_5_15 − c_6_21·a_3_3·a_3_7 + c_6_21·a_1_1·a_5_15
       − c_6_21·a_1_0·a_5_15 + b_2_0·c_6_22·a_1_0·a_3_2 + b_2_0·c_6_21·a_1_0·a_3_4
  320.  − b_6_202 − b_6_192 + b_2_36 + a_6_16·b_6_20 − a_6_16·b_6_19 + a_5_14·a_7_27
       − b_2_3·a_5_13·a_5_15 − b_2_32·a_3_5·a_5_13 + b_2_12·a_1_1·a_7_25
       + b_2_13·a_1_1·a_5_15 − b_2_13·a_1_1·a_5_10 − b_2_14·a_1_1·a_3_7
       + b_2_14·a_1_1·a_3_3 + b_2_02·a_3_2·a_5_14 + b_2_03·a_1_0·a_5_12
       − b_2_04·a_1_0·a_3_2 + b_2_1·b_4_8·c_6_21 + b_2_0·b_4_8·c_6_22 + c_6_22·a_1_0·a_5_14
       + c_6_21·a_1_1·a_5_15 − c_6_21·a_1_0·a_5_15 − b_2_0·c_6_22·a_1_0·a_3_2
       + b_2_0·c_6_21·a_1_0·a_3_4
  321.  − b_6_202 − b_6_192 + b_2_36 + a_5_16·a_7_27 − b_2_13·a_1_1·a_5_10
       − b_2_14·a_1_1·a_3_7 − b_2_03·a_1_0·a_5_14 − b_2_03·a_1_0·a_5_12
       − b_2_04·a_1_0·a_3_4 − b_2_04·a_1_0·a_3_2 + b_2_1·b_4_8·c_6_21 + b_2_0·b_4_8·c_6_22
       + c_6_22·a_3_2·a_3_4 − c_6_22·a_1_0·a_5_15 − c_6_22·a_1_0·a_5_14 + c_6_21·a_3_3·a_3_7
       + c_6_21·a_1_1·a_5_15 − c_6_21·a_1_0·a_5_15 − b_2_1·c_6_21·a_1_1·a_3_7
       + b_2_1·c_6_21·a_1_1·a_3_3 + b_2_0·c_6_22·a_1_0·a_3_4 − b_2_0·c_6_22·a_1_0·a_3_2
       + b_2_0·c_6_21·a_1_0·a_3_4
  322.  − b_6_20·a_7_25 + b_6_19·a_7_26 + b_2_34·a_5_13 − b_2_13·a_7_25 + b_2_14·a_5_15
       + b_2_14·a_5_10 + b_2_15·a_3_7 + b_2_15·a_3_5 + b_2_15·a_3_3 + b_2_03·a_7_25
       + b_2_04·a_5_16 + b_2_04·a_5_14 + b_2_04·a_5_12 − b_2_05·a_3_6 − b_2_05·a_3_4
       − b_2_05·a_3_2 − a_3_5·a_5_13·a_5_15 − b_2_12·a_1_1·a_3_3·a_5_15
       + b_2_03·a_1_0·a_3_2·a_3_4 − b_2_1·c_6_22·a_5_13 + b_2_1·c_6_21·a_5_13
       − b_2_1·c_6_21·a_5_10 + b_2_12·c_6_22·a_3_5 − b_2_12·c_6_21·a_3_3
       + b_2_13·c_6_22·a_1_1 + b_2_13·c_6_21·a_1_1 − b_2_0·c_6_22·a_5_12
       + b_2_0·c_6_21·a_5_16 − b_2_0·c_6_21·a_5_14 − b_2_0·c_6_21·a_5_12
       − b_2_02·c_6_21·a_3_4 − b_2_02·c_6_21·a_3_2 − b_2_03·c_6_22·a_1_0
       + a_2_2·c_6_22·a_5_15 − a_2_2·c_6_21·a_5_15 − a_2_2·c_6_21·a_5_14
       + c_6_22·a_1_1·a_3_3·a_3_7 + c_6_22·a_1_0·a_3_2·a_3_4 + c_6_21·a_1_1·a_3_3·a_3_7
       − c_6_21·a_1_0·a_3_2·a_3_4
  323. a_6_16·a_7_26 − b_2_12·a_1_1·a_3_3·a_5_15 + b_2_13·a_1_1·a_3_3·a_3_7
       − b_2_02·a_1_0·a_3_2·a_5_14 + b_2_03·a_1_0·a_3_2·a_3_4 + a_2_2·c_6_22·a_5_15
       − a_2_2·c_6_22·a_5_14 − a_2_2·c_6_21·a_5_15 + a_2_2·c_6_21·a_5_14
       − c_6_22·a_1_1·a_3_3·a_3_7 + c_6_21·a_1_1·a_3_3·a_3_7
  324. b_6_20·a_7_27 + b_6_19·a_7_25 − b_2_34·a_5_15 + b_2_34·a_5_13 − b_2_35·a_3_5
       − b_2_14·a_5_13 − b_2_14·a_5_10 − b_2_15·a_3_7 + b_2_15·a_3_5 − b_2_03·a_7_25
       − b_2_04·a_5_16 + b_2_04·a_5_12 + b_2_05·a_3_4 − b_2_05·a_3_2 − a_6_16·a_7_25
       + a_3_5·a_5_13·a_5_15 + b_2_1·c_6_21·a_5_15 + b_2_1·c_6_21·a_5_13
       − b_2_12·c_6_22·a_3_5 + b_2_12·c_6_21·a_3_5 − b_2_12·c_6_21·a_3_3
       + b_2_0·c_6_22·a_5_16 − b_2_02·c_6_22·a_3_6 − b_2_02·c_6_22·a_3_4
       + b_2_03·c_6_22·a_1_0 − a_2_2·c_6_22·a_5_15 + a_2_2·c_6_21·a_5_15
       + c_6_22·a_1_1·a_3_3·a_3_7 + c_6_21·a_1_1·a_3_3·a_3_7 − c_6_21·a_1_0·a_3_2·a_3_4
  325. b_6_20·a_7_26 + b_6_20·a_7_25 + b_6_19·a_7_25 − b_2_34·a_5_15 + b_2_34·a_5_13
       − b_2_35·a_3_5 − b_2_13·a_7_25 − b_2_14·a_5_15 + b_2_14·a_5_13 + b_2_15·a_3_5
       − b_2_15·a_3_3 − b_2_03·a_7_25 + b_2_04·a_5_16 + b_2_04·a_5_14 − b_2_05·a_3_4
       − b_2_05·a_3_2 + a_6_16·a_7_25 − a_3_5·a_5_13·a_5_15 + b_2_1·a_1_1·a_3_3·a_7_27
       + b_2_12·a_1_1·a_3_3·a_5_15 − b_2_13·a_1_1·a_3_3·a_3_7 − b_2_03·a_1_0·a_3_2·a_3_4
       − b_2_1·c_6_21·a_5_10 − b_2_12·c_6_22·a_3_5 + b_2_12·c_6_21·a_3_7
       + b_2_12·c_6_21·a_3_5 + b_2_13·c_6_22·a_1_1 − b_2_0·c_6_22·a_5_12
       + b_2_0·c_6_21·a_5_16 − b_2_0·c_6_21·a_5_14 − b_2_0·c_6_21·a_5_12
       + b_2_02·c_6_22·a_3_2 − b_2_02·c_6_21·a_3_6 + b_2_02·c_6_21·a_3_4
       + b_2_03·c_6_22·a_1_0 − a_2_2·c_6_22·a_5_14 − a_2_2·c_6_21·a_5_14
       + c_6_22·a_1_0·a_3_2·a_3_4 − c_6_21·a_1_1·a_3_3·a_3_7
  326.  − a_6_16·a_7_25 − a_3_5·a_5_13·a_5_15 − b_2_12·a_1_1·a_3_3·a_5_15
       + b_2_0·a_1_0·a_3_2·a_7_27 + b_2_02·a_1_0·a_3_2·a_5_14 − b_2_03·a_1_0·a_3_2·a_3_4
       + a_2_2·c_6_22·a_5_15 + a_2_2·c_6_22·a_5_14 − a_2_2·c_6_21·a_5_15
       + c_6_22·a_1_1·a_3_3·a_3_7 − c_6_21·a_1_1·a_3_3·a_3_7 + c_6_21·a_1_0·a_3_2·a_3_4
  327. b_6_20·a_7_25 + b_6_19·a_7_27 − b_2_34·a_5_13 + b_2_13·a_7_25 + b_2_14·a_5_15
       + b_2_14·a_5_13 − b_2_14·a_5_10 − b_2_15·a_3_7 + b_2_15·a_3_3 − b_2_04·a_5_16
       − b_2_04·a_5_14 + b_2_04·a_5_12 + b_2_05·a_3_6 − b_2_05·a_3_2 + a_3_5·a_5_13·a_5_15
       + b_2_02·a_1_0·a_3_2·a_5_14 + b_2_03·a_1_0·a_3_2·a_3_4 + b_2_1·c_6_22·a_5_13
       − b_2_1·c_6_21·a_5_13 + b_2_1·c_6_21·a_5_10 + b_2_12·c_6_21·a_3_7
       − b_2_12·c_6_21·a_3_5 + b_2_12·c_6_21·a_3_3 − b_2_13·c_6_22·a_1_1
       + b_2_0·c_6_22·a_5_16 − b_2_02·c_6_22·a_3_6 + b_2_02·c_6_22·a_3_4
       + b_2_03·c_6_22·a_1_0 + a_2_2·c_6_22·a_5_15 − a_2_2·c_6_22·a_5_14
       − a_2_2·c_6_21·a_5_15 − c_6_22·a_1_0·a_3_2·a_3_4 + c_6_21·a_1_0·a_3_2·a_3_4
  328. b_6_20·a_7_26 − b_6_19·a_7_25 − b_2_34·a_5_15 − b_2_34·a_5_13 − b_2_35·a_3_5
       + b_2_13·a_7_27 + b_2_14·a_5_10 + b_2_15·a_3_5 − b_2_04·a_5_16 − b_2_04·a_5_14
       + b_2_05·a_3_6 − b_2_13·a_1_1·a_3_3·a_3_7 + b_2_02·a_1_0·a_3_2·a_5_14
       − b_2_03·a_1_0·a_3_2·a_3_4 − b_2_1·c_6_22·a_5_13 + b_2_1·c_6_21·a_5_13
       + b_2_1·c_6_21·a_5_10 + b_2_12·c_6_22·a_3_5 + b_2_12·c_6_21·a_3_7
       − b_2_12·c_6_21·a_3_3 + b_2_13·c_6_21·a_1_1 − b_2_0·c_6_22·a_5_12
       + b_2_0·c_6_21·a_5_16 − b_2_0·c_6_21·a_5_14 − b_2_0·c_6_21·a_5_12
       − b_2_02·c_6_22·a_3_6 − b_2_02·c_6_22·a_3_4 + b_2_02·c_6_22·a_3_2
       − b_2_02·c_6_21·a_3_6 + b_2_02·c_6_21·a_3_4 − b_2_03·c_6_22·a_1_0
       + a_2_2·c_6_22·a_5_15 − a_2_2·c_6_21·a_5_15 − a_2_2·c_6_21·a_5_14
       + c_6_22·a_1_1·a_3_3·a_3_7 + c_6_21·a_1_0·a_3_2·a_3_4
  329.  − b_6_20·a_7_25 + b_2_34·a_5_13 − b_2_13·a_7_25 + b_2_03·a_7_27 − b_2_03·a_7_25
       − b_2_04·a_5_16 − b_2_05·a_3_6 − a_3_5·a_5_13·a_5_15 − b_2_13·a_1_1·a_3_3·a_3_7
       − b_2_1·c_6_22·a_5_13 + b_2_1·c_6_21·a_5_13 − b_2_1·c_6_21·a_5_10
       + b_2_12·c_6_21·a_3_5 + b_2_12·c_6_21·a_3_3 + b_2_13·c_6_22·a_1_1
       − b_2_13·c_6_21·a_1_1 + b_2_0·c_6_22·a_5_16 − b_2_0·c_6_22·a_5_14
       − b_2_02·c_6_22·a_3_4 − b_2_02·c_6_22·a_3_2 − b_2_03·c_6_22·a_1_0
       − a_2_2·c_6_22·a_5_15 − a_2_2·c_6_22·a_5_14 + a_2_2·c_6_21·a_5_15
       + c_6_22·a_1_1·a_3_3·a_3_7 + c_6_22·a_1_0·a_3_2·a_3_4 − c_6_21·a_1_0·a_3_2·a_3_4
  330. a_6_16·a_7_27 + a_6_16·a_7_25 − a_3_5·a_5_13·a_5_15 + b_2_12·a_1_1·a_3_3·a_5_15
       + b_2_13·a_1_1·a_3_3·a_3_7 + b_2_02·a_1_0·a_3_2·a_5_14 − a_2_2·c_6_22·a_5_15
       + a_2_2·c_6_22·a_5_14 + a_2_2·c_6_21·a_5_15 + c_6_22·a_1_1·a_3_3·a_3_7
       − c_6_22·a_1_0·a_3_2·a_3_4 − c_6_21·a_1_0·a_3_2·a_3_4
  331. a_7_25·a_7_26 − b_2_32·a_5_13·a_5_15 + b_2_33·a_3_5·a_5_13 + b_2_12·a_3_3·a_7_27
       + b_2_13·a_3_3·a_5_15 + b_2_13·a_1_1·a_7_27 − b_2_13·a_1_1·a_7_25
       − b_2_14·a_3_3·a_3_7 + b_2_14·a_1_1·a_5_10 + b_2_02·a_3_2·a_7_27
       − b_2_03·a_3_2·a_5_14 − b_2_03·a_1_0·a_7_25 − b_2_04·a_1_0·a_5_14
       + b_2_05·a_1_0·a_3_2 + c_6_22·a_1_1·a_7_25 − c_6_22·a_1_0·a_7_25 − c_6_21·a_1_1·a_7_25
       − c_6_21·a_1_0·a_7_25 + b_2_1·c_6_22·a_1_1·a_5_15 − b_2_1·c_6_22·a_1_1·a_5_10
       − b_2_1·c_6_21·a_3_3·a_3_7 − b_2_1·c_6_21·a_1_1·a_5_15 − b_2_12·c_6_22·a_1_1·a_3_3
       + b_2_02·c_6_22·a_1_0·a_3_4
  332. a_7_25·a_7_27 − b_2_32·a_5_13·a_5_15 + b_2_33·a_3_5·a_5_13 + b_2_12·a_3_3·a_7_27
       + b_2_13·a_1_1·a_7_25 − b_2_14·a_3_3·a_3_7 + b_2_14·a_1_1·a_5_15
       − b_2_14·a_1_1·a_5_10 − b_2_15·a_1_1·a_3_7 + b_2_15·a_1_1·a_3_3
       − b_2_02·a_3_2·a_7_27 + b_2_03·a_1_0·a_7_27 + b_2_04·a_3_2·a_3_4
       − b_2_04·a_1_0·a_5_14 + b_2_04·a_1_0·a_5_12 − b_2_05·a_1_0·a_3_4
       − b_2_05·a_1_0·a_3_2 + c_6_22·a_3_2·a_5_14 − c_6_22·a_1_1·a_7_27 − c_6_22·a_1_0·a_7_27
       + c_6_22·a_1_0·a_7_25 − c_6_21·a_3_3·a_5_15 + c_6_21·a_1_1·a_7_27 + c_6_21·a_1_1·a_7_25
       − b_2_1·c_6_21·a_3_3·a_3_7 − b_2_1·c_6_21·a_1_1·a_5_15 + b_2_1·c_6_21·a_1_1·a_5_10
       − b_2_12·c_6_21·a_1_1·a_3_7 − b_2_0·c_6_22·a_3_2·a_3_4 + b_2_0·c_6_22·a_1_0·a_5_14
       + b_2_02·c_6_22·a_1_0·a_3_4 − b_2_02·c_6_22·a_1_0·a_3_2
  333. a_7_26·a_7_27 + a_7_25·a_7_27 + b_2_12·a_3_3·a_7_27 + b_2_14·a_1_1·a_5_15
       − b_2_14·a_1_1·a_5_10 − b_2_15·a_1_1·a_3_7 + b_2_15·a_1_1·a_3_3
       + b_2_02·a_3_2·a_7_27 − b_2_03·a_3_2·a_5_14 − b_2_03·a_1_0·a_7_27
       + b_2_03·a_1_0·a_7_25 + b_2_04·a_3_2·a_3_4 − b_2_05·a_1_0·a_3_4
       + b_2_05·a_1_0·a_3_2 + c_6_22·a_1_0·a_7_27 + c_6_21·a_3_3·a_5_15 − c_6_21·a_1_1·a_7_25
       + c_6_21·a_1_0·a_7_27 − b_2_1·c_6_21·a_3_3·a_3_7 − b_2_1·c_6_21·a_1_1·a_5_15
       − b_2_1·c_6_21·a_1_1·a_5_10 − b_2_12·c_6_21·a_1_1·a_3_7 + b_2_12·c_6_21·a_1_1·a_3_3
       − b_2_0·c_6_22·a_3_2·a_3_4 − b_2_0·c_6_22·a_1_0·a_5_14 − b_2_02·c_6_22·a_1_0·a_3_4


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 14.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_6_21, a Duflot regular element of degree 6
    2. c_6_22, a Duflot regular element of degree 6
    3. b_2_32 + b_2_12 + b_2_02, an element of degree 4
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 6, 13].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_20, an element of degree 2
  4. b_2_00, an element of degree 2
  5. b_2_10, an element of degree 2
  6. b_2_30, an element of degree 2
  7. a_3_20, an element of degree 3
  8. a_3_30, an element of degree 3
  9. a_3_40, an element of degree 3
  10. a_3_50, an element of degree 3
  11. a_3_60, an element of degree 3
  12. a_3_70, an element of degree 3
  13. a_4_70, an element of degree 4
  14. a_4_90, an element of degree 4
  15. b_4_80, an element of degree 4
  16. b_4_110, an element of degree 4
  17. a_5_100, an element of degree 5
  18. a_5_120, an element of degree 5
  19. a_5_130, an element of degree 5
  20. a_5_140, an element of degree 5
  21. a_5_150, an element of degree 5
  22. a_5_160, an element of degree 5
  23. a_6_160, an element of degree 6
  24. b_6_190, an element of degree 6
  25. b_6_200, an element of degree 6
  26. c_6_21 − c_2_13, an element of degree 6
  27. c_6_22c_2_23, an element of degree 6
  28. a_7_250, an element of degree 7
  29. a_7_260, an element of degree 7
  30. a_7_270, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_0a_1_2, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_2 − a_1_1·a_1_2, an element of degree 2
  4. b_2_0c_2_5, an element of degree 2
  5. b_2_10, an element of degree 2
  6. b_2_3a_1_1·a_1_2 − a_1_0·a_1_2, an element of degree 2
  7. a_3_2c_2_5·a_1_1, an element of degree 3
  8. a_3_30, an element of degree 3
  9. a_3_4 − c_2_5·a_1_1 + c_2_5·a_1_0 − c_2_3·a_1_2, an element of degree 3
  10. a_3_50, an element of degree 3
  11. a_3_6 − c_2_5·a_1_1 − c_2_5·a_1_0 − c_2_4·a_1_2 + c_2_3·a_1_2, an element of degree 3
  12. a_3_70, an element of degree 3
  13. a_4_7 − c_2_5·a_1_1·a_1_2 + c_2_5·a_1_0·a_1_2 − c_2_5·a_1_0·a_1_1 − c_2_3·a_1_1·a_1_2, an element of degree 4
  14. a_4_9c_2_5·a_1_0·a_1_1 + c_2_4·a_1_1·a_1_2 + c_2_3·a_1_1·a_1_2, an element of degree 4
  15. b_4_8 − c_2_5·a_1_1·a_1_2 − c_2_4·c_2_5, an element of degree 4
  16. b_4_11c_2_5·a_1_0·a_1_1 − c_2_4·a_1_1·a_1_2 + c_2_3·a_1_1·a_1_2, an element of degree 4
  17. a_5_10c_2_5·a_1_0·a_1_1·a_1_2 − c_2_52·a_1_1 − c_2_52·a_1_0 + c_2_4·c_2_5·a_1_2
       + c_2_3·c_2_5·a_1_2, an element of degree 5
  18. a_5_12 − c_2_5·a_1_0·a_1_1·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2 + c_2_4·c_2_5·a_1_1, an element of degree 5
  19. a_5_13 − c_2_5·a_1_0·a_1_1·a_1_2 − c_2_52·a_1_1, an element of degree 5
  20. a_5_14 − c_2_52·a_1_1 − c_2_52·a_1_0 + c_2_4·c_2_5·a_1_2 + c_2_4·c_2_5·a_1_1
       − c_2_4·c_2_5·a_1_0 + c_2_3·c_2_5·a_1_2 + c_2_3·c_2_4·a_1_2, an element of degree 5
  21. a_5_15 − c_2_52·a_1_1 + c_2_52·a_1_0 + c_2_4·c_2_5·a_1_2 − c_2_3·c_2_5·a_1_2, an element of degree 5
  22. a_5_16 − c_2_5·a_1_0·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_2 − c_2_4·c_2_5·a_1_1 − c_2_4·c_2_5·a_1_0
       − c_2_42·a_1_2 + c_2_3·c_2_4·a_1_2, an element of degree 5
  23. a_6_16 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_1·a_1_2
       − c_2_4·c_2_5·a_1_0·a_1_2 + c_2_4·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_5·a_1_1·a_1_2
       + c_2_3·c_2_4·a_1_1·a_1_2, an element of degree 6
  24. b_6_19c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_2 + c_2_52·a_1_0·a_1_1
       − c_2_4·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_1
       + c_2_3·c_2_5·a_1_1·a_1_2 − c_2_3·c_2_4·a_1_1·a_1_2 − c_2_4·c_2_52 − c_2_42·c_2_5, an element of degree 6
  25. b_6_20 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_1·a_1_2
       − c_2_4·c_2_5·a_1_0·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_5·a_1_1·a_1_2
       − c_2_3·c_2_4·a_1_1·a_1_2 − c_2_42·c_2_5, an element of degree 6
  26. c_6_21c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_2 + c_2_52·a_1_0·a_1_1
       + c_2_4·c_2_5·a_1_1·a_1_2 + c_2_4·c_2_5·a_1_0·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_1
       + c_2_3·c_2_5·a_1_1·a_1_2 − c_2_3·c_2_4·a_1_1·a_1_2 − c_2_4·c_2_52 + c_2_42·c_2_5
       + c_2_3·c_2_52 − c_2_33, an element of degree 6
  27. c_6_22 − c_2_52·a_1_0·a_1_2 − c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_1·a_1_2
       + c_2_4·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_5·a_1_1·a_1_2 + c_2_3·c_2_4·a_1_1·a_1_2
       − c_2_4·c_2_52 + c_2_42·c_2_5 + c_2_43, an element of degree 6
  28. a_7_25c_2_52·a_1_0·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_1·a_1_2 − c_2_53·a_1_1
       + c_2_53·a_1_0 − c_2_4·c_2_52·a_1_2 + c_2_4·c_2_52·a_1_1 − c_2_42·c_2_5·a_1_1
       + c_2_43·a_1_2 − c_2_3·c_2_52·a_1_2, an element of degree 7
  29. a_7_26 − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_0 + c_2_4·c_2_52·a_1_2 + c_2_4·c_2_52·a_1_1
       − c_2_42·c_2_5·a_1_2 + c_2_42·c_2_5·a_1_1 + c_2_43·a_1_2 + c_2_3·c_2_52·a_1_2
       + c_2_33·a_1_2, an element of degree 7
  30. a_7_27 − c_2_4·c_2_5·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2
       + c_2_4·c_2_52·a_1_1 − c_2_4·c_2_52·a_1_0 + c_2_42·c_2_5·a_1_2 − c_2_42·c_2_5·a_1_0
       + c_2_43·a_1_2 + c_2_3·c_2_4·c_2_5·a_1_2 + c_2_3·c_2_42·a_1_2, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_1a_1_2, an element of degree 1
  3. a_2_2 − a_1_0·a_1_2, an element of degree 2
  4. b_2_00, an element of degree 2
  5. b_2_1c_2_5, an element of degree 2
  6. b_2_3 − a_1_1·a_1_2 + a_1_0·a_1_2, an element of degree 2
  7. a_3_20, an element of degree 3
  8. a_3_3c_2_5·a_1_0, an element of degree 3
  9. a_3_40, an element of degree 3
  10. a_3_5 − c_2_3·a_1_2, an element of degree 3
  11. a_3_6 − c_2_3·a_1_2, an element of degree 3
  12. a_3_7c_2_5·a_1_1 − c_2_5·a_1_0 − c_2_4·a_1_2, an element of degree 3
  13. a_4_7 − c_2_5·a_1_0·a_1_2 − c_2_3·a_1_0·a_1_2, an element of degree 4
  14. a_4_9 − c_2_5·a_1_0·a_1_1 + c_2_4·a_1_0·a_1_2 + c_2_3·a_1_0·a_1_2, an element of degree 4
  15. b_4_8c_2_5·a_1_1·a_1_2 − c_2_5·a_1_0·a_1_2 − c_2_3·c_2_5, an element of degree 4
  16. b_4_11c_2_5·a_1_1·a_1_2 + c_2_5·a_1_0·a_1_1 − c_2_4·a_1_0·a_1_2 + c_2_3·a_1_0·a_1_2
       + c_2_3·c_2_5, an element of degree 4
  17. a_5_10 − c_2_5·a_1_0·a_1_1·a_1_2 − c_2_52·a_1_1 + c_2_52·a_1_0 + c_2_4·c_2_5·a_1_2
       − c_2_3·c_2_5·a_1_2 − c_2_3·c_2_5·a_1_0, an element of degree 5
  18. a_5_12c_2_52·a_1_1 + c_2_52·a_1_0 − c_2_4·c_2_5·a_1_2 − c_2_3·c_2_5·a_1_0, an element of degree 5
  19. a_5_13 − c_2_32·a_1_2, an element of degree 5
  20. a_5_14 − c_2_52·a_1_1 + c_2_52·a_1_0 + c_2_4·c_2_5·a_1_2 − c_2_3·c_2_5·a_1_2 + c_2_32·a_1_2, an element of degree 5
  21. a_5_15c_2_5·a_1_0·a_1_1·a_1_2 − c_2_52·a_1_0 + c_2_3·c_2_5·a_1_2 − c_2_3·c_2_5·a_1_1
       − c_2_3·c_2_5·a_1_0 + c_2_3·c_2_4·a_1_2 + c_2_32·a_1_2, an element of degree 5
  22. a_5_16c_2_5·a_1_0·a_1_1·a_1_2 − c_2_3·c_2_5·a_1_1 − c_2_3·c_2_5·a_1_0 + c_2_3·c_2_4·a_1_2
       + c_2_32·a_1_2, an element of degree 5
  23. a_6_16 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_2 − c_2_3·c_2_5·a_1_1·a_1_2
       − c_2_3·c_2_5·a_1_0·a_1_2 − c_2_3·c_2_5·a_1_0·a_1_1 + c_2_3·c_2_4·a_1_0·a_1_2, an element of degree 6
  24. b_6_19 − c_2_52·a_1_0·a_1_2 − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_0·a_1_2
       − c_2_3·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_4·a_1_0·a_1_2
       − c_2_3·c_2_52, an element of degree 6
  25. b_6_20 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_0·a_1_2
       − c_2_3·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_4·a_1_0·a_1_2
       + c_2_32·c_2_5, an element of degree 6
  26. c_6_21c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_2 + c_2_52·a_1_0·a_1_1
       − c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_0·a_1_1
       − c_2_3·c_2_4·a_1_0·a_1_2 − c_2_3·c_2_52 − c_2_33, an element of degree 6
  27. c_6_22c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_0·a_1_2
       + c_2_3·c_2_5·a_1_0·a_1_2 − c_2_3·c_2_5·a_1_0·a_1_1 + c_2_3·c_2_4·a_1_0·a_1_2
       − c_2_4·c_2_52 + c_2_43 − c_2_3·c_2_52 − c_2_32·c_2_5, an element of degree 6
  28. a_7_25c_2_3·c_2_5·a_1_0·a_1_1·a_1_2 − c_2_4·c_2_52·a_1_2 + c_2_43·a_1_2
       − c_2_3·c_2_52·a_1_1 + c_2_3·c_2_4·c_2_5·a_1_2 − c_2_32·c_2_5·a_1_2
       − c_2_32·c_2_5·a_1_0 + c_2_33·a_1_2, an element of degree 7
  29. a_7_26 − c_2_3·c_2_5·a_1_0·a_1_1·a_1_2 − c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2 − c_2_43·a_1_2
       + c_2_3·c_2_52·a_1_2 − c_2_32·c_2_5·a_1_2 − c_2_32·c_2_5·a_1_0 − c_2_33·a_1_2, an element of degree 7
  30. a_7_27 − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_3·c_2_5·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_1
       − c_2_53·a_1_0 − c_2_4·c_2_52·a_1_2 + c_2_32·c_2_5·a_1_2 − c_2_32·c_2_5·a_1_1
       − c_2_32·c_2_5·a_1_0 + c_2_32·c_2_4·a_1_2, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_20, an element of degree 2
  4. b_2_00, an element of degree 2
  5. b_2_10, an element of degree 2
  6. b_2_3 − c_2_5, an element of degree 2
  7. a_3_20, an element of degree 3
  8. a_3_30, an element of degree 3
  9. a_3_40, an element of degree 3
  10. a_3_5c_2_5·a_1_2, an element of degree 3
  11. a_3_60, an element of degree 3
  12. a_3_70, an element of degree 3
  13. a_4_7c_2_5·a_1_0·a_1_2, an element of degree 4
  14. a_4_9c_2_5·a_1_1·a_1_2 − c_2_5·a_1_0·a_1_2, an element of degree 4
  15. b_4_80, an element of degree 4
  16. b_4_11 − c_2_5·a_1_1·a_1_2 − c_2_5·a_1_0·a_1_2 + c_2_52, an element of degree 4
  17. a_5_100, an element of degree 5
  18. a_5_12 − c_2_52·a_1_2, an element of degree 5
  19. a_5_13c_2_52·a_1_2 + c_2_52·a_1_0 − c_2_3·c_2_5·a_1_2, an element of degree 5
  20. a_5_14c_2_52·a_1_0 − c_2_3·c_2_5·a_1_2, an element of degree 5
  21. a_5_15c_2_52·a_1_2 + c_2_52·a_1_1 − c_2_52·a_1_0 − c_2_4·c_2_5·a_1_2 + c_2_3·c_2_5·a_1_2, an element of degree 5
  22. a_5_16 − c_2_52·a_1_2 + c_2_52·a_1_0 − c_2_3·c_2_5·a_1_2, an element of degree 5
  23. a_6_16c_2_52·a_1_0·a_1_2 + c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_0·a_1_2
       + c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
  24. b_6_19c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_2 − c_2_52·a_1_0·a_1_1
       + c_2_4·c_2_5·a_1_0·a_1_2 − c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
  25. b_6_20 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_0·a_1_2
       − c_2_3·c_2_5·a_1_1·a_1_2 − c_2_53, an element of degree 6
  26. c_6_21c_2_52·a_1_0·a_1_2 − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_0·a_1_2
       − c_2_3·c_2_5·a_1_1·a_1_2 − c_2_53 + c_2_3·c_2_52 − c_2_33, an element of degree 6
  27. c_6_22 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_2 + c_2_52·a_1_0·a_1_1
       − c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_52 + c_2_43, an element of degree 6
  28. a_7_25 − c_2_53·a_1_2 − c_2_53·a_1_0 + c_2_3·c_2_52·a_1_2, an element of degree 7
  29. a_7_26c_2_52·a_1_0·a_1_1·a_1_2 − c_2_53·a_1_2 − c_2_53·a_1_1 + c_2_4·c_2_52·a_1_2, an element of degree 7
  30. a_7_27 − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_2 − c_2_53·a_1_1 − c_2_53·a_1_0
       + c_2_4·c_2_52·a_1_2 + c_2_3·c_2_52·a_1_2, an element of degree 7


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009