Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 53 of order 243
General information on the group
- The group is also known as 81gp9xC3, the Direct product 81gp9 x C_3.
- The group has 3 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
( − 1) · (t2 + 1)2 |
| (t − 1)3 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- b_2_6, an element of degree 2
- c_2_5, a Duflot regular element of degree 2
- a_3_11, a nilpotent element of degree 3
- a_3_12, a nilpotent element of degree 3
- c_6_36, a Duflot regular element of degree 6
Ring relations
There are 5 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_112, a_3_122
Apart from that, there are 17 minimal relations of maximal degree 6:
- a_1_0·a_1_1
- b_2_3·a_1_0 − b_2_2·a_1_1
- b_2_4·a_1_1 − b_2_3·a_1_1 − b_2_2·a_1_1
- b_2_4·a_1_0 − b_2_3·a_1_1 − b_2_2·a_1_1
- b_2_6·a_1_0 − b_2_3·a_1_1 + b_2_2·a_1_1
- b_2_3·b_2_4 − b_2_32 − b_2_2·b_2_3
- − b_2_32 + b_2_2·b_2_4 − b_2_2·b_2_3
- b_2_42 + b_2_32 + b_2_2·b_2_3
- − b_2_3·b_2_6 − b_2_32 + b_2_2·b_2_3 + a_1_1·a_3_11
- b_2_32 − b_2_2·b_2_6 − b_2_2·b_2_3 + a_1_0·a_3_11
- − b_2_4·b_2_6 + a_1_1·a_3_12
- − b_2_3·b_2_6 − b_2_2·b_2_6 + a_1_0·a_3_12
- b_2_6·a_3_11 − b_2_62·a_1_1 − b_2_4·a_3_11 − b_2_3·a_3_11 + b_2_2·b_2_3·a_1_1
− b_2_22·a_1_1
- − b_2_4·a_3_11 + b_2_3·a_3_12 − b_2_22·a_1_1
- − b_2_3·a_3_11 + b_2_2·a_3_12 − b_2_2·a_3_11 − b_2_2·b_2_3·a_1_1
- b_2_4·a_3_12 + b_2_4·a_3_11 − b_2_2·b_2_3·a_1_1 − b_2_22·a_1_1
- a_3_11·a_3_12 − b_2_6·a_1_1·a_3_12 + b_2_2·a_1_1·a_3_12 − b_2_2·a_1_0·a_3_12
+ b_2_2·a_1_0·a_3_11
Data used for Benson′s test
- Benson′s completion test succeeded in degree 7.
- However, the last relation was already found in degree 6 and the last generator in degree 6.
- The following is a filter regular homogeneous system of parameters:
- c_2_5, a Duflot regular element of degree 2
- c_6_36, a Duflot regular element of degree 6
- b_2_62 + b_2_2·b_2_4 + b_2_2·b_2_3 + b_2_22, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 1 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- c_2_5 → c_2_1, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_3_12 → 0, an element of degree 3
- c_6_36 → c_2_23, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- b_2_2 → c_2_5, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_6 → − a_1_1·a_1_2, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- a_3_11 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- a_3_12 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- c_6_36 → − c_2_52·a_1_1·a_1_2 − c_2_4·c_2_52 + c_2_43, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_6 → − c_2_5, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_3_12 → c_2_5·a_1_2, an element of degree 3
- c_6_36 → c_2_53 − c_2_4·c_2_52 + c_2_43, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- b_2_2 → c_2_5, an element of degree 2
- b_2_3 → c_2_5, an element of degree 2
- b_2_4 → − c_2_5, an element of degree 2
- b_2_6 → − a_1_1·a_1_2, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- a_3_11 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- a_3_12 → c_2_5·a_1_2 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- c_6_36 → − c_2_4·c_2_52 + c_2_43, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → − a_1_2, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- b_2_2 → − c_2_5, an element of degree 2
- b_2_3 → c_2_5, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_6 → a_1_1·a_1_2 + c_2_5, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- a_3_11 → − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_3_12 → c_2_5·a_1_2, an element of degree 3
- c_6_36 → c_2_53 − c_2_4·c_2_52 + c_2_43, an element of degree 6
|