Cohomology approximation of group number 59 of order 243

Based on a computation out to degree 20

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243


General information on the group

  • The group has 3 minimal generators and exponent 9.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 1.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Appoximate structure of the cohomology ring

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring generators

Out to degree 20, the cohomology ring has 28 minimal generators of maximal degree 20:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_2, a nilpotent element of degree 1
  4. a_2_2, a nilpotent element of degree 2
  5. a_2_3, a nilpotent element of degree 2
  6. a_2_4, a nilpotent element of degree 2
  7. b_2_5, an element of degree 2
  8. a_3_8, a nilpotent element of degree 3
  9. a_5_9, a nilpotent element of degree 5
  10. a_6_9, a nilpotent element of degree 6
  11. b_6_10, an element of degree 6
  12. a_7_11, a nilpotent element of degree 7
  13. a_7_12, a nilpotent element of degree 7
  14. a_7_13, a nilpotent element of degree 7
  15. b_8_15, an element of degree 8
  16. b_8_16, an element of degree 8
  17. b_8_17, an element of degree 8
  18. a_9_20, a nilpotent element of degree 9
  19. a_9_21, a nilpotent element of degree 9
  20. b_10_24, an element of degree 10
  21. a_11_25, a nilpotent element of degree 11
  22. a_11_26, a nilpotent element of degree 11
  23. a_12_22, a nilpotent element of degree 12
  24. a_17_34, a nilpotent element of degree 17
  25. a_18_27, a nilpotent element of degree 18
  26. c_18_37, a Duflot regular element of degree 18
  27. a_19_41, a nilpotent element of degree 19
  28. a_20_36, a nilpotent element of degree 20

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring relations out to degree 20

Note that there will be further "non-obvious" relations at least out to degree 40

There are 14 "obvious" relations:
   a_1_02, a_1_12, a_1_22, a_3_82, a_5_92, a_7_112, a_7_122, a_7_132, a_9_202, a_9_212, a_11_252, a_11_262, a_17_342, a_19_412

Apart from that, there are 205 minimal relations of maximal degree 20:

  1. a_1_0·a_1_1
  2. a_2_2·a_1_0
  3. a_2_3·a_1_0 − a_2_2·a_1_1
  4. a_2_4·a_1_1 + a_2_3·a_1_1 − a_2_2·a_1_1
  5. a_2_4·a_1_0 − a_2_3·a_1_1 + a_2_2·a_1_1
  6. a_2_22
  7. a_2_2·a_2_3 − a_2_2·a_1_1·a_1_2
  8.  − a_2_32 + a_2_2·a_2_4 + a_2_2·a_1_1·a_1_2
  9. a_2_3·a_2_4 + a_2_32 + a_2_2·a_1_1·a_1_2
  10. a_2_42 + a_2_32 − a_2_3·a_1_1·a_1_2
  11. a_1_1·a_3_8 − a_2_32 + a_2_3·a_1_1·a_1_2 + a_2_2·a_1_1·a_1_2
  12. a_1_0·a_3_8
  13. a_2_2·b_2_5·a_1_1
  14. a_2_3·b_2_5·a_1_1 + a_2_2·a_3_8
  15. a_2_3·a_3_8 − a_2_3·b_2_5·a_1_1
  16. a_2_4·a_3_8 − a_2_3·b_2_5·a_1_1 + a_2_2·a_2_4·a_1_2
  17.  − a_2_2·a_2_4·b_2_5 + a_2_2·a_1_2·a_3_8
  18. a_1_1·a_5_9
  19. a_1_0·a_5_9 − a_2_2·a_2_4·b_2_5
  20. b_2_5·a_5_9 − b_2_52·a_3_8 − b_2_53·a_1_1 − a_2_4·b_2_52·a_1_2 − a_2_3·b_2_52·a_1_2
       − a_2_2·b_2_52·a_1_2
  21. a_2_2·a_5_9 − a_2_2·b_2_5·a_3_8
  22. a_2_3·a_5_9 − a_2_2·b_2_5·a_3_8
  23. a_2_4·a_5_9 + a_2_2·b_2_5·a_3_8
  24. a_6_9·a_1_1
  25. a_6_9·a_1_0
  26. b_6_10·a_1_0 − b_2_53·a_1_1
  27. a_3_8·a_5_9 + a_2_2·b_2_5·a_1_2·a_3_8
  28. a_2_2·a_6_9 + a_2_2·b_2_5·a_1_2·a_3_8
  29. a_2_3·a_6_9 + a_2_2·b_2_5·a_1_2·a_3_8
  30. a_2_4·a_6_9 + a_2_2·b_2_5·a_1_2·a_3_8
  31.  − a_2_3·b_2_53 + a_2_2·b_6_10 − a_2_2·b_2_53 − b_2_53·a_1_1·a_1_2
  32. b_2_5·a_6_9 − a_2_4·b_2_53 + a_2_3·b_6_10 + a_2_3·b_2_53 + a_2_2·b_2_53
       + b_2_53·a_1_1·a_1_2
  33. b_2_5·a_6_9 − a_2_3·b_2_53 + a_2_2·b_2_53 + a_1_1·a_7_11 + b_6_10·a_1_1·a_1_2
       + b_2_53·a_1_1·a_1_2 − a_2_2·b_2_5·a_1_2·a_3_8
  34.  − a_2_2·b_2_53 + a_1_0·a_7_11 − a_2_2·b_2_5·a_1_2·a_3_8
  35.  − a_2_4·b_6_10 − a_2_4·b_2_53 + a_2_2·b_2_53 + a_1_1·a_7_12 − b_6_10·a_1_1·a_1_2
       + b_2_53·a_1_1·a_1_2 + a_2_2·b_2_5·a_1_2·a_3_8
  36. b_2_5·a_6_9 − a_2_3·b_2_53 − a_2_2·b_2_53 + a_1_0·a_7_12 + b_2_53·a_1_1·a_1_2
       − a_2_2·b_2_5·a_1_2·a_3_8
  37.  − a_2_4·b_6_10 + a_2_4·b_2_53 − a_2_3·b_2_53 + a_2_2·b_2_53 + a_1_1·a_7_13
       − b_6_10·a_1_1·a_1_2 − b_2_53·a_1_1·a_1_2 + a_2_2·b_2_5·a_1_2·a_3_8
  38. a_2_3·b_2_53 + a_2_2·b_2_53 + a_1_0·a_7_13 + a_2_2·b_2_5·a_1_2·a_3_8
  39. a_6_9·a_3_8
  40.  − b_2_5·b_6_10·a_1_1 − b_2_53·a_3_8 + b_2_54·a_1_1 − a_2_4·a_7_11 + a_2_3·a_7_12
       + a_2_2·a_7_11 + a_1_1·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_11
  41. a_2_4·a_7_12 − a_2_4·a_7_11 + a_2_3·a_7_11 − a_2_2·a_7_12 + a_2_2·a_7_11
       − a_1_1·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_11
  42.  − a_2_3·a_7_11 + a_2_2·a_7_12 + a_2_2·a_7_11 + a_1_1·a_1_2·a_7_13 − a_1_1·a_1_2·a_7_12
       + a_1_0·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_11
  43.  − b_2_5·b_6_10·a_1_1 − b_2_53·a_3_8 + b_2_54·a_1_1 + a_2_2·a_7_11 + a_1_0·a_1_2·a_7_13
  44. a_2_3·a_7_11 + a_2_2·a_7_13 + a_2_2·a_7_11 − a_1_0·a_1_2·a_7_12 − a_1_0·a_1_2·a_7_11
  45. a_2_4·a_7_11 + a_2_3·a_7_13 − a_2_3·a_7_11 − a_1_1·a_1_2·a_7_12 − a_1_0·a_1_2·a_7_12
       − a_1_0·a_1_2·a_7_11
  46. b_2_5·b_6_10·a_1_1 + b_2_53·a_3_8 − b_2_54·a_1_1 + a_2_4·a_7_13 + a_1_1·a_1_2·a_7_12
       − a_1_0·a_1_2·a_7_12 − a_1_0·a_1_2·a_7_11
  47. b_8_15·a_1_1 + b_2_5·b_6_10·a_1_1 + b_2_53·a_3_8 − b_2_54·a_1_1 + a_2_3·a_7_11
       + a_2_2·a_7_11 + a_1_1·a_1_2·a_7_12
  48. b_8_15·a_1_0 + a_2_2·a_7_11 + a_1_0·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_11
  49. b_8_16·a_1_1 − b_2_54·a_1_1 + a_2_4·a_7_11 + a_2_2·a_7_12 + a_2_2·a_7_11
       + a_1_0·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_11
  50. b_8_16·a_1_0 + b_2_53·a_3_8 − b_2_54·a_1_1 + a_2_3·a_7_11 − a_1_0·a_1_2·a_7_12
       + a_1_0·a_1_2·a_7_11
  51. b_8_17·a_1_1 + b_6_10·a_3_8 − b_2_54·a_1_1 + a_2_2·a_7_12 − a_2_2·a_7_11
       + a_1_0·a_1_2·a_7_12 + a_1_0·a_1_2·a_7_11
  52. b_8_17·a_1_0 − b_2_5·b_6_10·a_1_1 + b_2_53·a_3_8 + a_2_2·a_7_11 − a_1_0·a_1_2·a_7_12
  53. a_3_8·a_7_11 − b_6_10·a_1_2·a_3_8 + b_2_5·a_1_1·a_7_12 − b_2_53·a_1_2·a_3_8
       − b_2_54·a_1_1·a_1_2 − a_2_2·a_1_2·a_7_11
  54. a_2_2·b_8_15 + b_2_5·a_1_0·a_7_13 + b_2_5·a_1_0·a_7_12 + b_2_5·a_1_0·a_7_11
       − b_2_53·a_1_2·a_3_8 + b_2_54·a_1_1·a_1_2 + a_2_2·a_1_2·a_7_12
  55. a_2_3·b_8_15 − a_3_8·a_7_11 + b_6_10·a_1_2·a_3_8 + b_2_5·a_1_1·a_7_13
       + b_2_5·a_1_0·a_7_12 + b_2_5·a_1_0·a_7_11 − b_2_53·a_1_2·a_3_8 + b_2_54·a_1_1·a_1_2
       + a_2_3·a_1_2·a_7_12
  56. a_2_4·b_8_15 − a_3_8·a_7_13 + a_3_8·a_7_12 + b_2_5·a_1_0·a_7_13 + b_2_5·a_1_0·a_7_12
       + b_2_5·a_1_0·a_7_11 + b_2_53·a_1_2·a_3_8 + b_2_54·a_1_1·a_1_2 + a_2_3·a_1_2·a_7_12
       − a_2_2·a_1_2·a_7_12 − a_2_2·a_1_2·a_7_11
  57. a_2_2·b_8_16 + a_3_8·a_7_11 − b_6_10·a_1_2·a_3_8 − b_2_5·a_1_0·a_7_12
       − b_2_5·a_1_0·a_7_11 + b_2_54·a_1_1·a_1_2 + a_2_2·a_1_2·a_7_12 − a_2_2·a_1_2·a_7_11
  58. a_2_3·b_8_16 − a_3_8·a_7_13 + a_3_8·a_7_12 + a_3_8·a_7_11 − b_6_10·a_1_2·a_3_8
       + b_2_5·a_1_1·a_7_13 − b_2_5·a_1_0·a_7_13 + b_2_54·a_1_1·a_1_2 + a_2_3·a_1_2·a_7_12
       + a_2_2·a_1_2·a_7_11
  59. a_2_4·b_8_16 + a_3_8·a_7_13 − a_3_8·a_7_12 − b_2_5·a_1_1·a_7_13 + b_2_5·a_1_0·a_7_13
       + b_2_5·a_1_0·a_7_12 + b_2_5·a_1_0·a_7_11 − a_2_3·a_1_2·a_7_12 + a_2_2·a_1_2·a_7_11
  60. a_2_2·b_8_17 + a_3_8·a_7_11 − b_6_10·a_1_2·a_3_8 + b_2_5·a_1_1·a_7_13
       + b_2_5·a_1_0·a_7_13 + b_2_5·a_1_0·a_7_12 + b_2_5·a_1_0·a_7_11 + a_2_2·a_1_2·a_7_12
       + a_2_2·a_1_2·a_7_11
  61. a_2_3·b_8_17 − b_2_5·a_1_0·a_7_13 − b_2_5·a_1_0·a_7_12 − b_2_5·a_1_0·a_7_11
       + a_2_3·a_1_2·a_7_12 − a_2_2·a_1_2·a_7_12 − a_2_2·a_1_2·a_7_11
  62. a_2_4·b_8_17 + a_3_8·a_7_13 + b_6_10·a_1_2·a_3_8 − b_2_5·a_1_0·a_7_13
       − b_2_53·a_1_2·a_3_8 − b_2_54·a_1_1·a_1_2 − a_2_2·a_1_2·a_7_12
  63.  − a_3_8·a_7_13 + a_3_8·a_7_12 + a_3_8·a_7_11 + a_1_1·a_9_20 − b_2_5·a_1_1·a_7_13
       − b_2_5·a_1_0·a_7_13 + b_2_5·a_1_0·a_7_12 + b_2_5·a_1_0·a_7_11 + b_2_53·a_1_2·a_3_8
       − b_2_54·a_1_1·a_1_2 − a_2_3·a_1_2·a_7_12 + a_2_2·a_1_2·a_7_11
  64. a_1_0·a_9_20 + b_2_5·a_1_1·a_7_13 + b_2_5·a_1_0·a_7_13 + b_2_5·a_1_0·a_7_12
       − b_2_5·a_1_0·a_7_11 + b_2_54·a_1_1·a_1_2 − a_2_3·a_1_2·a_7_12 + a_2_2·a_1_2·a_7_12
       + a_2_2·a_1_2·a_7_11
  65. a_3_8·a_7_12 + a_1_1·a_9_21 − b_2_5·a_1_1·a_7_13 + b_2_5·a_1_0·a_7_13
       − b_2_5·a_1_0·a_7_12 − b_2_5·a_1_0·a_7_11 + b_2_54·a_1_1·a_1_2 + a_2_2·a_1_2·a_7_12
       + a_2_2·a_1_2·a_7_11
  66.  − a_3_8·a_7_11 + a_1_0·a_9_21 + b_6_10·a_1_2·a_3_8 − b_2_5·a_1_0·a_7_13
       + b_2_5·a_1_0·a_7_11 + b_2_53·a_1_2·a_3_8 + b_2_54·a_1_1·a_1_2
  67. a_6_9·a_5_9
  68.  − b_2_5·b_6_10·a_3_8 − b_2_54·a_3_8 + a_2_2·b_2_5·a_7_12 − a_2_2·b_2_5·a_7_11
       − b_2_5·a_1_0·a_1_2·a_7_12 − b_2_5·a_1_0·a_1_2·a_7_11
  69. b_8_17·a_3_8 − b_8_16·a_3_8 + b_8_15·a_3_8 + b_6_10·a_5_9 + b_2_5·b_6_10·a_3_8
       + b_2_54·a_3_8 − b_2_55·a_1_1 + b_2_5·a_1_1·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_13
  70. b_8_16·a_3_8 − b_8_15·a_3_8 + b_2_5·b_6_10·a_3_8 − a_2_3·b_2_5·a_7_12
       + a_1_1·a_1_2·a_9_20 + b_2_5·a_1_1·a_1_2·a_7_13 − b_2_5·a_1_1·a_1_2·a_7_12
       − b_2_5·a_1_0·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_12 − b_2_5·a_1_0·a_1_2·a_7_11
  71.  − b_8_16·a_3_8 + b_8_15·a_3_8 + b_2_54·a_3_8 + a_2_2·a_9_20 − a_2_2·b_2_5·a_7_11
       − b_2_5·a_1_1·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_13
  72.  − b_8_16·a_3_8 + b_8_15·a_3_8 + b_2_54·a_3_8 + a_2_3·a_9_20 + a_2_2·b_2_5·a_7_11
  73. b_8_16·a_3_8 + b_8_15·a_3_8 + b_2_5·b_6_10·a_3_8 + a_2_4·a_9_20 + a_2_2·b_2_5·a_7_11
       − b_2_5·a_1_1·a_1_2·a_7_12 + b_2_5·a_1_0·a_1_2·a_7_13 + b_2_5·a_1_0·a_1_2·a_7_12
       + b_2_5·a_1_0·a_1_2·a_7_11
  74.  − b_8_15·a_3_8 + b_2_5·b_6_10·a_3_8 + b_2_54·a_3_8 + a_2_3·b_2_5·a_7_12
       + a_1_1·a_1_2·a_9_21 + b_2_5·a_1_0·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_12
       − b_2_5·a_1_0·a_1_2·a_7_11
  75. b_2_5·b_6_10·a_3_8 + b_2_54·a_3_8 + a_2_3·b_2_5·a_7_12 + a_2_2·a_9_21
       + a_2_2·b_2_5·a_7_11 + b_2_5·a_1_1·a_1_2·a_7_13 − b_2_5·a_1_1·a_1_2·a_7_12
       − b_2_5·a_1_0·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_12 − b_2_5·a_1_0·a_1_2·a_7_11
  76. a_2_3·a_9_21 + a_2_2·b_2_5·a_7_11 + b_2_5·a_1_1·a_1_2·a_7_13
       + b_2_5·a_1_1·a_1_2·a_7_12 + b_2_5·a_1_0·a_1_2·a_7_13
  77.  − b_8_16·a_3_8 − b_8_15·a_3_8 − b_2_5·b_6_10·a_3_8 + a_2_4·a_9_21 + a_2_2·b_2_5·a_7_11
       + b_2_5·a_1_1·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_12
       − b_2_5·a_1_0·a_1_2·a_7_11
  78. b_10_24·a_1_1 − b_6_10·a_5_9 + b_2_54·a_3_8 − b_2_55·a_1_1 − a_2_3·b_2_5·a_7_12
       + a_2_2·b_2_5·a_7_11 − b_2_5·a_1_1·a_1_2·a_7_13 + b_2_5·a_1_0·a_1_2·a_7_13
       − b_2_5·a_1_0·a_1_2·a_7_12 − b_2_5·a_1_0·a_1_2·a_7_11
  79. b_10_24·a_1_0 + b_2_5·b_6_10·a_3_8 + b_2_55·a_1_1 + a_2_3·b_2_5·a_7_12
       − b_2_5·a_1_0·a_1_2·a_7_13 − b_2_5·a_1_0·a_1_2·a_7_12 − b_2_5·a_1_0·a_1_2·a_7_11
  80. a_6_92
  81. a_6_9·b_6_10 − a_5_9·a_7_12 − a_5_9·a_7_11 − b_2_52·a_1_1·a_7_12 + b_2_54·a_1_2·a_3_8
       − b_2_55·a_1_1·a_1_2 + a_2_2·b_2_5·a_1_2·a_7_12 + a_2_2·b_2_5·a_1_2·a_7_11
  82. a_5_9·a_7_11 + a_3_8·a_9_20 − b_2_52·a_1_1·a_7_13 + b_2_52·a_1_0·a_7_13
       − b_2_52·a_1_0·a_7_12 − b_2_52·a_1_0·a_7_11 − b_2_54·a_1_2·a_3_8
       + b_2_55·a_1_1·a_1_2
  83.  − a_6_9·b_6_10 − a_5_9·a_7_13 − a_5_9·a_7_12 + b_6_10·a_1_2·a_5_9 + b_2_5·a_1_1·a_9_20
       − b_2_52·a_1_1·a_7_13 + b_2_52·a_1_0·a_7_13 + b_2_54·a_1_2·a_3_8
       + b_2_55·a_1_1·a_1_2
  84. a_6_9·b_6_10 − a_5_9·a_7_12 + a_5_9·a_7_11 + b_6_10·a_1_2·a_5_9 + b_2_52·a_1_1·a_7_12
       − b_2_52·a_1_0·a_7_13 − b_2_55·a_1_1·a_1_2 + a_2_2·a_1_2·a_9_20
       + a_2_2·b_2_5·a_1_2·a_7_11
  85.  − a_5_9·a_7_13 − a_5_9·a_7_12 + a_3_8·a_9_21 − b_2_52·a_1_1·a_7_13
       + b_2_52·a_1_1·a_7_12 + b_2_52·a_1_0·a_7_13 − b_2_52·a_1_0·a_7_12
       − b_2_52·a_1_0·a_7_11 − b_2_55·a_1_1·a_1_2 − a_2_2·b_2_5·a_1_2·a_7_11
  86. a_6_9·b_6_10 − a_5_9·a_7_12 − a_5_9·a_7_11 + b_2_5·a_1_1·a_9_21 − b_2_52·a_1_1·a_7_13
       + b_2_52·a_1_1·a_7_12 − b_2_52·a_1_0·a_7_13 − b_2_54·a_1_2·a_3_8
       − b_2_55·a_1_1·a_1_2
  87. a_2_2·b_10_24 − a_5_9·a_7_13 + a_5_9·a_7_12 − a_5_9·a_7_11 + b_6_10·a_1_2·a_5_9
       + b_2_52·a_1_1·a_7_12 − b_2_52·a_1_0·a_7_13 − b_2_54·a_1_2·a_3_8
       + b_2_55·a_1_1·a_1_2 + a_2_2·b_2_5·a_1_2·a_7_11
  88. a_2_3·b_10_24 − a_5_9·a_7_13 + a_5_9·a_7_12 − a_5_9·a_7_11 + b_6_10·a_1_2·a_5_9
       + b_2_52·a_1_1·a_7_13 + b_2_52·a_1_0·a_7_12 + b_2_52·a_1_0·a_7_11
       + b_2_55·a_1_1·a_1_2
  89.  − a_6_9·b_6_10 + a_2_4·b_10_24 + a_5_9·a_7_13 − a_5_9·a_7_12 + b_2_52·a_1_1·a_7_13
       − b_2_52·a_1_1·a_7_12 − b_2_52·a_1_0·a_7_13 + b_2_52·a_1_0·a_7_12
       + b_2_52·a_1_0·a_7_11 − b_2_55·a_1_1·a_1_2 − a_2_2·b_2_5·a_1_2·a_7_11
  90. a_5_9·a_7_13 − a_5_9·a_7_12 + a_5_9·a_7_11 + a_1_1·a_11_25 − b_2_52·a_1_1·a_7_13
       − b_2_52·a_1_1·a_7_12 + b_2_52·a_1_0·a_7_13 − b_2_52·a_1_0·a_7_12
       − b_2_52·a_1_0·a_7_11 − b_2_54·a_1_2·a_3_8 + b_2_55·a_1_1·a_1_2
       + a_2_2·b_2_5·a_1_2·a_7_11
  91. a_1_0·a_11_25 − b_2_52·a_1_1·a_7_13 + b_2_52·a_1_1·a_7_12 + b_2_52·a_1_0·a_7_12
       + b_2_52·a_1_0·a_7_11 − b_2_54·a_1_2·a_3_8 + b_2_55·a_1_1·a_1_2
       − a_2_2·b_2_5·a_1_2·a_7_11
  92.  − a_6_9·b_6_10 − a_5_9·a_7_13 + a_5_9·a_7_12 + a_5_9·a_7_11 + a_1_1·a_11_26
       + b_2_52·a_1_1·a_7_13 + b_2_52·a_1_1·a_7_12 − b_2_52·a_1_0·a_7_13
       + a_2_2·b_2_5·a_1_2·a_7_11
  93.  − a_6_9·b_6_10 − a_5_9·a_7_13 − a_5_9·a_7_12 − a_5_9·a_7_11 + a_1_0·a_11_26
       − b_6_10·a_1_2·a_5_9 − b_2_52·a_1_1·a_7_13 + b_2_52·a_1_1·a_7_12
       − b_2_52·a_1_0·a_7_13 − b_2_52·a_1_0·a_7_12 + b_2_55·a_1_1·a_1_2
  94.  − b_6_10·a_7_11 − b_6_102·a_1_2 − b_6_102·a_1_1 + b_2_53·a_7_12 + b_2_53·a_7_11
       + b_2_56·a_1_1 − a_6_9·a_7_12 + a_6_9·a_7_11 − a_2_2·b_2_52·a_7_12
       + a_2_2·b_2_52·a_7_11 + b_2_52·a_1_1·a_1_2·a_7_13 − b_2_52·a_1_1·a_1_2·a_7_12
       + b_2_52·a_1_0·a_1_2·a_7_11
  95.  − a_6_9·a_7_12 − a_6_9·a_7_11 − a_2_2·b_2_52·a_7_12 − a_2_2·b_2_52·a_7_11
       − b_2_52·a_1_1·a_1_2·a_7_12 + b_2_52·a_1_0·a_1_2·a_7_13
       − b_2_52·a_1_0·a_1_2·a_7_12 − b_2_52·a_1_0·a_1_2·a_7_11
  96. a_6_9·a_7_13 + a_6_9·a_7_12 − a_6_9·a_7_11 − b_2_52·a_1_1·a_1_2·a_7_12
       − b_2_52·a_1_0·a_1_2·a_7_12 − b_2_52·a_1_0·a_1_2·a_7_11
  97. b_8_16·a_5_9 − b_8_15·a_5_9 + b_6_10·a_7_11 + b_6_102·a_1_2 + b_6_102·a_1_1
       − b_2_53·a_7_12 − b_2_53·a_7_11 − b_2_55·a_3_8 + b_2_56·a_1_1 − a_6_9·a_7_12
       − a_2_2·b_2_52·a_7_12 + b_2_52·a_1_1·a_1_2·a_7_12 + b_2_52·a_1_0·a_1_2·a_7_12
  98.  − b_8_17·a_5_9 + b_8_15·a_5_9 + b_6_102·a_1_1 + b_2_55·a_3_8 + a_6_9·a_7_11
       + a_2_2·b_2_52·a_7_12 − a_2_2·b_2_52·a_7_11 + b_2_5·a_1_1·a_1_2·a_9_20
       + b_2_52·a_1_1·a_1_2·a_7_12
  99.  − b_8_15·a_5_9 − b_6_10·a_7_11 − b_6_102·a_1_2 − b_6_102·a_1_1 + b_2_53·a_7_12
       + b_2_53·a_7_11 + b_2_56·a_1_1 − a_6_9·a_7_12 + a_2_2·b_2_5·a_9_20
       + a_2_2·b_2_52·a_7_11 + b_2_52·a_1_0·a_1_2·a_7_12 − b_2_52·a_1_0·a_1_2·a_7_11
  100. b_10_24·a_3_8 − b_8_17·a_5_9 − b_8_15·a_5_9 + b_6_10·a_7_11 + b_6_102·a_1_2
       − b_2_53·a_7_12 − b_2_53·a_7_11 − b_2_55·a_3_8 + b_2_56·a_1_1 + a_2_2·b_2_52·a_7_12
       − b_2_52·a_1_0·a_1_2·a_7_11
  101.  − b_8_17·a_5_9 + b_8_15·a_5_9 + b_6_102·a_1_1 + b_2_5·a_11_25 − b_2_5·b_10_24·a_1_2
       − b_2_52·a_9_21 + b_2_52·a_9_20 − b_2_52·b_8_16·a_1_2 + b_2_53·a_7_13
       + b_2_53·a_7_12 + b_2_53·a_7_11 + b_2_53·b_6_10·a_1_2 + b_2_56·a_1_1 + a_6_9·a_7_12
       − a_6_9·a_7_11 + a_2_2·b_2_52·a_7_12 + b_2_52·a_1_1·a_1_2·a_7_12
       − b_2_52·a_1_0·a_1_2·a_7_12 + b_2_52·a_1_0·a_1_2·a_7_11
  102.  − b_8_17·a_5_9 + b_6_10·a_7_11 + b_6_102·a_1_2 − b_6_102·a_1_1 − b_2_53·a_7_12
       − b_2_53·a_7_11 + b_2_55·a_3_8 − b_2_56·a_1_1 + a_6_9·a_7_11 + a_2_2·a_11_25
       + a_2_2·b_2_52·a_7_12 − a_2_2·b_2_52·a_7_11 − b_2_52·a_1_0·a_1_2·a_7_12
       + b_2_52·a_1_0·a_1_2·a_7_11
  103.  − b_8_17·a_5_9 − b_8_15·a_5_9 + b_6_10·a_7_11 + b_6_102·a_1_2 − b_6_102·a_1_1
       − b_2_53·a_7_12 − b_2_53·a_7_11 + b_2_55·a_3_8 − b_2_56·a_1_1 + a_2_3·a_11_25
       + a_2_2·b_2_52·a_7_12 + b_2_52·a_1_1·a_1_2·a_7_12 + b_2_52·a_1_0·a_1_2·a_7_12
  104. b_8_17·a_5_9 + b_6_10·a_7_11 + b_6_102·a_1_2 − b_2_53·a_7_12 − b_2_53·a_7_11
       − b_2_55·a_3_8 − b_2_56·a_1_1 + a_6_9·a_7_12 + a_2_4·a_11_25 − a_2_2·b_2_52·a_7_12
       − b_2_52·a_1_1·a_1_2·a_7_12 + b_2_52·a_1_0·a_1_2·a_7_12
  105.  − b_8_17·a_5_9 + b_8_15·a_5_9 − b_6_10·a_7_11 − b_6_102·a_1_2 + b_2_53·a_7_12
       + b_2_53·a_7_11 + b_2_55·a_3_8 + b_2_56·a_1_1 − a_6_9·a_7_11 + a_2_2·b_2_52·a_7_12
       + a_1_1·a_1_2·a_11_26 − b_2_52·a_1_0·a_1_2·a_7_12
  106. b_8_15·a_5_9 − a_6_9·a_7_12 + a_2_2·a_11_26 − a_2_2·b_2_52·a_7_11
       − b_2_52·a_1_1·a_1_2·a_7_12 − b_2_52·a_1_0·a_1_2·a_7_12
       − b_2_52·a_1_0·a_1_2·a_7_11
  107. b_8_17·a_5_9 − b_8_15·a_5_9 − b_6_102·a_1_1 − b_2_55·a_3_8 + a_6_9·a_7_12
       + a_2_3·a_11_26 − a_2_2·b_2_52·a_7_12 − a_2_2·b_2_52·a_7_11
       − b_2_52·a_1_1·a_1_2·a_7_12
  108.  − b_8_17·a_5_9 + b_6_10·a_7_11 + b_6_102·a_1_2 − b_6_102·a_1_1 − b_2_53·a_7_12
       − b_2_53·a_7_11 + b_2_55·a_3_8 − b_2_56·a_1_1 − a_6_9·a_7_11 + a_2_4·a_11_26
       − a_2_2·b_2_52·a_7_12 − b_2_52·a_1_0·a_1_2·a_7_12 + b_2_52·a_1_0·a_1_2·a_7_11
  109. b_6_10·a_7_11 + b_6_102·a_1_2 + b_6_102·a_1_1 − b_2_53·a_7_12 − b_2_53·a_7_11
       − b_2_56·a_1_1 + a_12_22·a_1_1 + b_2_52·a_1_1·a_1_2·a_7_12
       − b_2_52·a_1_0·a_1_2·a_7_12 + b_2_52·a_1_0·a_1_2·a_7_11
  110.  − b_8_17·a_5_9 + b_8_15·a_5_9 − b_6_10·a_7_11 − b_6_102·a_1_2 + b_2_53·a_7_12
       + b_2_53·a_7_11 + b_2_55·a_3_8 + b_2_56·a_1_1 + a_12_22·a_1_0 − a_6_9·a_7_12
       − a_6_9·a_7_11 + b_2_52·a_1_1·a_1_2·a_7_12 − b_2_52·a_1_0·a_1_2·a_7_12
  111. a_6_9·b_8_15 − a_7_11·a_7_12 − b_6_10·a_1_2·a_7_12 − b_6_10·a_1_1·a_7_12
       − b_2_53·a_1_2·a_7_12 − b_2_53·a_1_2·a_7_11 − b_2_53·a_1_1·a_7_12
       + b_2_55·a_1_2·a_3_8 − b_2_56·a_1_1·a_1_2 − a_2_2·b_2_52·a_1_2·a_7_11
  112. b_6_10·b_8_15 − b_2_5·b_6_102 + b_2_53·b_8_17 − b_2_53·b_8_16 + b_2_53·b_8_15
       + b_2_54·b_6_10 + b_6_10·a_1_2·a_7_12 + b_6_102·a_1_1·a_1_2 − b_2_53·a_1_2·a_7_11
       − b_2_53·a_1_0·a_7_12 − b_2_55·a_1_2·a_3_8 − a_2_2·b_2_52·a_1_2·a_7_12
  113. a_6_9·b_8_17 − a_6_9·b_8_16 − b_6_10·a_1_1·a_7_12 + b_6_102·a_1_1·a_1_2
       + b_2_53·a_1_1·a_7_12 − b_2_56·a_1_1·a_1_2 + a_2_2·b_2_52·a_1_2·a_7_12
       − a_2_2·b_2_52·a_1_2·a_7_11
  114. a_6_9·b_8_16 + a_7_11·a_7_12 + a_5_9·a_9_20 + b_6_10·a_1_2·a_7_12 + b_6_10·a_1_1·a_7_12
       + b_6_102·a_1_1·a_1_2 + b_2_53·a_1_2·a_7_12 + b_2_53·a_1_2·a_7_11
       − b_2_53·a_1_0·a_7_12 − b_2_53·a_1_0·a_7_11 − a_2_2·b_2_52·a_1_2·a_7_12
       + a_2_2·b_2_52·a_1_2·a_7_11
  115.  − a_6_9·b_8_16 − a_7_11·a_7_12 − b_6_10·a_1_2·a_7_12 − b_6_10·a_1_1·a_7_12
       + b_2_52·a_1_1·a_9_20 − b_2_53·a_1_2·a_7_12 − b_2_53·a_1_2·a_7_11
       + b_2_53·a_1_0·a_7_12 + b_2_53·a_1_0·a_7_11 + b_2_55·a_1_2·a_3_8
       + b_2_56·a_1_1·a_1_2 + a_2_2·b_2_52·a_1_2·a_7_11
  116. a_7_11·a_7_12 + b_6_10·a_1_2·a_7_12 + b_6_10·a_1_1·a_7_12 + b_2_53·a_1_2·a_7_12
       + b_2_53·a_1_2·a_7_11 + b_2_53·a_1_1·a_7_12 − b_2_55·a_1_2·a_3_8
       + b_2_56·a_1_1·a_1_2 + a_2_2·b_2_5·a_1_2·a_9_20 − a_2_2·b_2_52·a_1_2·a_7_12
       + a_2_2·b_2_52·a_1_2·a_7_11
  117. a_6_9·b_8_16 + a_5_9·a_9_21 − b_6_10·a_1_1·a_7_12 − b_2_53·a_1_1·a_7_12
       + b_2_53·a_1_0·a_7_12 + b_2_53·a_1_0·a_7_11 + b_2_55·a_1_2·a_3_8
       + b_2_56·a_1_1·a_1_2 − a_2_2·b_2_52·a_1_2·a_7_12
  118.  − b_6_10·b_8_16 − b_6_10·b_8_15 + b_2_5·b_6_102 + b_2_52·b_10_24 + b_2_53·b_8_15
       + b_2_54·b_6_10 − a_7_11·a_7_13 − a_7_11·a_7_12 + b_6_10·a_1_2·a_7_13
       + b_6_10·a_1_2·a_7_12 − b_6_10·a_1_1·a_7_12 − b_2_53·a_1_2·a_7_13
       + b_2_53·a_1_2·a_7_12 + b_2_53·a_1_2·a_7_11 + b_2_53·a_1_0·a_7_12
       + b_2_56·a_1_1·a_1_2 − a_2_2·b_2_52·a_1_2·a_7_12
  119. a_6_9·b_8_16 − a_7_11·a_7_12 + a_3_8·a_11_25 − b_6_10·a_1_2·a_7_12 − b_6_10·a_1_1·a_7_12
       + b_6_102·a_1_1·a_1_2 − b_2_53·a_1_2·a_7_12 − b_2_53·a_1_2·a_7_11
       − b_2_53·a_1_1·a_7_12 − b_2_53·a_1_0·a_7_12 − b_2_53·a_1_0·a_7_11
       + b_2_55·a_1_2·a_3_8 − b_2_56·a_1_1·a_1_2 + a_2_2·b_2_52·a_1_2·a_7_12
  120.  − a_6_9·b_8_16 − a_7_11·a_7_12 + a_3_8·a_11_26 − b_6_10·a_1_2·a_7_12
       − b_2_53·a_1_2·a_7_12 − b_2_53·a_1_2·a_7_11 − b_2_53·a_1_1·a_7_12
       + b_2_53·a_1_0·a_7_12 + b_2_53·a_1_0·a_7_11 − a_2_2·b_2_52·a_1_2·a_7_11
  121.  − a_6_9·b_8_16 + b_2_5·a_12_22 + a_7_11·a_7_13 + b_6_10·a_1_2·a_7_13
       + b_6_10·a_1_1·a_7_12 − b_2_5·a_1_2·a_11_26 + b_2_52·a_1_2·a_9_20
       + b_2_53·a_1_2·a_7_13 − b_2_53·a_1_2·a_7_12 − b_2_53·a_1_2·a_7_11
       − b_2_53·a_1_1·a_7_12 + b_2_53·a_1_0·a_7_12 + b_2_53·a_1_0·a_7_11
       + b_2_55·a_1_2·a_3_8 − b_2_56·a_1_1·a_1_2 + a_2_2·b_2_52·a_1_2·a_7_12
  122.  − a_7_11·a_7_12 − b_6_10·a_1_2·a_7_12 − b_6_10·a_1_1·a_7_12 − b_2_53·a_1_2·a_7_12
       − b_2_53·a_1_2·a_7_11 − b_2_53·a_1_1·a_7_12 + b_2_55·a_1_2·a_3_8
       − b_2_56·a_1_1·a_1_2 + a_2_2·a_12_22 + a_2_2·b_2_52·a_1_2·a_7_12
       + a_2_2·b_2_52·a_1_2·a_7_11
  123.  − a_7_11·a_7_12 − b_6_10·a_1_2·a_7_12 − b_6_10·a_1_1·a_7_12 − b_2_53·a_1_2·a_7_12
       − b_2_53·a_1_2·a_7_11 − b_2_53·a_1_1·a_7_12 + b_2_55·a_1_2·a_3_8
       − b_2_56·a_1_1·a_1_2 + a_2_3·a_12_22 − a_2_2·b_2_52·a_1_2·a_7_11
  124. a_7_11·a_7_12 + b_6_10·a_1_2·a_7_12 + b_6_10·a_1_1·a_7_12 + b_2_53·a_1_2·a_7_12
       + b_2_53·a_1_2·a_7_11 + b_2_53·a_1_1·a_7_12 − b_2_55·a_1_2·a_3_8
       + b_2_56·a_1_1·a_1_2 + a_2_4·a_12_22 − a_2_2·b_2_52·a_1_2·a_7_12
       + a_2_2·b_2_52·a_1_2·a_7_11
  125.  − b_8_16·a_7_11 − b_8_15·a_7_13 + b_2_5·b_6_10·a_7_12 − b_2_53·b_8_17·a_1_2
       + b_2_53·b_8_16·a_1_2 − b_2_53·b_8_15·a_1_2 + b_2_54·a_7_12 + b_2_54·a_7_11
       + b_2_54·b_6_10·a_1_2 − a_1_2·a_7_12·a_7_13 + a_1_2·a_7_11·a_7_13
       + b_2_52·a_1_1·a_1_2·a_9_20 − b_2_53·a_1_1·a_1_2·a_7_12
       + b_2_53·a_1_0·a_1_2·a_7_11
  126. b_8_17·a_7_11 + b_8_16·a_7_11 − b_8_15·a_7_12 − b_8_15·a_7_11 + b_6_10·b_8_17·a_1_2
       − b_6_102·a_3_8 + b_2_5·b_6_10·a_7_13 − b_2_5·b_6_102·a_1_2 + b_2_53·a_9_20
       + b_2_53·b_8_17·a_1_2 − b_2_53·b_8_16·a_1_2 − b_2_53·b_8_15·a_1_2 + b_2_54·a_7_13
       − b_2_54·a_7_12 + b_2_57·a_1_1 − b_6_10·a_1_1·a_1_2·a_7_12
       + b_2_53·a_1_1·a_1_2·a_7_12 + b_2_53·a_1_0·a_1_2·a_7_12
       − b_2_53·a_1_0·a_1_2·a_7_11
  127.  − b_8_17·a_7_13 + b_8_17·a_7_12 − b_8_16·a_7_11 − b_8_15·a_7_12 + b_8_15·a_7_11
       + b_6_10·a_9_20 + b_6_10·b_8_17·a_1_2 − b_2_5·b_6_10·a_7_12 + b_2_54·b_6_10·a_1_2
       + b_2_57·a_1_1 − a_1_2·a_7_12·a_7_13 − a_1_2·a_7_11·a_7_13 − b_6_10·a_1_1·a_1_2·a_7_12
       − b_2_53·a_1_1·a_1_2·a_7_12 + b_2_53·a_1_0·a_1_2·a_7_12
       − b_2_53·a_1_0·a_1_2·a_7_11
  128. a_6_9·a_9_20 − b_6_10·a_1_1·a_1_2·a_7_12 − b_2_53·a_1_0·a_1_2·a_7_12
       − b_2_53·a_1_0·a_1_2·a_7_11
  129.  − b_8_17·a_7_11 − b_8_16·a_7_11 − b_8_15·a_7_13 − b_8_15·a_7_11 − b_6_10·b_8_17·a_1_2
       + b_6_102·a_3_8 + b_2_5·b_6_10·a_7_12 − b_2_5·b_6_102·a_1_2 + b_2_53·a_9_21
       − b_2_53·b_8_17·a_1_2 + b_2_53·b_8_15·a_1_2 − b_2_54·a_7_13 − b_2_54·a_7_12
       + b_2_54·b_6_10·a_1_2 + b_2_57·a_1_1 − a_1_2·a_7_12·a_7_13 − a_1_2·a_7_11·a_7_13
       − b_6_10·a_1_1·a_1_2·a_7_12 − b_2_53·a_1_1·a_1_2·a_7_12
  130.  − b_8_17·a_7_13 + b_8_17·a_7_11 − b_8_16·a_7_13 − b_8_16·a_7_12 − b_8_16·a_7_11
       + b_8_15·a_7_12 − b_8_15·a_7_11 + b_6_10·a_9_21 + b_6_10·b_8_17·a_1_2
       + b_2_5·b_6_10·a_7_13 − b_2_5·b_6_102·a_1_2 + b_2_54·a_7_12 + b_2_54·a_7_11
       + b_2_54·b_6_10·a_1_2 + b_2_56·a_3_8 + b_2_57·a_1_1 − a_1_2·a_7_12·a_7_13
       + b_6_10·a_1_1·a_1_2·a_7_12 + b_2_53·a_1_0·a_1_2·a_7_12
  131. b_8_16·a_7_11 + b_8_15·a_7_13 − b_2_5·b_6_10·a_7_12 + b_2_53·b_8_17·a_1_2
       − b_2_53·b_8_16·a_1_2 + b_2_53·b_8_15·a_1_2 − b_2_54·a_7_12 − b_2_54·a_7_11
       − b_2_54·b_6_10·a_1_2 + a_6_9·a_9_21 + a_1_2·a_7_12·a_7_13 − a_1_2·a_7_11·a_7_13
       + b_6_10·a_1_1·a_1_2·a_7_12 − b_2_53·a_1_0·a_1_2·a_7_11
  132. b_10_24·a_5_9 − b_8_16·a_7_11 − b_8_15·a_7_13 + b_6_102·a_3_8 + b_2_5·b_6_10·a_7_12
       − b_2_53·b_8_17·a_1_2 + b_2_53·b_8_16·a_1_2 − b_2_53·b_8_15·a_1_2 + b_2_54·a_7_12
       + b_2_54·a_7_11 + b_2_54·b_6_10·a_1_2 + b_2_57·a_1_1 − a_1_2·a_7_12·a_7_13
       + a_1_2·a_7_11·a_7_13 + b_2_53·a_1_1·a_1_2·a_7_12 − b_2_53·a_1_0·a_1_2·a_7_12
  133.  − b_8_17·a_7_11 − b_8_15·a_7_13 − b_8_15·a_7_12 + b_8_15·a_7_11 − b_6_10·b_8_17·a_1_2
       + b_6_102·a_3_8 − b_2_5·b_6_10·a_7_12 + b_2_5·b_6_102·a_1_2 + b_2_52·b_10_24·a_1_2
       + b_2_53·b_8_17·a_1_2 − b_2_53·b_8_16·a_1_2 − b_2_53·b_8_15·a_1_2 + b_2_54·a_7_12
       + b_2_54·a_7_11 + b_2_54·b_6_10·a_1_2 − b_2_56·a_3_8 − a_1_2·a_7_12·a_7_13
       − b_6_10·a_1_1·a_1_2·a_7_12 − b_2_53·a_1_1·a_1_2·a_7_12
  134. b_8_17·a_7_11 + b_8_16·a_7_13 + b_8_16·a_7_12 − b_8_15·a_7_13 + b_8_15·a_7_12
       + b_8_15·a_7_11 + b_6_10·b_8_17·a_1_2 − b_6_102·a_3_8 + b_2_5·b_6_10·a_7_13
       − b_2_5·b_6_10·a_7_12 + b_2_5·b_6_102·a_1_2 + b_2_52·a_11_26 − b_2_53·b_8_17·a_1_2
       − b_2_53·b_8_16·a_1_2 + b_2_54·a_7_13 − b_2_54·a_7_12 − b_2_54·b_6_10·a_1_2
       + b_2_56·a_3_8 + a_1_2·a_7_12·a_7_13 + a_1_2·a_7_11·a_7_13
       + b_2_53·a_1_1·a_1_2·a_7_12 − b_2_53·a_1_0·a_1_2·a_7_12
       + b_2_53·a_1_0·a_1_2·a_7_11
  135. b_8_16·a_7_11 + b_8_15·a_7_13 − b_2_5·b_6_10·a_7_12 + b_2_53·b_8_17·a_1_2
       − b_2_53·b_8_16·a_1_2 + b_2_53·b_8_15·a_1_2 − b_2_54·a_7_12 − b_2_54·a_7_11
       − b_2_54·b_6_10·a_1_2 + a_12_22·a_3_8 + a_1_2·a_7_12·a_7_13 − a_1_2·a_7_11·a_7_13
       + b_6_10·a_1_1·a_1_2·a_7_12 + b_2_53·a_1_1·a_1_2·a_7_12 − b_2_53·a_1_0·a_1_2·a_7_11
  136. a_7_11·a_9_20 + b_8_16·a_1_2·a_7_12 − b_8_15·a_1_2·a_7_12 + b_6_10·a_1_2·a_9_20
       − b_6_102·a_1_2·a_3_8 + b_2_5·a_7_12·a_7_13 − b_2_5·a_7_11·a_7_13
       − b_2_5·b_6_10·a_1_2·a_7_13 + b_2_5·b_6_10·a_1_2·a_7_12 + b_2_53·a_1_2·a_9_20
       + b_2_54·a_1_2·a_7_13 + b_2_54·a_1_2·a_7_12 − b_2_54·a_1_2·a_7_11
       − b_2_54·a_1_1·a_7_12 − b_2_54·a_1_0·a_7_12 − b_2_54·a_1_0·a_7_11
       + b_2_56·a_1_2·a_3_8
  137. b_8_16·b_8_17 − b_8_162 − b_8_15·b_8_17 + b_8_15·b_8_16 + b_8_152
       + b_2_5·b_6_10·b_8_17 + b_2_52·b_6_102 + b_2_54·b_8_17 + b_2_54·b_8_15
       + a_7_13·a_9_21 + a_7_13·a_9_20 − a_7_12·a_9_20 − b_8_15·a_1_2·a_7_12
       + b_6_102·a_1_2·a_3_8 + b_2_5·a_7_11·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_12
       − b_2_54·a_1_2·a_7_13 + b_2_54·a_1_2·a_7_12 − b_2_54·a_1_2·a_7_11
       − b_2_54·a_1_1·a_7_12 − b_2_54·a_1_0·a_7_12 + b_2_54·a_1_0·a_7_11
       + b_2_56·a_1_2·a_3_8 − b_2_57·a_1_1·a_1_2
  138.  − b_8_152 + b_2_52·b_6_102 + b_2_54·b_8_17 + b_2_54·b_8_15 + b_2_55·b_6_10
       + b_8_15·a_1_2·a_7_12 − b_2_5·a_7_11·a_7_13 + b_2_5·b_6_10·a_1_2·a_7_13
       + b_2_5·b_6_10·a_1_2·a_7_12 + b_2_53·a_1_2·a_9_21 + b_2_53·a_1_2·a_9_20
       − b_2_54·a_1_2·a_7_13 + b_2_54·a_1_2·a_7_12 + b_2_54·a_1_2·a_7_11
       − b_2_54·a_1_1·a_7_12 − b_2_54·a_1_0·a_7_12 + b_2_56·a_1_2·a_3_8
       − b_2_57·a_1_1·a_1_2
  139.  − b_8_16·b_8_17 − b_8_162 + b_8_15·b_8_17 − b_8_15·b_8_16 − b_8_152
       − b_2_5·b_6_10·b_8_17 − b_2_52·b_6_102 + b_2_54·b_8_17 + b_2_54·b_8_16
       + b_2_54·b_8_15 − b_2_55·b_6_10 − a_7_13·a_9_20 + a_7_12·a_9_20 + b_8_15·a_1_2·a_7_12
       + b_6_10·a_1_1·a_9_21 − b_6_102·a_1_2·a_3_8 + b_2_5·a_7_12·a_7_13
       − b_2_5·a_7_11·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_12
       + b_2_54·a_1_2·a_7_13 + b_2_56·a_1_2·a_3_8
  140. b_8_162 + b_8_15·b_8_17 + b_8_15·b_8_16 − b_2_5·b_6_10·b_8_17 + b_2_54·b_8_16
       − b_2_55·b_6_10 + a_7_13·a_9_20 − a_7_12·a_9_20 − b_8_16·a_1_2·a_7_12
       + b_6_10·a_1_2·a_9_21 + b_6_10·a_1_2·a_9_20 − b_6_102·a_1_2·a_3_8
       − b_2_5·a_7_11·a_7_13 + b_2_5·b_6_10·a_1_2·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_12
       − b_2_53·a_1_2·a_9_20 + b_2_54·a_1_2·a_7_13 + b_2_54·a_1_2·a_7_11
       − b_2_54·a_1_1·a_7_12 − b_2_54·a_1_0·a_7_12 − b_2_57·a_1_1·a_1_2
  141. b_8_16·b_8_17 + b_8_15·b_8_17 + b_8_152 − b_2_5·b_6_10·b_8_17 + b_2_52·b_6_102
       − b_2_54·b_8_17 + b_2_54·b_8_16 − b_2_54·b_8_15 − b_2_55·b_6_10 + a_7_11·a_9_21
       + b_8_16·a_1_2·a_7_12 − b_8_15·a_1_2·a_7_12 − b_6_10·a_1_2·a_9_20
       − b_6_102·a_1_2·a_3_8 − b_2_5·a_7_12·a_7_13 + b_2_5·a_7_11·a_7_13
       + b_2_5·b_6_10·a_1_2·a_7_12 − b_2_53·a_1_2·a_9_20 − b_2_54·a_1_2·a_7_13
       + b_2_54·a_1_2·a_7_12 + b_2_54·a_1_2·a_7_11 + b_2_54·a_1_1·a_7_12
       − b_2_54·a_1_0·a_7_12 + b_2_54·a_1_0·a_7_11 + b_2_56·a_1_2·a_3_8
       + b_2_57·a_1_1·a_1_2
  142. b_8_16·b_8_17 + b_8_15·b_8_17 + b_8_152 − b_2_5·b_6_10·b_8_17 + b_2_52·b_6_102
       − b_2_54·b_8_17 + b_2_54·b_8_16 − b_2_54·b_8_15 − b_2_55·b_6_10 − a_7_13·a_9_20
       + a_7_12·a_9_21 − b_6_10·a_1_2·a_9_20 − b_2_5·a_7_12·a_7_13 + b_2_5·a_7_11·a_7_13
       + b_2_5·b_6_10·a_1_2·a_7_12 + b_2_53·a_1_2·a_9_20 + b_2_54·a_1_2·a_7_13
       − b_2_54·a_1_2·a_7_12 + b_2_54·a_1_2·a_7_11 − b_2_54·a_1_0·a_7_12
       + b_2_54·a_1_0·a_7_11 − b_2_56·a_1_2·a_3_8
  143. b_8_162 − b_8_15·b_8_16 + b_8_152 − b_2_52·b_6_102 + b_2_53·b_10_24
       − b_2_54·b_8_17 − b_2_55·b_6_10 + a_7_13·a_9_20 − a_7_12·a_9_20 − b_8_15·a_1_2·a_7_12
       − b_6_10·a_1_2·a_9_20 + b_2_5·a_7_12·a_7_13 + b_2_5·a_7_11·a_7_13
       − b_2_5·b_6_10·a_1_2·a_7_13 − b_2_53·a_1_2·a_9_20 − b_2_54·a_1_2·a_7_13
       + b_2_54·a_1_2·a_7_11 + b_2_54·a_1_0·a_7_12 − b_2_56·a_1_2·a_3_8
  144.  − b_8_172 − b_8_16·b_8_17 + b_8_162 + b_8_15·b_8_17 + b_6_10·b_10_24
       − b_2_5·b_6_10·b_8_17 − b_2_54·b_8_16 + b_2_55·b_6_10 + a_7_13·a_9_20 − a_7_12·a_9_20
       + b_8_15·a_1_2·a_7_12 − b_6_10·a_1_2·a_9_20 + b_6_102·a_1_2·a_3_8
       − b_2_5·a_7_12·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_12
       − b_2_53·a_1_2·a_9_20 − b_2_54·a_1_0·a_7_11 + b_2_56·a_1_2·a_3_8
  145.  − b_8_16·b_8_17 − b_8_162 + b_8_15·b_8_17 − b_8_15·b_8_16 − b_8_152
       − b_2_5·b_6_10·b_8_17 − b_2_52·b_6_102 + b_2_54·b_8_17 + b_2_54·b_8_16
       + b_2_54·b_8_15 − b_2_55·b_6_10 + a_6_9·b_10_24 − a_7_13·a_9_20 + a_7_12·a_9_20
       + b_8_15·a_1_2·a_7_12 + b_2_5·a_7_12·a_7_13 − b_2_5·a_7_11·a_7_13
       − b_2_5·b_6_10·a_1_2·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_12 + b_2_54·a_1_2·a_7_13
       − b_2_54·a_1_1·a_7_12 − b_2_54·a_1_0·a_7_12 − b_2_54·a_1_0·a_7_11
       − b_2_57·a_1_1·a_1_2
  146. a_5_9·a_11_25 − b_6_102·a_1_2·a_3_8 + b_2_54·a_1_1·a_7_12 − b_2_54·a_1_0·a_7_12
       − b_2_54·a_1_0·a_7_11 − b_2_57·a_1_1·a_1_2
  147.  − b_8_16·b_8_17 − b_8_162 + b_8_15·b_8_17 − b_8_15·b_8_16 − b_8_152
       − b_2_5·b_6_10·b_8_17 − b_2_52·b_6_102 + b_2_54·b_8_17 + b_2_54·b_8_16
       + b_2_54·b_8_15 − b_2_55·b_6_10 − a_7_13·a_9_20 + a_7_12·a_9_20 + a_5_9·a_11_26
       + b_8_15·a_1_2·a_7_12 − b_6_102·a_1_2·a_3_8 + b_2_5·a_7_12·a_7_13
       − b_2_5·a_7_11·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_13 − b_2_5·b_6_10·a_1_2·a_7_12
       + b_2_54·a_1_2·a_7_13 − b_2_54·a_1_0·a_7_12 − b_2_54·a_1_0·a_7_11
       + b_2_56·a_1_2·a_3_8 − b_2_57·a_1_1·a_1_2
  148. b_8_162 + b_8_152 − b_2_52·b_6_102 + b_2_54·b_8_17 + b_2_54·b_8_16
       + b_2_54·b_8_15 + b_2_55·b_6_10 + a_7_13·a_9_20 − a_7_12·a_9_20 + b_8_16·a_1_2·a_7_12
       + b_8_15·a_1_2·a_7_12 − b_6_10·a_1_2·a_9_20 − b_2_5·a_7_12·a_7_13
       + b_2_52·a_1_2·a_11_26 − b_2_53·a_1_2·a_9_20 + b_2_54·a_1_2·a_7_13
       − b_2_54·a_1_2·a_7_12 − b_2_54·a_1_2·a_7_11 + b_2_54·a_1_1·a_7_12
       + b_2_54·a_1_0·a_7_12 − b_2_54·a_1_0·a_7_11 + b_2_56·a_1_2·a_3_8
       − b_2_57·a_1_1·a_1_2
  149. b_8_15·a_9_20 − b_2_5·b_8_16·a_7_12 − b_2_5·b_8_15·a_7_12 + b_2_5·b_6_10·b_8_17·a_1_2
       − b_2_52·b_6_10·a_7_12 + b_2_52·b_6_102·a_1_2 + b_2_54·b_8_16·a_1_2
       − b_2_55·b_6_10·a_1_2 + a_1_2·a_7_12·a_9_21 − b_6_10·a_1_1·a_1_2·a_9_21
       − b_2_5·a_1_2·a_7_12·a_7_13 + b_2_54·a_1_1·a_1_2·a_7_12 − b_2_54·a_1_0·a_1_2·a_7_11
  150. b_8_16·a_9_21 − b_8_16·a_9_20 + b_8_15·a_9_20 − b_2_5·b_6_10·a_9_20
       − b_2_52·b_6_10·a_7_13 − b_2_52·b_6_102·a_1_2 + b_2_54·a_9_20
       + b_2_54·b_8_17·a_1_2 − b_2_54·b_8_15·a_1_2 + b_2_55·a_7_13 + b_2_55·a_7_12
       − b_2_55·a_7_11 + b_2_55·b_6_10·a_1_2 + b_2_57·a_3_8 + b_6_10·a_1_1·a_1_2·a_9_21
       + b_2_5·a_1_2·a_7_11·a_7_13 + b_2_54·a_1_1·a_1_2·a_7_12 + b_2_54·a_1_0·a_1_2·a_7_12
       − b_2_54·a_1_0·a_1_2·a_7_11
  151. b_8_15·a_9_21 − b_8_15·a_9_20 − b_2_5·b_8_16·a_7_12 − b_2_5·b_8_15·a_7_12
       − b_2_5·b_6_10·a_9_21 − b_2_5·b_6_10·b_8_17·a_1_2 − b_2_52·b_6_102·a_1_2
       − b_2_54·a_9_20 + b_2_54·b_8_16·a_1_2 − b_2_54·b_8_15·a_1_2 − b_2_55·a_7_13
       + b_2_55·a_7_12 + b_2_55·b_6_10·a_1_2 + b_2_58·a_1_1 − b_6_10·a_1_1·a_1_2·a_9_21
       − b_2_5·a_1_2·a_7_11·a_7_13 − b_2_54·a_1_1·a_1_2·a_7_12 + b_2_54·a_1_0·a_1_2·a_7_12
       − b_2_54·a_1_0·a_1_2·a_7_11
  152. b_10_24·a_7_13 − b_8_17·a_9_21 + b_8_16·a_9_20 + b_8_15·a_9_20 + b_6_102·a_5_9
       + b_2_5·b_8_15·a_7_12 + b_2_5·b_6_10·a_9_21 − b_2_5·b_6_10·a_9_20
       + b_2_52·b_6_10·a_7_13 + b_2_52·b_6_10·a_7_12 + b_2_52·b_6_102·a_1_2
       + b_2_54·a_9_21 − b_2_54·b_8_17·a_1_2 + b_2_54·b_8_15·a_1_2 − b_2_55·a_7_13
       + b_2_55·a_7_11 − b_2_57·a_3_8 + b_6_10·a_1_1·a_1_2·a_9_21
       − b_2_5·a_1_2·a_7_12·a_7_13 + b_2_5·a_1_2·a_7_11·a_7_13 + b_2_54·a_1_1·a_1_2·a_7_12
       + b_2_54·a_1_0·a_1_2·a_7_12 + b_2_54·a_1_0·a_1_2·a_7_11
  153. b_8_16·a_9_20 + b_8_15·a_9_20 + b_2_5·b_8_16·a_7_12 − b_2_5·b_8_15·a_7_12
       − b_2_5·b_6_10·a_9_20 + b_2_52·b_6_10·a_7_12 + b_2_52·b_6_102·a_1_2
       + b_2_53·b_10_24·a_1_2 + b_2_54·b_8_17·a_1_2 − b_2_54·b_8_15·a_1_2 − b_2_57·a_3_8
       − a_1_2·a_7_12·a_9_20 − b_6_10·a_1_1·a_1_2·a_9_21 − b_2_5·a_1_2·a_7_12·a_7_13
       + b_2_54·a_1_1·a_1_2·a_7_12 − b_2_54·a_1_0·a_1_2·a_7_12
  154. b_10_24·a_7_11 + b_8_16·a_9_20 + b_8_15·a_9_20 + b_6_10·b_10_24·a_1_2 + b_6_102·a_5_9
       − b_2_5·b_6_10·a_9_20 − b_2_52·b_6_10·a_7_13 + b_2_52·b_6_10·a_7_12
       + b_2_52·b_6_102·a_1_2 − b_2_54·a_9_20 + b_2_54·b_8_16·a_1_2 − b_2_54·b_8_15·a_1_2
       − b_2_55·a_7_13 − b_2_55·a_7_11 − b_2_55·b_6_10·a_1_2 − b_2_57·a_3_8 + b_2_58·a_1_1
       − a_1_2·a_7_12·a_9_20 − b_2_54·a_1_1·a_1_2·a_7_12 − b_2_54·a_1_0·a_1_2·a_7_12
  155. b_10_24·a_7_12 − b_8_17·a_9_21 + b_8_17·a_9_20 − b_8_16·a_9_20 − b_8_15·a_9_20
       + b_6_10·b_10_24·a_1_2 + b_6_102·a_5_9 − b_2_5·b_8_16·a_7_12 − b_2_5·b_6_10·a_9_21
       + b_2_5·b_6_10·a_9_20 − b_2_5·b_6_10·b_8_17·a_1_2 − b_2_52·b_6_10·a_7_13
       + b_2_52·b_6_102·a_1_2 − b_2_54·a_9_21 + b_2_54·a_9_20 + b_2_54·b_8_16·a_1_2
       − b_2_54·b_8_15·a_1_2 − b_2_55·a_7_13 + b_2_55·a_7_12 + b_2_55·a_7_11
       − b_2_55·b_6_10·a_1_2 + b_2_58·a_1_1 + a_1_2·a_7_12·a_9_20
       − b_6_10·a_1_1·a_1_2·a_9_21 + b_2_5·a_1_2·a_7_12·a_7_13 + b_2_54·a_1_1·a_1_2·a_7_12
       − b_2_54·a_1_0·a_1_2·a_7_12 − b_2_54·a_1_0·a_1_2·a_7_11
  156.  − b_8_17·a_9_20 + b_8_16·a_9_20 + b_8_15·a_9_20 + b_6_10·a_11_25 + b_6_10·b_10_24·a_1_2
       + b_6_102·a_5_9 − b_2_5·b_8_16·a_7_12 + b_2_5·b_8_15·a_7_12 + b_2_5·b_6_10·a_9_21
       + b_2_5·b_6_10·a_9_20 − b_2_52·b_6_10·a_7_13 − b_2_52·b_6_10·a_7_12 + b_2_54·a_9_21
       + b_2_54·b_8_16·a_1_2 − b_2_54·b_8_15·a_1_2 − b_2_55·a_7_13 + b_2_55·a_7_11
       + b_2_55·b_6_10·a_1_2 − b_6_10·a_1_1·a_1_2·a_9_21 − b_2_5·a_1_2·a_7_12·a_7_13
       − b_2_5·a_1_2·a_7_11·a_7_13 + b_2_54·a_1_1·a_1_2·a_7_12 − b_2_54·a_1_0·a_1_2·a_7_11
  157. a_6_9·a_11_25 + b_6_10·a_1_1·a_1_2·a_9_21 + b_2_54·a_1_1·a_1_2·a_7_12
  158.  − b_8_16·a_9_20 − b_8_15·a_9_20 − b_2_5·b_8_16·a_7_12 − b_2_5·b_6_10·b_8_17·a_1_2
       + b_2_52·b_6_10·a_7_13 + b_2_52·b_6_10·a_7_12 + b_2_52·b_6_102·a_1_2
       + b_2_53·a_11_26 + b_2_54·a_9_20 − b_2_54·b_8_15·a_1_2 − b_2_55·a_7_13
       − b_2_55·a_7_12 + b_2_55·a_7_11 − b_2_55·b_6_10·a_1_2 + a_1_2·a_7_12·a_9_20
       + b_6_10·a_1_1·a_1_2·a_9_21 − b_2_5·a_1_2·a_7_12·a_7_13 − b_2_5·a_1_2·a_7_11·a_7_13
       + b_2_54·a_1_1·a_1_2·a_7_12 + b_2_54·a_1_0·a_1_2·a_7_11
  159.  − b_8_17·a_9_21 + b_6_10·a_11_26 − b_2_5·b_8_16·a_7_12 + b_2_5·b_8_15·a_7_12
       + b_2_5·b_6_10·a_9_21 + b_2_5·b_6_10·b_8_17·a_1_2 − b_2_52·b_6_10·a_7_13
       − b_2_52·b_6_10·a_7_12 − b_2_52·b_6_102·a_1_2 − b_2_54·a_9_20
       − b_2_54·b_8_16·a_1_2 − b_2_54·b_8_15·a_1_2 − b_2_55·a_7_13 − b_2_55·a_7_11
       − b_2_55·b_6_10·a_1_2 + b_2_57·a_3_8 − b_2_58·a_1_1 + a_1_2·a_7_12·a_9_20
       + b_6_10·a_1_1·a_1_2·a_9_21 − b_2_54·a_1_0·a_1_2·a_7_12
  160. a_6_9·a_11_26 + b_6_10·a_1_1·a_1_2·a_9_21 − b_2_54·a_1_1·a_1_2·a_7_12
       + b_2_54·a_1_0·a_1_2·a_7_12 + b_2_54·a_1_0·a_1_2·a_7_11
  161. a_12_22·a_5_9 − b_6_10·a_1_1·a_1_2·a_9_21 + b_2_54·a_1_1·a_1_2·a_7_12
       + b_2_54·a_1_0·a_1_2·a_7_12 + b_2_54·a_1_0·a_1_2·a_7_11
  162.  − b_8_17·b_10_24 − b_8_16·b_10_24 − b_8_15·b_10_24 + b_6_103 + b_2_5·b_6_10·b_10_24
       − b_2_52·b_6_10·b_8_17 + b_2_54·b_10_24 + b_2_55·b_8_15 + a_9_20·a_9_21
       + a_7_13·a_11_25 + b_6_102·a_1_2·a_5_9 + b_2_5·a_7_12·a_9_21 − b_2_5·a_7_12·a_9_20
       + b_2_5·b_6_10·a_1_2·a_9_21 − b_2_5·b_6_10·a_1_2·a_9_20 − b_2_52·b_6_10·a_1_2·a_7_13
       + b_2_54·a_1_2·a_9_21 − b_2_54·a_1_2·a_9_20 − b_2_55·a_1_2·a_7_12
       − b_2_55·a_1_2·a_7_11 + b_2_55·a_1_1·a_7_12 − b_2_55·a_1_0·a_7_12
       − b_2_55·a_1_0·a_7_11 − b_2_57·a_1_2·a_3_8
  163. b_8_17·b_10_24 − b_6_103 − b_2_52·b_6_10·b_8_17 − b_2_55·b_8_17 − b_2_55·b_8_15
       + b_2_56·b_6_10 + b_6_10·a_1_2·a_11_25 + b_6_102·a_1_2·a_5_9
       − b_2_5·b_6_10·a_1_2·a_9_21 − b_2_5·b_6_10·a_1_2·a_9_20 + b_2_52·a_7_11·a_7_13
       − b_2_54·a_1_2·a_9_20 + b_2_55·a_1_2·a_7_12 − b_2_55·a_1_2·a_7_11
       + b_2_57·a_1_2·a_3_8
  164.  − b_8_17·b_10_24 + b_6_103 + b_2_52·b_6_10·b_8_17 + b_2_55·b_8_17 + b_2_55·b_8_15
       − b_2_56·b_6_10 + a_7_11·a_11_25 + b_6_102·a_1_2·a_5_9 − b_2_5·a_7_12·a_9_21
       + b_2_5·b_6_10·a_1_2·a_9_21 + b_2_5·b_6_10·a_1_2·a_9_20 + b_2_52·b_6_10·a_1_2·a_7_13
       − b_2_52·b_6_10·a_1_2·a_7_12 + b_2_54·a_1_2·a_9_21 + b_2_55·a_1_2·a_7_13
       − b_2_55·a_1_2·a_7_12 + b_2_55·a_1_2·a_7_11 + b_2_55·a_1_1·a_7_12
       − b_2_55·a_1_0·a_7_12 − b_2_55·a_1_0·a_7_11 − b_2_58·a_1_1·a_1_2
  165.  − b_8_16·b_10_24 − b_8_15·b_10_24 + b_2_5·b_6_10·b_10_24 + b_2_52·b_6_10·b_8_17
       + b_2_54·b_10_24 − b_2_55·b_8_17 + b_2_56·b_6_10 + a_9_20·a_9_21 + a_7_12·a_11_25
       + b_6_102·a_1_2·a_5_9 − b_2_5·a_7_12·a_9_21 − b_2_5·a_7_12·a_9_20
       + b_2_5·b_8_16·a_1_2·a_7_12 + b_2_5·b_6_10·a_1_2·a_9_21 + b_2_52·a_7_12·a_7_13
       + b_2_52·a_7_11·a_7_13 − b_2_52·b_6_10·a_1_2·a_7_13 − b_2_52·b_6_10·a_1_2·a_7_12
       − b_2_54·a_1_2·a_9_21 − b_2_54·a_1_2·a_9_20 + b_2_55·a_1_2·a_7_12
       + b_2_55·a_1_2·a_7_11 − b_2_55·a_1_1·a_7_12 + b_2_55·a_1_0·a_7_12
       + b_2_55·a_1_0·a_7_11
  166.  − b_8_17·b_10_24 + b_8_16·b_10_24 − b_8_15·b_10_24 + b_6_103 + b_2_5·b_6_10·b_10_24
       + b_2_53·b_6_102 + b_2_54·b_10_24 − b_2_55·b_8_17 + b_2_55·b_8_16 + a_7_13·a_11_26
       − b_6_102·a_1_2·a_5_9 + b_2_5·a_7_12·a_9_21 + b_2_5·a_7_12·a_9_20
       + b_2_5·b_8_16·a_1_2·a_7_12 + b_2_5·b_6_10·a_1_2·a_9_21 − b_2_5·b_6_10·a_1_2·a_9_20
       + b_2_52·a_7_11·a_7_13 + b_2_52·b_6_10·a_1_2·a_7_13 + b_2_52·b_6_10·a_1_2·a_7_12
       − b_2_54·a_1_2·a_9_21 − b_2_54·a_1_2·a_9_20 − b_2_55·a_1_2·a_7_13
       − b_2_55·a_1_2·a_7_12 + b_2_55·a_1_2·a_7_11 + b_2_55·a_1_0·a_7_12
       − b_2_55·a_1_0·a_7_11 + b_2_57·a_1_2·a_3_8 + b_2_58·a_1_1·a_1_2
  167. b_2_5·a_7_12·a_9_21 − b_2_5·b_6_10·a_1_2·a_9_20 − b_2_52·a_7_12·a_7_13
       + b_2_52·b_6_10·a_1_2·a_7_13 − b_2_52·b_6_10·a_1_2·a_7_12 + b_2_53·a_1_2·a_11_26
       − b_2_54·a_1_2·a_9_21 + b_2_54·a_1_2·a_9_20 + b_2_55·a_1_2·a_7_11
       − b_2_57·a_1_2·a_3_8
  168. b_8_17·b_10_24 − b_8_16·b_10_24 + b_8_15·b_10_24 − b_6_103 − b_2_5·b_6_10·b_10_24
       − b_2_53·b_6_102 − b_2_54·b_10_24 + b_2_55·b_8_17 − b_2_55·b_8_16
       + b_6_10·a_1_1·a_11_26 + b_6_102·a_1_2·a_5_9 + b_2_5·a_7_12·a_9_21
       − b_2_5·a_7_12·a_9_20 + b_2_5·b_8_16·a_1_2·a_7_12 + b_2_5·b_6_10·a_1_2·a_9_21
       + b_2_5·b_6_10·a_1_2·a_9_20 + b_2_52·a_7_12·a_7_13 + b_2_52·a_7_11·a_7_13
       + b_2_52·b_6_10·a_1_2·a_7_12 + b_2_54·a_1_2·a_9_21 − b_2_54·a_1_2·a_9_20
       − b_2_55·a_1_2·a_7_13 − b_2_55·a_1_2·a_7_11 − b_2_55·a_1_0·a_7_11
       − b_2_57·a_1_2·a_3_8
  169. b_8_17·b_10_24 + b_8_15·b_10_24 − b_6_103 − b_2_5·b_6_10·b_10_24
       − b_2_52·b_6_10·b_8_17 + b_2_53·b_6_102 − b_2_54·b_10_24 − b_2_55·b_8_17
       + b_2_55·b_8_16 + b_2_55·b_8_15 + b_6_10·a_1_2·a_11_26 + b_6_102·a_1_2·a_5_9
       − b_2_5·a_7_12·a_9_20 + b_2_5·b_8_16·a_1_2·a_7_12 + b_2_5·b_6_10·a_1_2·a_9_21
       − b_2_52·a_7_12·a_7_13 + b_2_52·a_7_11·a_7_13 + b_2_52·b_6_10·a_1_2·a_7_13
       − b_2_54·a_1_2·a_9_21 + b_2_54·a_1_2·a_9_20 + b_2_55·a_1_2·a_7_12
       − b_2_55·a_1_2·a_7_11 + b_2_55·a_1_0·a_7_12 − b_2_55·a_1_0·a_7_11
       + b_2_57·a_1_2·a_3_8 − b_2_58·a_1_1·a_1_2
  170. b_8_17·b_10_24 + b_8_16·b_10_24 + b_8_15·b_10_24 − b_6_103 − b_2_5·b_6_10·b_10_24
       + b_2_52·b_6_10·b_8_17 − b_2_54·b_10_24 − b_2_55·b_8_15 + a_7_11·a_11_26
       + b_6_102·a_1_2·a_5_9 + b_2_5·a_7_12·a_9_21 + b_2_5·a_7_12·a_9_20
       − b_2_5·b_6_10·a_1_2·a_9_21 − b_2_52·a_7_12·a_7_13 + b_2_52·a_7_11·a_7_13
       − b_2_52·b_6_10·a_1_2·a_7_13 − b_2_52·b_6_10·a_1_2·a_7_12 − b_2_54·a_1_2·a_9_20
       + b_2_55·a_1_2·a_7_12 − b_2_55·a_1_1·a_7_12 − b_2_57·a_1_2·a_3_8
  171. b_8_17·b_10_24 + b_8_16·b_10_24 + b_8_15·b_10_24 − b_6_103 − b_2_5·b_6_10·b_10_24
       + b_2_52·b_6_10·b_8_17 − b_2_54·b_10_24 − b_2_55·b_8_15 + a_9_20·a_9_21
       + a_7_12·a_11_26 + b_6_102·a_1_2·a_5_9 + b_2_5·a_7_12·a_9_21 − b_2_5·a_7_12·a_9_20
       + b_2_5·b_8_16·a_1_2·a_7_12 + b_2_52·a_7_12·a_7_13 − b_2_52·a_7_11·a_7_13
       − b_2_52·b_6_10·a_1_2·a_7_12 − b_2_54·a_1_2·a_9_21 − b_2_55·a_1_2·a_7_13
       + b_2_55·a_1_2·a_7_12 + b_2_55·a_1_1·a_7_12 + b_2_55·a_1_0·a_7_12
       + b_2_55·a_1_0·a_7_11 + b_2_57·a_1_2·a_3_8 − b_2_58·a_1_1·a_1_2
  172. b_8_16·b_10_24 + b_8_15·b_10_24 − b_2_5·b_6_10·b_10_24 − b_2_52·b_6_10·b_8_17
       − b_2_54·b_10_24 + b_2_55·b_8_17 − b_2_56·b_6_10 + b_6_10·a_12_22 − a_9_20·a_9_21
       + b_6_102·a_1_2·a_5_9 − b_2_5·a_7_12·a_9_20 + b_2_5·b_8_16·a_1_2·a_7_12
       − b_2_5·b_6_10·a_1_2·a_9_21 + b_2_52·a_7_12·a_7_13 + b_2_52·b_6_10·a_1_2·a_7_13
       + b_2_52·b_6_10·a_1_2·a_7_12 + b_2_54·a_1_2·a_9_21 − b_2_54·a_1_2·a_9_20
       + b_2_55·a_1_2·a_7_13 − b_2_55·a_1_2·a_7_12 − b_2_55·a_1_1·a_7_12
       − b_2_55·a_1_0·a_7_12 − b_2_55·a_1_0·a_7_11 + b_2_57·a_1_2·a_3_8
  173. a_6_9·a_12_22
  174. a_1_1·a_17_34 + b_2_55·a_1_1·a_7_12 − b_2_55·a_1_0·a_7_12 − b_2_55·a_1_0·a_7_11
  175. a_1_0·a_17_34 + b_2_55·a_1_1·a_7_12 − b_2_55·a_1_0·a_7_12 − b_2_55·a_1_0·a_7_11
       − b_2_57·a_1_2·a_3_8
  176. b_10_24·a_9_20 + b_8_17·a_11_25 + b_8_16·a_11_25 + b_6_102·a_7_13 − b_6_102·a_7_12
       + b_6_103·a_1_1 − b_2_5·b_6_10·b_10_24·a_1_2 + b_2_52·b_6_10·a_9_21
       + b_2_52·b_6_10·a_9_20 − b_2_52·b_6_10·b_8_17·a_1_2 − b_2_53·b_6_10·a_7_13
       − b_2_53·b_6_102·a_1_2 + b_2_55·a_9_21 − b_2_55·a_9_20 + b_2_55·b_8_17·a_1_2
       + b_2_55·b_8_16·a_1_2 − b_2_55·b_8_15·a_1_2 + b_2_56·a_7_13 − b_2_56·b_6_10·a_1_2
       + b_2_58·a_3_8 − b_2_59·a_1_1 − b_2_5·a_1_2·a_7_12·a_9_20
       + b_2_52·a_1_2·a_7_11·a_7_13
  177. b_10_24·a_9_21 + b_10_24·a_9_20 + b_8_15·a_11_25 + b_6_102·a_7_13 + b_6_102·a_7_12
       + b_6_103·a_1_2 − b_6_103·a_1_1 + b_2_5·b_6_10·b_10_24·a_1_2 − b_2_52·b_8_16·a_7_12
       − b_2_52·b_6_10·a_9_21 + b_2_52·b_6_10·a_9_20 + b_2_52·b_6_10·b_8_17·a_1_2
       − b_2_53·b_6_10·a_7_13 − b_2_53·b_6_102·a_1_2 + b_2_54·b_10_24·a_1_2
       + b_2_55·a_9_21 + b_2_55·a_9_20 + b_2_55·b_8_16·a_1_2 + b_2_55·b_8_15·a_1_2
       − b_2_56·a_7_12 + b_2_56·a_7_11 − b_2_56·b_6_10·a_1_2 + b_2_58·a_3_8 + b_2_59·a_1_1
       + b_2_5·a_1_2·a_7_12·a_9_20 − b_2_52·a_1_2·a_7_12·a_7_13
       − b_2_55·a_1_1·a_1_2·a_7_12 + b_2_55·a_1_0·a_1_2·a_7_12
       + b_2_55·a_1_0·a_1_2·a_7_11
  178. b_10_24·a_9_21 + b_10_24·a_9_20 + b_6_102·a_7_13 + b_6_102·a_7_12 + b_6_103·a_1_2
       − b_6_103·a_1_1 − b_2_5·b_6_10·b_10_24·a_1_2 + b_2_52·b_6_10·b_8_17·a_1_2
       + b_2_53·b_6_102·a_1_2 + b_2_54·a_11_26 − b_2_55·a_9_21 − b_2_55·b_8_17·a_1_2
       + b_2_55·b_8_15·a_1_2 − b_2_56·a_7_13 − b_2_56·b_6_10·a_1_2 + b_2_58·a_3_8
       + b_2_59·a_1_1 − a_1_2·a_7_12·a_11_25 + b_2_5·a_1_2·a_7_12·a_9_20
       + b_2_52·a_1_2·a_7_12·a_7_13 − b_2_52·a_1_2·a_7_11·a_7_13
       − b_2_55·a_1_0·a_1_2·a_7_11
  179. b_10_24·a_9_21 − b_8_17·a_11_25 − b_6_102·a_7_12 + b_6_103·a_1_2 + b_6_103·a_1_1
       + b_2_52·b_8_16·a_7_12 − b_2_52·b_6_10·a_9_21 + b_2_52·b_6_10·a_9_20
       − b_2_53·b_6_10·a_7_13 − b_2_53·b_6_102·a_1_2 + b_2_54·b_10_24·a_1_2
       − b_2_55·a_9_20 − b_2_56·a_7_13 − b_2_56·a_7_12 + b_2_56·a_7_11
       − b_2_56·b_6_10·a_1_2 − b_2_58·a_3_8 − b_2_59·a_1_1 + b_6_10·a_1_1·a_1_2·a_11_26
       − b_2_5·a_1_2·a_7_12·a_9_20 − b_2_52·a_1_2·a_7_12·a_7_13
       + b_2_52·a_1_2·a_7_11·a_7_13 − b_2_55·a_1_0·a_1_2·a_7_12
       − b_2_55·a_1_0·a_1_2·a_7_11
  180. b_10_24·a_9_20 − b_6_102·a_7_13 + b_6_102·a_7_12 + b_6_103·a_1_2
       + b_2_5·b_6_10·a_11_26 − b_2_5·b_6_10·b_10_24·a_1_2 − b_2_52·b_6_10·a_9_20
       + b_2_52·b_6_10·b_8_17·a_1_2 − b_2_53·b_6_10·a_7_13 − b_2_53·b_6_10·a_7_12
       − b_2_53·b_6_102·a_1_2 + b_2_54·b_10_24·a_1_2 − b_2_55·a_9_20
       − b_2_55·b_8_17·a_1_2 − b_2_55·b_8_15·a_1_2 − b_2_56·a_7_13 − b_2_56·a_7_12
       + b_2_56·a_7_11 − b_2_56·b_6_10·a_1_2 − b_2_58·a_3_8 − a_1_2·a_7_12·a_11_25
       − b_2_5·a_1_2·a_7_12·a_9_20 + b_2_52·a_1_2·a_7_12·a_7_13
       − b_2_52·a_1_2·a_7_11·a_7_13 + b_2_55·a_1_0·a_1_2·a_7_12
  181. b_10_24·a_9_21 − b_10_24·a_9_20 + b_8_17·a_11_26 + b_8_17·a_11_25 + b_6_102·a_7_13
       + b_6_103·a_1_2 − b_6_103·a_1_1 − b_2_5·b_6_10·b_10_24·a_1_2 − b_2_52·b_6_10·a_9_21
       − b_2_52·b_6_10·b_8_17·a_1_2 + b_2_53·b_6_10·a_7_12 + b_2_54·b_10_24·a_1_2
       − b_2_55·a_9_21 − b_2_55·a_9_20 + b_2_55·b_8_15·a_1_2 + b_2_56·a_7_11
       + b_2_56·b_6_10·a_1_2 − b_2_59·a_1_1 + b_2_5·a_1_2·a_7_12·a_9_20
       − b_2_52·a_1_2·a_7_12·a_7_13 − b_2_55·a_1_0·a_1_2·a_7_12
       + b_2_55·a_1_0·a_1_2·a_7_11
  182. b_8_16·a_11_26 − b_2_52·b_6_10·a_9_21 + b_2_52·b_6_10·a_9_20
       + b_2_52·b_6_10·b_8_17·a_1_2 + b_2_53·b_6_10·a_7_12 − b_2_53·b_6_102·a_1_2
       + b_2_54·b_10_24·a_1_2 + b_2_55·a_9_21 − b_2_55·b_8_17·a_1_2 − b_2_55·b_8_15·a_1_2
       − b_2_56·a_7_13 − b_2_56·a_7_12 − b_2_56·b_6_10·a_1_2 + b_2_59·a_1_1
       + b_2_5·a_1_2·a_7_12·a_9_20 + b_2_52·a_1_2·a_7_12·a_7_13
       + b_2_52·a_1_2·a_7_11·a_7_13 + b_2_55·a_1_1·a_1_2·a_7_12
       − b_2_55·a_1_0·a_1_2·a_7_12
  183. b_10_24·a_9_21 − b_10_24·a_9_20 + b_8_15·a_11_26 − b_6_102·a_7_12 − b_6_103·a_1_2
       − b_6_103·a_1_1 + b_2_5·b_6_10·b_10_24·a_1_2 + b_2_52·b_8_16·a_7_12
       + b_2_52·b_6_10·a_9_20 + b_2_52·b_6_10·b_8_17·a_1_2 + b_2_53·b_6_10·a_7_12
       − b_2_53·b_6_102·a_1_2 − b_2_54·b_10_24·a_1_2 + b_2_55·a_9_21 + b_2_55·a_9_20
       + b_2_55·b_8_17·a_1_2 + b_2_55·b_8_16·a_1_2 + b_2_56·a_7_12 + b_2_59·a_1_1
       − a_1_2·a_7_12·a_11_25 − b_2_52·a_1_2·a_7_12·a_7_13 + b_2_52·a_1_2·a_7_11·a_7_13
       − b_2_55·a_1_1·a_1_2·a_7_12 + b_2_55·a_1_0·a_1_2·a_7_12
       − b_2_55·a_1_0·a_1_2·a_7_11
  184. a_12_22·a_7_13 − a_1_2·a_7_12·a_11_25 − b_2_5·a_1_2·a_7_12·a_9_20
       + b_2_52·a_1_2·a_7_12·a_7_13 + b_2_52·a_1_2·a_7_11·a_7_13
       − b_2_55·a_1_1·a_1_2·a_7_12 − b_2_55·a_1_0·a_1_2·a_7_12
       − b_2_55·a_1_0·a_1_2·a_7_11
  185.  − b_10_24·a_9_21 + b_8_17·a_11_25 + b_6_102·a_7_12 − b_6_103·a_1_2 − b_6_103·a_1_1
       − b_2_52·b_8_16·a_7_12 + b_2_52·b_6_10·a_9_21 − b_2_52·b_6_10·a_9_20
       + b_2_53·b_6_10·a_7_13 + b_2_53·b_6_102·a_1_2 − b_2_54·b_10_24·a_1_2
       + b_2_55·a_9_20 + b_2_56·a_7_13 + b_2_56·a_7_12 − b_2_56·a_7_11
       + b_2_56·b_6_10·a_1_2 + b_2_58·a_3_8 + b_2_59·a_1_1 + a_12_22·a_7_11
       − a_1_2·a_7_12·a_11_25 + b_2_5·a_1_2·a_7_12·a_9_20 − b_2_52·a_1_2·a_7_11·a_7_13
       − b_2_55·a_1_1·a_1_2·a_7_12
  186.  − b_10_24·a_9_21 + b_8_17·a_11_25 + b_6_102·a_7_12 − b_6_103·a_1_2 − b_6_103·a_1_1
       − b_2_52·b_8_16·a_7_12 + b_2_52·b_6_10·a_9_21 − b_2_52·b_6_10·a_9_20
       + b_2_53·b_6_10·a_7_13 + b_2_53·b_6_102·a_1_2 − b_2_54·b_10_24·a_1_2
       + b_2_55·a_9_20 + b_2_56·a_7_13 + b_2_56·a_7_12 − b_2_56·a_7_11
       + b_2_56·b_6_10·a_1_2 + b_2_58·a_3_8 + b_2_59·a_1_1 + a_12_22·a_7_12
       + b_2_55·a_1_1·a_1_2·a_7_12 − b_2_55·a_1_0·a_1_2·a_7_12
       − b_2_55·a_1_0·a_1_2·a_7_11
  187. a_2_2·a_17_34 − b_2_55·a_1_1·a_1_2·a_7_12
  188. a_2_3·a_17_34 + b_2_55·a_1_1·a_1_2·a_7_12 + b_2_55·a_1_0·a_1_2·a_7_12
       + b_2_55·a_1_0·a_1_2·a_7_11
  189. a_2_4·a_17_34 + b_2_55·a_1_0·a_1_2·a_7_12 + b_2_55·a_1_0·a_1_2·a_7_11
  190.  − b_10_24·a_9_21 + b_8_17·a_11_25 + b_6_102·a_7_12 − b_6_103·a_1_2 − b_6_103·a_1_1
       − b_2_52·b_8_16·a_7_12 + b_2_52·b_6_10·a_9_21 − b_2_52·b_6_10·a_9_20
       + b_2_53·b_6_10·a_7_13 + b_2_53·b_6_102·a_1_2 − b_2_54·b_10_24·a_1_2
       + b_2_55·a_9_20 + b_2_56·a_7_13 + b_2_56·a_7_12 − b_2_56·a_7_11
       + b_2_56·b_6_10·a_1_2 + b_2_58·a_3_8 + b_2_59·a_1_1 + a_18_27·a_1_1
       + b_2_5·a_1_2·a_7_12·a_9_20 + b_2_52·a_1_2·a_7_12·a_7_13
       − b_2_52·a_1_2·a_7_11·a_7_13 + b_2_55·a_1_0·a_1_2·a_7_12
       + b_2_55·a_1_0·a_1_2·a_7_11
  191. a_18_27·a_1_0 + b_2_55·a_1_1·a_1_2·a_7_12 + b_2_55·a_1_0·a_1_2·a_7_12
       − b_2_55·a_1_0·a_1_2·a_7_11
  192.  − b_10_242 + b_6_102·b_8_17 − b_2_52·b_6_10·b_10_24 − b_2_53·b_6_10·b_8_17
       − b_2_54·b_6_102 − b_2_55·b_10_24 + b_2_56·b_8_16 − b_2_56·b_8_15 − b_2_57·b_6_10
       + a_9_20·a_11_25 + b_6_102·a_1_1·a_7_12 − b_6_103·a_1_1·a_1_2 + b_2_52·a_7_12·a_9_20
       − b_2_52·b_6_10·a_1_2·a_9_21 − b_2_52·b_6_10·a_1_2·a_9_20 − b_2_55·a_1_2·a_9_21
       + b_2_56·a_1_2·a_7_13 + b_2_56·a_1_2·a_7_12 − b_2_56·a_1_2·a_7_11
       − b_2_56·a_1_0·a_7_12 − b_2_58·a_1_2·a_3_8 + b_2_59·a_1_1·a_1_2
  193.  − b_10_242 + b_6_102·b_8_17 − b_2_52·b_6_10·b_10_24 − b_2_53·b_6_10·b_8_17
       − b_2_54·b_6_102 − b_2_55·b_10_24 + b_2_56·b_8_16 − b_2_56·b_8_15 − b_2_57·b_6_10
       + b_6_102·a_1_2·a_7_13 − b_6_102·a_1_2·a_7_12 + b_6_102·a_1_1·a_7_12
       + b_6_103·a_1_1·a_1_2 − b_2_52·a_7_12·a_9_20 − b_2_52·b_6_10·a_1_2·a_9_21
       − b_2_52·b_6_10·a_1_2·a_9_20 + b_2_53·a_7_12·a_7_13 − b_2_53·a_7_11·a_7_13
       + b_2_53·b_6_10·a_1_2·a_7_12 + b_2_54·a_1_2·a_11_26 + b_2_55·a_1_2·a_9_21
       + b_2_55·a_1_2·a_9_20 + b_2_56·a_1_2·a_7_13 − b_2_56·a_1_2·a_7_12
       + b_2_56·a_1_2·a_7_11 + b_2_56·a_1_0·a_7_12 − b_2_56·a_1_0·a_7_11
       + b_2_58·a_1_2·a_3_8
  194. b_10_242 − b_6_102·b_8_17 + b_2_52·b_6_10·b_10_24 + b_2_53·b_6_10·b_8_17
       + b_2_54·b_6_102 + b_2_55·b_10_24 − b_2_56·b_8_16 + b_2_56·b_8_15 + b_2_57·b_6_10
       + a_9_21·a_11_25 − b_6_10·a_7_12·a_7_13 + b_6_102·a_1_2·a_7_12 + b_6_102·a_1_1·a_7_12
       + b_6_103·a_1_1·a_1_2 + b_2_5·b_6_10·a_1_2·a_11_26 + b_2_52·a_7_12·a_9_20
       − b_2_52·b_8_16·a_1_2·a_7_12 − b_2_53·b_6_10·a_1_2·a_7_13
       − b_2_53·b_6_10·a_1_2·a_7_12 + b_2_56·a_1_2·a_7_12 − b_2_56·a_1_2·a_7_11
       + b_2_56·a_1_1·a_7_12 − b_2_56·a_1_0·a_7_12 + b_2_56·a_1_0·a_7_11
       + b_2_58·a_1_2·a_3_8 − b_2_59·a_1_1·a_1_2
  195.  − b_10_242 + b_6_102·b_8_17 − b_2_52·b_6_10·b_10_24 − b_2_53·b_6_10·b_8_17
       − b_2_54·b_6_102 − b_2_55·b_10_24 + b_2_56·b_8_16 − b_2_56·b_8_15 − b_2_57·b_6_10
       + a_9_21·a_11_25 + a_9_20·a_11_26 − b_6_102·a_1_2·a_7_12 − b_6_103·a_1_1·a_1_2
       − b_2_52·a_7_12·a_9_20 − b_2_52·b_8_16·a_1_2·a_7_12 + b_2_52·b_6_10·a_1_2·a_9_21
       + b_2_53·a_7_12·a_7_13 − b_2_53·b_6_10·a_1_2·a_7_13 − b_2_55·a_1_2·a_9_21
       + b_2_55·a_1_2·a_9_20 − b_2_56·a_1_2·a_7_13 + b_2_56·a_1_2·a_7_12
       + b_2_56·a_1_1·a_7_12 + b_2_56·a_1_0·a_7_11 − b_2_58·a_1_2·a_3_8
       − b_2_59·a_1_1·a_1_2
  196. b_10_242 − b_6_102·b_8_17 + b_2_52·b_6_10·b_10_24 + b_2_53·b_6_10·b_8_17
       + b_2_54·b_6_102 + b_2_55·b_10_24 − b_2_56·b_8_16 + b_2_56·b_8_15 + b_2_57·b_6_10
       + a_9_21·a_11_26 + a_9_21·a_11_25 − b_6_10·a_7_12·a_7_13 + b_6_102·a_1_2·a_7_12
       + b_6_102·a_1_1·a_7_12 + b_6_103·a_1_1·a_1_2 − b_2_52·b_8_16·a_1_2·a_7_12
       + b_2_52·b_6_10·a_1_2·a_9_21 − b_2_53·a_7_11·a_7_13 − b_2_53·b_6_10·a_1_2·a_7_13
       − b_2_53·b_6_10·a_1_2·a_7_12 + b_2_55·a_1_2·a_9_20 + b_2_56·a_1_2·a_7_13
       − b_2_56·a_1_2·a_7_11 + b_2_56·a_1_1·a_7_12 + b_2_56·a_1_0·a_7_12
       + b_2_58·a_1_2·a_3_8 + b_2_59·a_1_1·a_1_2
  197.  − b_10_242 + b_6_102·b_8_17 − b_2_52·b_6_10·b_10_24 − b_2_53·b_6_10·b_8_17
       − b_2_54·b_6_102 − b_2_55·b_10_24 + b_2_56·b_8_16 − b_2_56·b_8_15 − b_2_57·b_6_10
       + b_8_17·a_12_22 − a_9_21·a_11_25 − b_6_10·a_7_12·a_7_13 + b_6_102·a_1_2·a_7_12
       + b_2_52·a_7_12·a_9_20 − b_2_52·b_8_16·a_1_2·a_7_12 − b_2_52·b_6_10·a_1_2·a_9_21
       + b_2_53·a_7_11·a_7_13 + b_2_53·b_6_10·a_1_2·a_7_13 − b_2_55·a_1_2·a_9_20
       − b_2_56·a_1_2·a_7_13 + b_2_56·a_1_2·a_7_11 + b_2_56·a_1_0·a_7_12
       − b_2_56·a_1_0·a_7_11 + b_2_58·a_1_2·a_3_8 − b_2_59·a_1_1·a_1_2
  198. b_10_242 − b_6_102·b_8_17 + b_2_52·b_6_10·b_10_24 + b_2_53·b_6_10·b_8_17
       + b_2_54·b_6_102 + b_2_55·b_10_24 − b_2_56·b_8_16 + b_2_56·b_8_15 + b_2_57·b_6_10
       + b_8_16·a_12_22 − b_6_102·a_1_2·a_7_13 + b_6_102·a_1_2·a_7_12
       − b_6_102·a_1_1·a_7_12 − b_6_103·a_1_1·a_1_2 + b_2_52·b_8_16·a_1_2·a_7_12
       + b_2_52·b_6_10·a_1_2·a_9_21 − b_2_52·b_6_10·a_1_2·a_9_20 − b_2_53·a_7_12·a_7_13
       − b_2_53·a_7_11·a_7_13 + b_2_53·b_6_10·a_1_2·a_7_12 + b_2_56·a_1_2·a_7_11
       − b_2_56·a_1_1·a_7_12 − b_2_56·a_1_0·a_7_12 + b_2_56·a_1_0·a_7_11
       − b_2_58·a_1_2·a_3_8
  199. b_8_15·a_12_22 + a_9_21·a_11_25 − b_6_10·a_7_12·a_7_13 + b_6_102·a_1_2·a_7_13
       − b_6_102·a_1_1·a_7_12 − b_6_103·a_1_1·a_1_2 − b_2_52·b_6_10·a_1_2·a_9_21
       + b_2_52·b_6_10·a_1_2·a_9_20 + b_2_53·a_7_12·a_7_13 − b_2_53·a_7_11·a_7_13
       − b_2_53·b_6_10·a_1_2·a_7_13 + b_2_53·b_6_10·a_1_2·a_7_12 − b_2_55·a_1_2·a_9_21
       − b_2_55·a_1_2·a_9_20 + b_2_56·a_1_2·a_7_12 − b_2_56·a_1_2·a_7_11
       + b_2_56·a_1_1·a_7_12 − b_2_58·a_1_2·a_3_8 + b_2_59·a_1_1·a_1_2
  200. a_3_8·a_17_34 + b_2_58·a_1_2·a_3_8
  201. a_2_2·a_18_27
  202. a_2_3·a_18_27
  203. a_2_4·a_18_27
  204. a_1_1·a_19_41 − b_6_102·a_1_1·a_7_12 − b_6_103·a_1_1·a_1_2 + b_2_56·a_1_1·a_7_12
  205. a_1_0·a_19_41 − b_2_56·a_1_1·a_7_12 − b_2_56·a_1_0·a_7_12 + b_2_58·a_1_2·a_3_8
       + b_2_59·a_1_1·a_1_2


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Data used for Benson′s test

  • The computation is incomplete, Benson′s criterion does not apply up to degree 20.
  • The following will eventually be a filter regular homogeneous system of parameters:
    1. c_18_37, a Duflot regular element of degree 18
    2. b_6_102 + b_2_52·b_8_17 + b_2_52·b_8_15 + b_2_53·b_6_10 + b_2_56, an element of degree 12
    3. b_2_5, an element of degree 2


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. a_2_20, an element of degree 2
  5. a_2_30, an element of degree 2
  6. a_2_40, an element of degree 2
  7. b_2_50, an element of degree 2
  8. a_3_80, an element of degree 3
  9. a_5_90, an element of degree 5
  10. a_6_90, an element of degree 6
  11. b_6_100, an element of degree 6
  12. a_7_110, an element of degree 7
  13. a_7_120, an element of degree 7
  14. a_7_130, an element of degree 7
  15. b_8_150, an element of degree 8
  16. b_8_160, an element of degree 8
  17. b_8_170, an element of degree 8
  18. a_9_200, an element of degree 9
  19. a_9_210, an element of degree 9
  20. b_10_240, an element of degree 10
  21. a_11_250, an element of degree 11
  22. a_11_260, an element of degree 11
  23. a_12_220, an element of degree 12
  24. a_17_340, an element of degree 17
  25. a_18_270, an element of degree 18
  26. c_18_37 − c_2_09, an element of degree 18
  27. a_19_410, an element of degree 19
  28. a_20_360, an element of degree 20

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_2a_1_1, an element of degree 1
  4. a_2_20, an element of degree 2
  5. a_2_30, an element of degree 2
  6. a_2_40, an element of degree 2
  7. b_2_5c_2_4, an element of degree 2
  8. a_3_80, an element of degree 3
  9. a_5_90, an element of degree 5
  10. a_6_90, an element of degree 6
  11. b_6_10 − c_2_53, an element of degree 6
  12. a_7_11c_2_53·a_1_1 − c_2_43·a_1_2, an element of degree 7
  13. a_7_12c_2_53·a_1_2 − c_2_53·a_1_1 + c_2_43·a_1_2, an element of degree 7
  14. a_7_13c_2_53·a_1_2 − c_2_53·a_1_1 + c_2_4·c_2_52·a_1_1 + c_2_42·c_2_5·a_1_2, an element of degree 7
  15. b_8_15 − c_2_53·a_1_1·a_1_2 − c_2_4·c_2_53 + c_2_43·c_2_5, an element of degree 8
  16. b_8_16 − c_2_53·a_1_1·a_1_2 + c_2_42·c_2_5·a_1_1·a_1_2 − c_2_43·a_1_1·a_1_2
       + c_2_42·c_2_52, an element of degree 8
  17. b_8_17c_2_53·a_1_1·a_1_2 + c_2_42·c_2_5·a_1_1·a_1_2 + c_2_43·a_1_1·a_1_2 + c_2_54
       − c_2_4·c_2_53 + c_2_42·c_2_52 − c_2_43·c_2_5, an element of degree 8
  18. a_9_20 − c_2_54·a_1_1 − c_2_4·c_2_53·a_1_2 − c_2_42·c_2_52·a_1_2 − c_2_42·c_2_52·a_1_1
       + c_2_43·c_2_5·a_1_2 − c_2_43·c_2_5·a_1_1 + c_2_44·a_1_2, an element of degree 9
  19. a_9_21 − c_2_54·a_1_2 + c_2_54·a_1_1 − c_2_4·c_2_53·a_1_2 − c_2_42·c_2_52·a_1_2
       − c_2_42·c_2_52·a_1_1 + c_2_43·c_2_5·a_1_2 + c_2_43·c_2_5·a_1_1 + c_2_44·a_1_2, an element of degree 9
  20. b_10_24c_2_54·a_1_1·a_1_2 − c_2_4·c_2_53·a_1_1·a_1_2 + c_2_42·c_2_52·a_1_1·a_1_2
       + c_2_43·c_2_5·a_1_1·a_1_2 − c_2_55 − c_2_4·c_2_54 − c_2_42·c_2_53
       − c_2_44·c_2_5, an element of degree 10
  21. a_11_25 − c_2_55·a_1_1 − c_2_4·c_2_54·a_1_2 + c_2_4·c_2_54·a_1_1 + c_2_42·c_2_53·a_1_2
       + c_2_42·c_2_53·a_1_1 − c_2_44·c_2_5·a_1_2 + c_2_44·c_2_5·a_1_1, an element of degree 11
  22. a_11_26c_2_55·a_1_2 − c_2_55·a_1_1 + c_2_4·c_2_54·a_1_2 − c_2_4·c_2_54·a_1_1
       − c_2_42·c_2_53·a_1_1 + c_2_43·c_2_52·a_1_2 + c_2_43·c_2_52·a_1_1
       + c_2_44·c_2_5·a_1_2 − c_2_44·c_2_5·a_1_1 + c_2_45·a_1_2, an element of degree 11
  23. a_12_22c_2_55·a_1_1·a_1_2 + c_2_4·c_2_54·a_1_1·a_1_2 − c_2_42·c_2_53·a_1_1·a_1_2
       + c_2_43·c_2_52·a_1_1·a_1_2 − c_2_44·c_2_5·a_1_1·a_1_2, an element of degree 12
  24. a_17_34c_2_4·c_2_57·a_1_2 + c_2_4·c_2_57·a_1_1 − c_2_42·c_2_56·a_1_2
       − c_2_42·c_2_56·a_1_1 − c_2_42·c_2_56·a_1_0 + c_2_43·c_2_55·a_1_1
       + c_2_44·c_2_54·a_1_2 + c_2_44·c_2_54·a_1_1 − c_2_44·c_2_54·a_1_0
       + c_2_45·c_2_53·a_1_1 + c_2_46·c_2_52·a_1_2 − c_2_46·c_2_52·a_1_0
       + c_2_47·c_2_5·a_1_2 + c_2_47·c_2_5·a_1_1 + c_2_3·c_2_4·c_2_56·a_1_1
       − c_2_3·c_2_43·c_2_54·a_1_1 − c_2_3·c_2_44·c_2_53·a_1_2
       + c_2_3·c_2_46·c_2_5·a_1_2 − c_2_33·c_2_4·c_2_54·a_1_1
       + c_2_33·c_2_42·c_2_53·a_1_2 + c_2_33·c_2_43·c_2_52·a_1_1
       − c_2_33·c_2_44·c_2_5·a_1_2, an element of degree 17
  25. a_18_27c_2_58·a_1_1·a_1_2 − c_2_4·c_2_57·a_1_1·a_1_2 + c_2_42·c_2_56·a_1_1·a_1_2
       − c_2_42·c_2_56·a_1_0·a_1_2 − c_2_44·c_2_54·a_1_0·a_1_2
       + c_2_45·c_2_53·a_1_1·a_1_2 − c_2_46·c_2_52·a_1_1·a_1_2
       − c_2_46·c_2_52·a_1_0·a_1_2 + c_2_48·a_1_1·a_1_2 + c_2_3·c_2_4·c_2_56·a_1_1·a_1_2
       − c_2_3·c_2_43·c_2_54·a_1_1·a_1_2 − c_2_33·c_2_4·c_2_54·a_1_1·a_1_2
       + c_2_33·c_2_43·c_2_52·a_1_1·a_1_2, an element of degree 18
  26. c_18_37c_2_4·c_2_57·a_1_1·a_1_2 − c_2_42·c_2_56·a_1_1·a_1_2
       − c_2_42·c_2_56·a_1_0·a_1_2 − c_2_42·c_2_56·a_1_0·a_1_1
       + c_2_43·c_2_55·a_1_1·a_1_2 − c_2_44·c_2_54·a_1_1·a_1_2
       − c_2_44·c_2_54·a_1_0·a_1_2 − c_2_44·c_2_54·a_1_0·a_1_1
       − c_2_45·c_2_53·a_1_1·a_1_2 − c_2_46·c_2_52·a_1_0·a_1_2
       − c_2_46·c_2_52·a_1_0·a_1_1 + c_2_3·c_2_4·c_2_56·a_1_1·a_1_2
       − c_2_3·c_2_43·c_2_54·a_1_1·a_1_2 + c_2_3·c_2_44·c_2_53·a_1_1·a_1_2
       − c_2_3·c_2_46·c_2_5·a_1_1·a_1_2 − c_2_33·c_2_4·c_2_54·a_1_1·a_1_2
       − c_2_33·c_2_42·c_2_53·a_1_1·a_1_2 + c_2_33·c_2_43·c_2_52·a_1_1·a_1_2
       + c_2_33·c_2_44·c_2_5·a_1_1·a_1_2 + c_2_59 − c_2_4·c_2_58 + c_2_44·c_2_55
       − c_2_45·c_2_54 + c_2_47·c_2_52 − c_2_48·c_2_5 − c_2_3·c_2_42·c_2_56
       − c_2_3·c_2_44·c_2_54 − c_2_3·c_2_46·c_2_52 + c_2_33·c_2_56
       + c_2_33·c_2_42·c_2_54 + c_2_33·c_2_44·c_2_52 + c_2_33·c_2_46 − c_2_39, an element of degree 18
  27. a_19_41 − c_2_42·c_2_56·a_1_0·a_1_1·a_1_2 − c_2_44·c_2_54·a_1_0·a_1_1·a_1_2
       − c_2_46·c_2_52·a_1_0·a_1_1·a_1_2 + c_2_59·a_1_2 + c_2_59·a_1_1
       + c_2_4·c_2_58·a_1_2 + c_2_4·c_2_58·a_1_1 − c_2_42·c_2_57·a_1_2
       − c_2_42·c_2_57·a_1_1 + c_2_42·c_2_57·a_1_0 + c_2_43·c_2_56·a_1_1
       + c_2_44·c_2_55·a_1_2 + c_2_44·c_2_55·a_1_1 + c_2_44·c_2_55·a_1_0
       + c_2_45·c_2_54·a_1_2 − c_2_45·c_2_54·a_1_1 + c_2_46·c_2_53·a_1_2
       + c_2_46·c_2_53·a_1_1 + c_2_46·c_2_53·a_1_0 − c_2_47·c_2_52·a_1_1
       + c_2_48·c_2_5·a_1_2 + c_2_49·a_1_2 − c_2_3·c_2_4·c_2_57·a_1_1
       + c_2_3·c_2_43·c_2_55·a_1_1 + c_2_3·c_2_44·c_2_54·a_1_2
       − c_2_3·c_2_46·c_2_52·a_1_2 + c_2_33·c_2_4·c_2_55·a_1_1
       − c_2_33·c_2_42·c_2_54·a_1_2 − c_2_33·c_2_43·c_2_53·a_1_1
       + c_2_33·c_2_44·c_2_52·a_1_2, an element of degree 19
  28. a_20_36c_2_59·a_1_1·a_1_2 + c_2_42·c_2_57·a_1_0·a_1_2 − c_2_42·c_2_57·a_1_0·a_1_1
       − c_2_43·c_2_56·a_1_1·a_1_2 + c_2_43·c_2_56·a_1_0·a_1_2
       − c_2_43·c_2_56·a_1_0·a_1_1 + c_2_44·c_2_55·a_1_1·a_1_2
       + c_2_44·c_2_55·a_1_0·a_1_2 − c_2_44·c_2_55·a_1_0·a_1_1
       − c_2_45·c_2_54·a_1_1·a_1_2 + c_2_45·c_2_54·a_1_0·a_1_2
       − c_2_45·c_2_54·a_1_0·a_1_1 + c_2_46·c_2_53·a_1_1·a_1_2
       + c_2_46·c_2_53·a_1_0·a_1_2 − c_2_46·c_2_53·a_1_0·a_1_1
       + c_2_47·c_2_52·a_1_1·a_1_2 + c_2_47·c_2_52·a_1_0·a_1_2
       − c_2_47·c_2_52·a_1_0·a_1_1 + c_2_49·a_1_1·a_1_2 − c_2_3·c_2_4·c_2_57·a_1_1·a_1_2
       − c_2_3·c_2_42·c_2_56·a_1_1·a_1_2 + c_2_3·c_2_43·c_2_55·a_1_1·a_1_2
       − c_2_3·c_2_44·c_2_54·a_1_1·a_1_2 + c_2_3·c_2_45·c_2_53·a_1_1·a_1_2
       − c_2_3·c_2_46·c_2_52·a_1_1·a_1_2 − c_2_3·c_2_47·c_2_5·a_1_1·a_1_2
       + c_2_33·c_2_4·c_2_55·a_1_1·a_1_2 + c_2_33·c_2_43·c_2_53·a_1_1·a_1_2
       + c_2_33·c_2_45·c_2_5·a_1_1·a_1_2, an element of degree 20


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009