Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 51 of order 243
General information on the group
- The group is also known as 81gp7xC3, the Direct product 81gp7 x C_3.
- The group has 3 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
1 |
| (t − 1)4 · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 18 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- b_2_4, an element of degree 2
- c_2_5, a Duflot regular element of degree 2
- a_3_8, a nilpotent element of degree 3
- a_3_9, a nilpotent element of degree 3
- a_3_10, a nilpotent element of degree 3
- a_4_16, a nilpotent element of degree 4
- b_4_17, an element of degree 4
- a_5_25, a nilpotent element of degree 5
- a_5_26, a nilpotent element of degree 5
- a_6_36, a nilpotent element of degree 6
- b_6_37, an element of degree 6
- c_6_38, a Duflot regular element of degree 6
- a_7_53, a nilpotent element of degree 7
Ring relations
There are 9 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_82, a_3_92, a_3_102, a_5_252, a_5_262, a_7_532
Apart from that, there are 80 minimal relations of maximal degree 13:
- a_1_0·a_1_1
- a_2_3·a_1_1
- a_2_3·a_1_0
- b_2_2·a_1_1
- b_2_4·a_1_0
- a_2_32
- a_2_3·b_2_2
- b_2_2·b_2_4
- − a_2_3·b_2_4 + a_1_1·a_3_8
- a_1_0·a_3_8
- a_1_1·a_3_9
- a_1_0·a_3_10
- b_2_2·a_3_8
- a_2_3·a_3_8
- a_2_3·a_3_9
- b_2_2·a_3_10
- − b_2_4·a_3_9 + a_2_3·a_3_10
- − b_2_4·a_3_9 + a_4_16·a_1_1
- a_4_16·a_1_0
- b_4_17·a_1_0
- a_3_8·a_3_9
- a_3_9·a_3_10
- b_2_2·a_4_16
- a_2_3·a_4_16
- b_2_2·b_4_17
- − b_2_4·a_4_16 + a_2_3·b_4_17 + a_3_8·a_3_10
- − b_2_4·a_4_16 + a_3_8·a_3_10 + a_1_1·a_5_25
- a_1_0·a_5_25
- a_1_0·a_5_26
- a_4_16·a_3_9
- a_4_16·a_3_8
- b_4_17·a_3_9 − a_4_16·a_3_10
- b_2_2·a_5_25
- a_2_3·a_5_25
- b_2_2·a_5_26
- − a_4_16·a_3_10 + a_2_3·a_5_26
- a_6_36·a_1_1 − a_4_16·a_3_10
- a_6_36·a_1_0
- b_6_37·a_1_1 + b_4_17·a_3_8 − b_2_4·a_5_25
- b_6_37·a_1_0
- a_4_162
- a_3_9·a_5_25
- a_3_9·a_5_26
- − a_4_16·b_4_17 + a_3_8·a_5_26
- a_3_8·a_5_25 − b_4_17·a_1_1·a_3_10 + b_2_4·a_1_1·a_5_26 + b_2_4·a_1_1·a_5_25
- b_2_2·a_6_36
- b_2_4·a_6_36 + a_3_10·a_5_25 + a_3_8·a_5_25
- a_2_3·a_6_36
- b_2_2·b_6_37
- a_2_3·b_6_37 + a_3_8·a_5_25
- a_4_16·b_4_17 + a_3_10·a_5_25 + a_3_8·a_5_25 + a_1_1·a_7_53
- a_1_0·a_7_53
- a_4_16·a_5_26
- a_4_16·a_5_25 + a_1_1·a_3_10·a_5_26 − a_1_1·a_3_8·a_5_26
- a_6_36·a_3_9
- a_6_36·a_3_8 + a_4_16·a_5_25
- a_6_36·a_3_10 − a_4_16·a_5_25
- b_6_37·a_3_9 − a_4_16·a_5_25
- b_6_37·a_3_8 − b_4_172·a_1_1 + b_2_4·b_4_17·a_3_10 − b_2_4·b_4_17·a_3_8
− b_2_42·a_5_26
- b_2_2·a_7_53
- − b_6_37·a_3_10 + b_4_17·a_5_25 − b_4_172·a_1_1 + b_2_4·a_7_53 + b_2_4·b_4_17·a_3_10
− b_2_4·b_4_17·a_3_8 − b_2_42·a_5_26
- − a_4_16·a_5_25 + a_2_3·a_7_53
- a_4_16·a_6_36
- b_4_17·a_6_36 − a_5_25·a_5_26 − c_6_38·a_1_1·a_3_8
- a_4_16·b_6_37 − b_4_17·a_1_1·a_5_26 + b_2_4·a_3_10·a_5_26 − b_2_4·a_3_8·a_5_26
- a_3_9·a_7_53
- a_3_8·a_7_53 − b_4_17·a_1_1·a_5_26 + b_2_4·a_3_10·a_5_26 − b_2_4·a_3_8·a_5_26
- − a_5_25·a_5_26 + a_3_10·a_7_53 + b_4_17·a_1_1·a_5_26 − b_2_4·a_3_10·a_5_26
+ b_2_4·a_3_8·a_5_26 − c_6_38·a_1_1·a_3_8
- a_6_36·a_5_25
- a_6_36·a_5_26 − a_2_3·c_6_38·a_3_10
- b_6_37·a_5_25 + b_4_172·a_3_10 + b_4_172·a_3_8 − b_2_4·b_4_17·a_5_26
+ b_2_4·b_4_17·a_5_25 + b_2_42·c_6_38·a_1_1
- a_4_16·a_7_53
- − b_6_37·a_5_26 + b_4_17·a_7_53 − b_2_4·c_6_38·a_3_8
- a_6_362
- b_6_372 + b_4_173 + b_2_4·b_4_17·b_6_37 + b_2_43·c_6_38
- − a_6_36·b_6_37 + a_5_25·a_7_53
- − a_6_36·b_6_37 − b_4_17·a_3_10·a_5_26 + b_4_17·a_1_1·a_7_53 + b_2_4·a_3_10·a_7_53
+ b_2_4·b_4_17·a_1_1·a_5_26 − b_2_42·a_3_10·a_5_26 + b_2_42·a_3_8·a_5_26 − b_2_4·c_6_38·a_1_1·a_3_10 − b_2_4·c_6_38·a_1_1·a_3_8
- a_5_26·a_7_53 + c_6_38·a_3_8·a_3_10 + c_6_38·a_1_1·a_5_25
- a_6_36·a_7_53
- b_6_37·a_7_53 + b_4_172·a_5_26 + b_2_4·b_4_17·a_7_53 − b_2_4·b_4_17·c_6_38·a_1_1
+ b_2_42·c_6_38·a_3_10 + b_2_42·c_6_38·a_3_8
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_5, a Duflot regular element of degree 2
- c_6_38, a Duflot regular element of degree 6
- b_4_173 − b_2_42·b_4_172 − b_2_46 − b_2_26 + b_2_43·c_6_38, an element of degree 12
- b_2_4, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 16, 18].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 4.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_2_5 → c_2_1, an element of degree 2
- a_3_8 → 0, an element of degree 3
- a_3_9 → 0, an element of degree 3
- a_3_10 → 0, an element of degree 3
- a_4_16 → 0, an element of degree 4
- b_4_17 → 0, an element of degree 4
- a_5_25 → 0, an element of degree 5
- a_5_26 → 0, an element of degree 5
- a_6_36 → 0, an element of degree 6
- b_6_37 → 0, an element of degree 6
- c_6_38 → c_2_23, an element of degree 6
- a_7_53 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_2 → c_2_5, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- a_3_8 → 0, an element of degree 3
- a_3_9 → − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_3_10 → 0, an element of degree 3
- a_4_16 → 0, an element of degree 4
- b_4_17 → 0, an element of degree 4
- a_5_25 → 0, an element of degree 5
- a_5_26 → 0, an element of degree 5
- a_6_36 → 0, an element of degree 6
- b_6_37 → 0, an element of degree 6
- c_6_38 → − c_2_4·c_2_52 + c_2_43, an element of degree 6
- a_7_53 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_3 → − a_1_2·a_1_3, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_4 → c_2_8, an element of degree 2
- c_2_5 → c_2_6, an element of degree 2
- a_3_8 → c_2_9·a_1_2 − c_2_8·a_1_3, an element of degree 3
- a_3_9 → − a_1_1·a_1_2·a_1_3, an element of degree 3
- a_3_10 → − c_2_9·a_1_3 − c_2_9·a_1_2 − c_2_8·a_1_3 + c_2_8·a_1_1 + c_2_7·a_1_2, an element of degree 3
- a_4_16 → − c_2_9·a_1_1·a_1_2 + c_2_8·a_1_1·a_1_3 − c_2_7·a_1_2·a_1_3, an element of degree 4
- b_4_17 → − c_2_92 + c_2_8·c_2_9 − c_2_7·c_2_8, an element of degree 4
- a_5_25 → c_2_92·a_1_3 − c_2_8·c_2_9·a_1_3 − c_2_7·c_2_9·a_1_2 + c_2_7·c_2_8·a_1_3
− c_2_7·c_2_8·a_1_2, an element of degree 5
- a_5_26 → − c_2_92·a_1_1 + c_2_8·c_2_9·a_1_1 + c_2_7·c_2_9·a_1_3 + c_2_7·c_2_9·a_1_2
+ c_2_7·c_2_8·a_1_3 − c_2_7·c_2_8·a_1_1 + c_2_72·a_1_2, an element of degree 5
- a_6_36 → − c_2_92·a_1_1·a_1_3 + c_2_8·c_2_9·a_1_1·a_1_3 + c_2_7·c_2_9·a_1_2·a_1_3
+ c_2_7·c_2_9·a_1_1·a_1_2 − c_2_7·c_2_8·a_1_2·a_1_3 − c_2_7·c_2_8·a_1_1·a_1_3 + c_2_7·c_2_8·a_1_1·a_1_2 − c_2_72·a_1_2·a_1_3, an element of degree 6
- b_6_37 → c_2_93 − c_2_8·c_2_92 − c_2_7·c_2_82, an element of degree 6
- c_6_38 → − c_2_7·c_2_92 + c_2_7·c_2_8·c_2_9 + c_2_72·c_2_8 + c_2_73, an element of degree 6
- a_7_53 → c_2_93·a_1_1 − c_2_8·c_2_92·a_1_1 − c_2_7·c_2_92·a_1_3 − c_2_7·c_2_92·a_1_2
− c_2_7·c_2_8·c_2_9·a_1_3 + c_2_7·c_2_8·c_2_9·a_1_2 − c_2_7·c_2_82·a_1_3 − c_2_7·c_2_82·a_1_1 − c_2_72·c_2_9·a_1_2 + c_2_72·c_2_8·a_1_3 + c_2_72·c_2_8·a_1_2, an element of degree 7
|