Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 41 of order 243
General information on the group
- The group has 3 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 2) · (t5 + t3 + 1/2·t + 1/2) |
| (t + 1) · (t − 1)3 · (t2 − t + 1)2 · (t2 + t + 1)2 |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 20 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_2_3, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- b_4_7, an element of degree 4
- a_5_5, a nilpotent element of degree 5
- a_5_6, a nilpotent element of degree 5
- a_5_7, a nilpotent element of degree 5
- a_5_8, a nilpotent element of degree 5
- a_5_9, a nilpotent element of degree 5
- b_6_11, an element of degree 6
- c_6_12, a Duflot regular element of degree 6
- c_6_13, a Duflot regular element of degree 6
- a_7_16, a nilpotent element of degree 7
- a_7_17, a nilpotent element of degree 7
- a_9_23, a nilpotent element of degree 9
Ring relations
There are 15 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_22, a_3_32, a_3_42, a_3_52, a_5_52, a_5_62, a_5_72, a_5_82, a_5_92, a_7_162, a_7_172, a_9_232
Apart from that, there are 125 minimal relations of maximal degree 16:
- a_1_0·a_1_1·a_1_2
- b_2_3·a_1_0
- a_1_0·a_3_2
- a_1_1·a_3_3 − a_1_1·a_3_2
- a_1_1·a_3_2 + a_1_0·a_3_3
- a_1_2·a_3_3 − a_1_2·a_3_2 + a_1_1·a_3_4
- a_1_2·a_3_2 + a_1_1·a_3_2 + a_1_0·a_3_4
- a_1_2·a_3_4 − a_1_2·a_3_3 + a_1_2·a_3_2
- a_1_0·a_3_5
- a_1_0·a_1_1·a_3_4
- b_2_3·a_3_5
- − b_2_3·a_3_2 + a_1_1·a_1_2·a_3_5
- b_4_7·a_1_1 − b_2_3·a_3_3 + b_2_3·a_3_2
- b_4_7·a_1_0 + b_2_3·a_3_2
- b_4_7·a_1_2 − b_2_3·a_3_4 + b_2_3·a_3_3
- a_3_2·a_3_5
- − a_3_2·a_3_3 + a_1_1·a_5_5 − b_2_3·a_1_1·a_3_4
- a_1_0·a_5_5
- − a_3_2·a_3_4 + a_3_2·a_3_3 + a_1_2·a_5_5 + b_2_3·a_1_1·a_3_4
- − a_3_2·a_3_3 + a_1_1·a_5_6 + b_2_3·a_1_1·a_3_4
- a_3_2·a_3_3 + a_1_0·a_5_6
- − a_3_3·a_3_4 + a_3_2·a_3_3 + a_1_2·a_5_6 + b_2_3·a_1_1·a_3_4
- a_3_3·a_3_4 − a_3_2·a_3_4 + a_1_1·a_5_7
- a_3_2·a_3_4 − a_3_2·a_3_3 + a_1_0·a_5_7
- a_1_2·a_5_7 + b_2_3·a_1_1·a_3_4
- − a_3_3·a_3_5 + a_3_3·a_3_4 − a_3_2·a_3_4 + a_1_1·a_5_8 − b_2_3·a_1_1·a_3_4
- a_3_2·a_3_4 + a_3_2·a_3_3 + a_1_0·a_5_8
- − a_3_4·a_3_5 + a_3_3·a_3_5 + a_3_3·a_3_4 − a_3_2·a_3_4 + a_1_2·a_5_8 + b_2_3·a_1_1·a_3_4
- a_1_0·a_5_9
- b_4_7·a_3_2
- b_4_7·a_3_5
- b_4_7·a_3_3 + b_2_3·a_5_6 − b_2_3·a_5_5 − b_2_32·a_3_4 + b_2_32·a_3_3
- b_4_7·a_3_4 − b_4_7·a_3_3 + b_2_3·a_5_7 + b_2_3·a_5_5 − b_2_32·a_3_4 − b_2_32·a_3_3
- − b_2_3·a_5_5 + b_2_32·a_3_4 + a_1_1·a_1_2·a_5_8
- − b_4_7·a_3_4 − b_4_7·a_3_3 − b_2_3·a_5_8 − b_2_3·a_5_5 − b_2_32·a_3_4 + a_1_1·a_1_2·a_5_9
- b_6_11·a_1_1 + b_4_7·a_3_3 + b_2_3·a_5_5 − b_2_32·a_3_4 + b_2_32·a_3_3
− a_1_0·a_1_1·a_5_7
- b_6_11·a_1_0 + b_2_3·a_5_5 − b_2_32·a_3_4
- b_6_11·a_1_2 − b_4_7·a_3_4 + b_2_3·a_5_8 − b_2_3·a_5_5 + b_2_32·a_3_4 − b_2_32·a_3_3
- a_3_2·a_5_5
- a_3_5·a_5_5
- a_3_3·a_5_6 + a_3_3·a_5_5 + a_3_2·a_5_6
- a_3_4·a_5_6 + a_3_3·a_5_7 − a_3_3·a_5_5
- a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + a_3_2·a_5_7
- − a_3_3·a_5_6 + b_2_3·a_1_1·a_5_7
- a_3_4·a_5_7 + a_3_4·a_5_6 − a_3_4·a_5_5
- − a_3_5·a_5_6 + a_3_4·a_5_6 + a_3_3·a_5_8 + a_3_3·a_5_5
- a_3_4·a_5_5 + a_3_3·a_5_6 + a_3_3·a_5_5 + a_3_2·a_5_8
- a_3_5·a_5_8 − a_3_5·a_5_7 + a_3_5·a_5_6
- − a_3_5·a_5_7 − a_3_5·a_5_6 + a_3_4·a_5_8 − a_3_4·a_5_6 + a_3_4·a_5_5 − a_3_3·a_5_6
- a_3_2·a_5_9
- a_3_5·a_5_9
- a_3_3·a_5_6 + a_3_3·a_5_5 + c_6_12·a_1_0·a_1_1
- a_3_4·a_5_6 − a_3_4·a_5_5 + a_3_3·a_5_6 + b_2_32·a_1_1·a_3_4 + c_6_12·a_1_1·a_1_2
- a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + c_6_12·a_1_0·a_1_2
- b_4_72 + b_2_3·b_6_11 + b_2_32·b_4_7 − b_2_3·a_1_1·a_5_9
- a_3_5·a_5_6 − a_3_4·a_5_6 + a_3_4·a_5_5 + a_3_3·a_5_6 + a_1_1·a_7_16
- − a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + a_1_0·a_7_16 − c_6_13·a_1_0·a_1_1
- a_3_5·a_5_7 − a_3_4·a_5_6 + a_3_4·a_5_5 + a_3_3·a_5_6 + a_1_2·a_7_16 + c_6_13·a_1_1·a_1_2
- − a_3_5·a_5_6 − a_3_4·a_5_6 + a_3_4·a_5_5 − a_3_3·a_5_9 + a_3_3·a_5_6 + a_1_1·a_7_17
+ b_2_32·a_1_1·a_3_4
- − a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + a_1_0·a_7_17 + c_6_13·a_1_0·a_1_1
- − a_3_5·a_5_7 − a_3_4·a_5_9 − a_3_4·a_5_6 + a_3_4·a_5_5 + a_3_3·a_5_9 + a_1_2·a_7_17
+ b_2_32·a_1_1·a_3_4 − c_6_13·a_1_1·a_1_2
- − b_4_7·a_5_6 + b_4_7·a_5_5 − b_2_32·a_5_7 − b_2_33·a_3_3 + b_2_3·c_6_12·a_1_1
- − b_4_7·a_5_7 − b_4_7·a_5_5 − b_2_32·a_5_7 + b_2_32·a_5_6 − b_2_33·a_3_4 + b_2_33·a_3_3
+ b_2_3·c_6_12·a_1_2
- b_6_11·a_3_3 − b_4_7·a_5_6 + b_4_7·a_5_5 − b_2_32·a_5_7 − b_2_32·a_5_6 − b_2_33·a_3_4
- b_6_11·a_3_2 + b_4_7·a_5_5 + b_2_32·a_5_7 + b_2_32·a_5_6 + b_2_33·a_3_4
- b_6_11·a_3_5
- b_6_11·a_3_4 + b_4_7·a_5_8 + b_4_7·a_5_7 + b_4_7·a_5_5 + b_2_32·a_5_7 − b_2_32·a_5_6
− b_2_33·a_3_4 + b_2_33·a_3_3
- − b_4_7·a_5_8 − b_4_7·a_5_7 + b_4_7·a_5_6 + b_2_3·a_7_16 + b_2_3·a_1_1·a_1_2·a_5_9
− b_2_3·c_6_13·a_1_1
- − b_4_7·a_5_5 − b_2_32·a_5_7 − b_2_32·a_5_6 − b_2_33·a_3_4 + a_1_1·a_1_2·a_7_16
- − b_4_7·a_5_9 + b_4_7·a_5_8 + b_4_7·a_5_5 + b_2_3·a_7_17 + b_2_32·a_5_7 + b_2_32·a_5_6
− b_2_33·a_3_4 + b_2_33·a_3_3 − b_2_3·a_1_1·a_1_2·a_5_9 + b_2_3·c_6_13·a_1_1
- − b_4_7·a_5_8 + b_4_7·a_5_7 − b_4_7·a_5_6 − b_4_7·a_5_5 − b_2_32·a_5_7 + b_2_32·a_5_6
+ b_2_33·a_3_4 − b_2_33·a_3_3 + a_1_1·a_1_2·a_7_17
- a_5_5·a_5_8 − a_5_5·a_5_7 + a_5_5·a_5_6 − b_2_32·a_1_1·a_5_7
- a_5_5·a_5_6 + b_2_32·a_1_1·a_5_7 + b_2_33·a_1_1·a_3_4 + c_6_12·a_1_0·a_3_3
+ b_2_3·c_6_12·a_1_1·a_1_2
- − a_5_6·a_5_8 + a_5_6·a_5_7 − b_2_32·a_1_1·a_5_7 + c_6_12·a_1_1·a_3_5
+ c_6_12·a_1_0·a_3_3
- − a_5_7·a_5_8 + a_5_6·a_5_7 − a_5_5·a_5_7 + b_2_32·a_1_1·a_5_7 + c_6_12·a_1_2·a_3_5
- a_5_6·a_5_7 − a_5_5·a_5_7 + b_2_32·a_1_1·a_5_7 + c_6_12·a_1_1·a_3_4
- a_5_5·a_5_7 + a_5_5·a_5_6 + c_6_12·a_1_0·a_3_4
- b_4_7·b_6_11 − b_2_32·b_6_11 + b_2_33·b_4_7 − a_5_8·a_5_9 + a_5_7·a_5_9 − a_5_6·a_5_9
+ b_2_32·a_1_1·a_5_9 − b_2_32·c_6_12
- − a_5_6·a_5_8 + a_3_3·a_7_16 + b_2_32·a_1_1·a_5_7 − c_6_13·a_1_0·a_3_3
- − a_5_5·a_5_7 − a_5_5·a_5_6 + a_3_2·a_7_16 − c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
- − a_5_7·a_5_8 + a_5_6·a_5_8 − a_5_5·a_5_7 + a_3_5·a_7_16 − b_2_32·a_1_1·a_5_7
+ c_6_13·a_1_1·a_3_5 − c_6_12·a_1_0·a_3_3
- − a_5_7·a_5_8 − a_5_6·a_5_8 + a_5_5·a_5_7 − a_5_5·a_5_6 + a_3_4·a_7_16
+ b_2_32·a_1_1·a_5_7 + c_6_13·a_1_1·a_3_4
- a_5_8·a_5_9 − a_5_7·a_5_9 − a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + a_5_5·a_5_9
+ a_3_3·a_7_17 − b_2_32·a_1_1·a_5_7 + c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
- − a_5_5·a_5_7 − a_5_5·a_5_6 + a_3_2·a_7_17 + c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
- − a_5_8·a_5_9 + a_5_7·a_5_9 − a_5_6·a_5_9 − a_5_5·a_5_6 + b_2_3·a_1_1·a_7_17
+ b_2_32·a_1_1·a_5_7 + b_2_33·a_1_1·a_3_4 − c_6_12·a_1_0·a_3_3
- a_5_8·a_5_9 − a_5_7·a_5_9 + a_5_6·a_5_9 − a_5_5·a_5_9 − a_5_5·a_5_6 + b_2_3·a_1_2·a_7_17
+ b_2_33·a_1_1·a_3_4 − c_6_12·a_1_0·a_3_3 − b_2_3·c_6_13·a_1_1·a_1_2
- − a_5_7·a_5_8 + a_5_6·a_5_8 − a_5_5·a_5_7 + a_3_5·a_7_17 − b_2_32·a_1_1·a_5_7
− c_6_13·a_1_1·a_3_5 − c_6_12·a_1_0·a_3_3
- a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 + a_5_6·a_5_8 − a_5_6·a_5_7 + a_5_5·a_5_9
+ a_3_4·a_7_17 − c_6_13·a_1_1·a_3_4 − c_6_12·a_1_0·a_3_3
- − a_5_6·a_5_9 + a_5_6·a_5_8 − a_5_5·a_5_9 − a_5_5·a_5_7 + a_1_1·a_9_23 − c_6_13·a_1_1·a_3_4
+ c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
- a_5_5·a_5_7 + a_5_5·a_5_6 + a_1_0·a_9_23 − c_6_13·a_1_0·a_3_4 − c_6_13·a_1_0·a_3_3
- − a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_7 + a_5_5·a_5_9 + a_1_2·a_9_23 − c_6_13·a_1_1·a_3_4
+ c_6_13·a_1_0·a_3_4 − c_6_13·a_1_0·a_3_3
- b_6_11·a_5_6 + b_6_11·a_5_5 − b_2_34·a_3_3 + b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_1
- b_6_11·a_5_8 + b_6_11·a_5_5 − b_2_33·a_5_6 + b_2_34·a_3_4 + b_2_3·c_6_12·a_3_4
+ b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_2 + c_6_12·a_1_1·a_1_2·a_3_5
- − b_6_11·a_5_7 − b_6_11·a_5_5 + b_4_7·a_7_16 + b_2_33·a_5_7 − b_2_34·a_3_4
− b_2_3·c_6_13·a_3_3 − b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_2 + c_6_13·a_1_1·a_1_2·a_3_5
- b_6_11·a_5_5 − b_2_33·a_5_7 − b_2_33·a_5_6 + b_2_34·a_3_4 + b_2_3·a_1_1·a_1_2·a_7_17
− b_2_32·c_6_12·a_1_2 − b_2_32·c_6_12·a_1_1
- b_6_11·a_5_9 + b_6_11·a_5_7 + b_4_7·a_7_17 + b_2_32·a_7_17 − b_2_33·a_5_7
− b_2_34·a_3_4 + b_2_34·a_3_3 − b_2_32·a_1_1·a_1_2·a_5_9 + b_2_3·c_6_13·a_3_3 − b_2_3·c_6_12·a_3_4 + b_2_32·c_6_13·a_1_1 + b_2_32·c_6_12·a_1_2 − c_6_13·a_1_1·a_1_2·a_3_5 − c_6_12·a_1_1·a_1_2·a_3_5
- − b_6_11·a_5_9 + b_6_11·a_5_5 + b_2_3·a_9_23 − b_2_33·a_5_6 + b_2_34·a_3_4
+ b_2_34·a_3_3 − b_2_32·a_1_1·a_1_2·a_5_9 − b_2_3·c_6_13·a_3_4 − b_2_3·c_6_13·a_3_3 − b_2_3·c_6_12·a_3_4 − b_2_32·c_6_12·a_1_2 + b_2_32·c_6_12·a_1_1 + c_6_12·a_1_1·a_1_2·a_3_5
- b_6_11·a_5_7 − b_6_11·a_5_5 − b_2_34·a_3_4 + b_2_34·a_3_3 + a_1_1·a_1_2·a_9_23
+ b_2_3·c_6_12·a_3_4 − b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_2 − c_6_12·a_1_1·a_1_2·a_3_5
- a_5_5·a_7_16 + b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 − c_6_13·a_1_0·a_5_6
+ c_6_12·a_1_0·a_5_7 − c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 − b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
- a_5_7·a_7_16 + b_2_33·a_1_1·a_5_7 + c_6_13·a_1_1·a_5_7 + c_6_12·a_1_2·a_5_8
- a_5_6·a_7_16 − b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 − c_6_13·a_1_0·a_5_6
+ c_6_12·a_1_1·a_5_8 + c_6_12·a_1_0·a_5_7 − c_6_12·a_1_0·a_5_6 − b_2_3·c_6_13·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
- a_5_8·a_7_16 + b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 + c_6_13·a_1_1·a_5_8
− b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
- b_6_112 − b_2_34·b_4_7 − a_5_9·a_7_16 + a_5_7·a_7_17 + a_5_6·a_7_17 − a_5_5·a_7_17
− b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − c_6_13·a_1_1·a_5_9 − c_6_13·a_1_1·a_5_7 − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 − c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − b_2_3·c_6_13·a_1_1·a_3_4 − b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
- a_5_9·a_7_16 − a_5_7·a_7_17 − a_5_5·a_7_17 + b_2_32·a_1_1·a_7_17 + b_2_33·a_1_1·a_5_7
+ b_2_34·a_1_1·a_3_4 + c_6_13·a_1_1·a_5_9 + c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6 + c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 + c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7 + c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 − b_2_3·c_6_12·a_1_1·a_3_4
- b_6_112 − b_2_34·b_4_7 + a_5_9·a_7_16 + a_5_7·a_7_17 − a_5_5·a_7_17
+ b_2_32·a_1_2·a_7_17 + b_2_33·a_1_1·a_5_7 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 + c_6_13·a_1_1·a_5_9 − c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6 + c_6_12·a_1_2·a_5_9 − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 − c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7 + c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 − b_2_32·c_6_13·a_1_1·a_1_2 − b_2_32·c_6_12·a_1_1·a_1_2
- − b_6_112 + b_2_34·b_4_7 + a_5_9·a_7_17 + a_5_7·a_7_17 − a_5_5·a_7_17
+ b_2_34·a_1_1·a_3_4 − b_2_3·b_4_7·c_6_12 + b_2_33·c_6_12 − c_6_13·a_1_1·a_5_9 − c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6 + c_6_12·a_1_2·a_5_9 − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 − c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7 + c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
- b_6_112 − b_2_34·b_4_7 + a_5_8·a_7_17 − a_5_7·a_7_17 − a_5_5·a_7_17
− b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − c_6_13·a_1_1·a_5_8 + c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6 − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 − c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7 + c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 + b_2_3·c_6_12·a_1_1·a_3_4 − b_2_32·c_6_12·a_1_1·a_1_2
- b_6_112 − b_2_34·b_4_7 − a_5_9·a_7_16 + a_5_7·a_7_17 + a_5_5·a_7_17 + a_3_3·a_9_23
+ b_2_33·a_1_1·a_5_7 − b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − c_6_13·a_1_1·a_5_9 + c_6_13·a_1_0·a_5_7 − c_6_13·a_1_0·a_5_6 − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 + c_6_12·a_1_1·a_5_8 − c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7 + c_6_12·a_1_0·a_5_6 − b_2_3·c_6_13·a_1_1·a_3_4 − b_2_32·c_6_12·a_1_1·a_1_2
- a_3_2·a_9_23 + c_6_13·a_1_0·a_5_7 − c_6_13·a_1_0·a_5_6 + c_6_12·a_1_0·a_5_7
+ c_6_12·a_1_0·a_5_6
- b_6_112 − b_2_34·b_4_7 + b_2_3·a_1_1·a_9_23 + b_2_33·a_1_1·a_5_7
+ b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − b_2_3·c_6_13·a_1_1·a_3_4 − b_2_3·c_6_12·a_1_1·a_3_4
- b_6_112 − b_2_34·b_4_7 + a_5_9·a_7_16 + b_2_3·a_1_2·a_9_23 + b_2_34·a_1_1·a_3_4
+ b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 + c_6_13·a_1_1·a_5_9 − c_6_12·a_1_2·a_5_9 + c_6_12·a_1_1·a_5_9 − b_2_3·c_6_13·a_1_1·a_3_4 + b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
- a_3_5·a_9_23 + c_6_13·a_1_2·a_5_8 − c_6_13·a_1_1·a_5_8 + c_6_12·a_1_2·a_5_8
+ c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − b_2_3·c_6_13·a_1_1·a_3_4
- b_6_112 − b_2_34·b_4_7 − a_5_9·a_7_16 − a_5_5·a_7_17 + a_3_4·a_9_23
+ b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − c_6_13·a_1_1·a_5_9 − c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_7 + c_6_13·a_1_0·a_5_6 + c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 + c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 − b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
- − b_6_11·a_7_17 + b_6_11·a_7_16 + b_2_32·a_9_23 − b_2_33·a_7_17 + b_2_34·a_5_7
+ b_2_34·a_5_6 + b_2_35·a_3_4 + b_2_32·a_1_1·a_1_2·a_7_17 + b_2_3·c_6_13·a_5_6 + b_2_3·c_6_12·a_5_9 − b_2_32·c_6_13·a_3_3 − b_2_32·c_6_12·a_3_4 + b_2_32·c_6_12·a_3_3 − b_2_33·c_6_13·a_1_1 + b_2_33·c_6_12·a_1_2 − b_2_33·c_6_12·a_1_1 + c_6_13·a_1_1·a_1_2·a_5_8 + c_6_12·a_1_1·a_1_2·a_5_9
- b_6_11·a_7_16 − b_2_35·a_3_4 − b_2_35·a_3_3 + b_2_3·a_1_1·a_1_2·a_9_23
+ b_2_32·a_1_1·a_1_2·a_7_17 − b_2_3·c_6_13·a_5_6 + b_2_3·c_6_12·a_5_7 − b_2_3·c_6_12·a_5_6 − b_2_32·c_6_13·a_3_4 − b_2_32·c_6_12·a_3_4 + b_2_32·c_6_12·a_3_3 − b_2_33·c_6_12·a_1_2 + b_2_33·c_6_12·a_1_1 − c_6_13·a_1_1·a_1_2·a_5_8 − c_6_13·a_1_0·a_1_1·a_5_7 + c_6_12·a_1_1·a_1_2·a_5_9 − c_6_12·a_1_1·a_1_2·a_5_8 − c_6_12·a_1_0·a_1_1·a_5_7
- − b_6_11·a_7_17 + b_4_7·a_9_23 − b_2_34·a_5_7 + b_2_34·a_5_6 − b_2_35·a_3_4
− b_2_35·a_3_3 − b_2_32·a_1_1·a_1_2·a_7_17 + b_2_3·c_6_13·a_5_7 + b_2_3·c_6_13·a_5_6 − b_2_3·c_6_12·a_5_6 + b_2_32·c_6_13·a_3_4 + b_2_32·c_6_13·a_3_3 − b_2_32·c_6_12·a_3_4 − b_2_32·c_6_12·a_3_3 + b_2_33·c_6_12·a_1_2 + b_2_33·c_6_12·a_1_1 + c_6_13·a_1_1·a_1_2·a_5_8 + c_6_12·a_1_1·a_1_2·a_5_8 + c_6_12·a_1_0·a_1_1·a_5_7
- a_5_7·a_9_23 − a_5_5·a_9_23 − b_2_33·a_1_2·a_7_17 − b_2_35·a_1_1·a_3_4
+ c_6_12·a_1_2·a_7_17 − c_6_12·a_1_2·a_7_16 − b_2_3·c_6_13·a_1_1·a_5_7 − b_2_3·c_6_12·a_1_2·a_5_9 + b_2_3·c_6_12·a_1_1·a_5_7 − b_2_32·c_6_13·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_3_4 + b_2_33·c_6_13·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_0·a_1_2 − c_6_12·c_6_13·a_1_0·a_1_1 + c_6_122·a_1_1·a_1_2 + c_6_122·a_1_0·a_1_1
- a_5_6·a_9_23 + a_5_5·a_9_23 − b_2_33·a_1_1·a_7_17 − b_2_34·a_1_1·a_5_7
+ c_6_12·a_1_1·a_7_17 − c_6_12·a_1_1·a_7_16 − b_2_3·c_6_13·a_1_1·a_5_7 − b_2_3·c_6_12·a_1_1·a_5_9 − b_2_3·c_6_12·a_1_1·a_5_7 − b_2_32·c_6_13·a_1_1·a_3_4 − b_2_32·c_6_12·a_1_1·a_3_4 + b_2_33·c_6_12·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_1·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_2 − c_6_122·a_1_1·a_1_2 + c_6_122·a_1_0·a_1_2
- − a_7_16·a_7_17 + a_5_5·a_9_23 + b_2_32·a_1_1·a_9_23 − b_2_33·a_1_1·a_7_17
− b_2_34·a_1_1·a_5_7 + b_2_35·a_1_1·a_3_4 + c_6_13·a_1_1·a_7_17 + c_6_13·a_1_1·a_7_16 − c_6_12·a_1_2·a_7_17 + c_6_12·a_1_2·a_7_16 + c_6_12·a_1_1·a_7_17 − c_6_12·a_1_1·a_7_16 − b_2_3·c_6_13·a_1_1·a_5_7 + b_2_3·c_6_12·a_1_1·a_5_9 − b_2_32·c_6_13·a_1_1·a_3_4 − b_2_32·c_6_12·a_1_1·a_3_4 − b_2_33·c_6_12·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 − c_6_122·a_1_0·a_1_2 − c_6_122·a_1_0·a_1_1
- a_7_16·a_7_17 + a_5_5·a_9_23 + b_2_32·a_1_2·a_9_23 − b_2_33·a_1_2·a_7_17
+ b_2_35·a_1_1·a_3_4 − c_6_13·a_1_1·a_7_17 − c_6_13·a_1_1·a_7_16 + c_6_12·a_1_2·a_7_17 − c_6_12·a_1_2·a_7_16 − c_6_12·a_1_1·a_7_17 + c_6_12·a_1_1·a_7_16 − b_2_3·c_6_13·a_1_1·a_5_7 + b_2_3·c_6_12·a_1_2·a_5_9 − b_2_32·c_6_13·a_1_1·a_3_4 + b_2_33·c_6_13·a_1_1·a_1_2 − b_2_33·c_6_12·a_1_1·a_1_2 + c_6_12·c_6_13·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 − c_6_122·a_1_0·a_1_2 − c_6_122·a_1_0·a_1_1
- a_7_16·a_7_17 + a_5_9·a_9_23 + a_5_5·a_9_23 + b_2_33·a_1_2·a_7_17
+ b_2_33·a_1_1·a_7_17 + b_2_34·a_1_1·a_5_7 + c_6_13·a_1_2·a_7_17 + c_6_13·a_1_2·a_7_16 + c_6_13·a_1_1·a_7_17 + c_6_13·a_1_1·a_7_16 − c_6_12·a_1_2·a_7_17 − c_6_12·a_1_1·a_7_16 + b_2_3·c_6_13·a_1_1·a_5_7 + b_2_3·c_6_12·a_1_2·a_5_9 + b_2_3·c_6_12·a_1_1·a_5_9 + b_2_3·c_6_12·a_1_1·a_5_7 − b_2_32·c_6_12·a_1_1·a_3_4 − b_2_33·c_6_13·a_1_1·a_1_2 + b_2_33·c_6_12·a_1_1·a_1_2 + c_6_12·c_6_13·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 + c_6_122·a_1_1·a_1_2 − c_6_122·a_1_0·a_1_2 − c_6_122·a_1_0·a_1_1
- − a_7_16·a_7_17 + a_5_8·a_9_23 − a_5_5·a_9_23 − b_2_33·a_1_2·a_7_17
+ b_2_33·a_1_1·a_7_17 + b_2_34·a_1_1·a_5_7 − c_6_13·a_1_2·a_7_16 + c_6_13·a_1_1·a_7_17 − c_6_13·a_1_1·a_7_16 − c_6_12·a_1_2·a_7_16 − c_6_12·a_1_1·a_7_16 − b_2_3·c_6_12·a_1_2·a_5_9 + b_2_3·c_6_12·a_1_1·a_5_9 − b_2_3·c_6_12·a_1_1·a_5_7 + b_2_33·c_6_13·a_1_1·a_1_2 − c_6_132·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 − c_6_122·a_1_0·a_1_1
- b_6_11·a_9_23 − b_2_34·a_7_17 − b_2_35·a_5_7 − b_2_36·a_3_3
− b_2_33·a_1_1·a_1_2·a_7_17 + b_2_34·a_1_1·a_1_2·a_5_9 + b_2_3·c_6_12·a_7_17 − b_2_32·c_6_13·a_5_7 + b_2_32·c_6_13·a_5_6 − b_2_32·c_6_12·a_5_9 + b_2_32·c_6_12·a_5_7 + b_2_33·c_6_13·a_3_3 − b_2_34·c_6_13·a_1_1 + b_2_34·c_6_12·a_1_2 + c_6_13·a_1_1·a_1_2·a_7_17 − c_6_12·a_1_1·a_1_2·a_7_17 + b_2_3·c_6_12·a_1_1·a_1_2·a_5_9 − b_2_3·c_6_12·c_6_13·a_1_2 − b_2_3·c_6_12·c_6_13·a_1_1 + b_2_3·c_6_122·a_1_1
- − a_7_16·a_9_23 + b_2_34·a_1_2·a_7_17 − b_2_34·a_1_1·a_7_17 − b_2_35·a_1_1·a_5_7
+ b_2_36·a_1_1·a_3_4 + c_6_13·a_1_1·a_9_23 − c_6_12·a_1_2·a_9_23 + c_6_12·a_1_1·a_9_23 − b_2_3·c_6_12·a_1_2·a_7_17 + b_2_3·c_6_12·a_1_1·a_7_17 + b_2_32·c_6_12·a_1_2·a_5_9 − b_2_32·c_6_12·a_1_1·a_5_9 + b_2_32·c_6_12·a_1_1·a_5_7 + b_2_33·c_6_12·a_1_1·a_3_4 − b_2_34·c_6_13·a_1_1·a_1_2 + b_2_34·c_6_12·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_2·a_3_5 + c_6_12·c_6_13·a_1_1·a_3_5 − c_6_122·a_1_2·a_3_5 − c_6_122·a_1_1·a_3_5 + b_2_3·c_6_12·c_6_13·a_1_1·a_1_2 + b_2_3·c_6_122·a_1_1·a_1_2
- a_7_17·a_9_23 − a_7_16·a_9_23 + b_2_33·a_1_2·a_9_23 − b_2_33·a_1_1·a_9_23
+ b_2_34·a_1_2·a_7_17 + b_2_36·a_1_1·a_3_4 − c_6_13·a_1_2·a_9_23 − c_6_12·a_1_2·a_9_23 − c_6_12·a_1_1·a_9_23 − b_2_3·c_6_13·a_1_2·a_7_17 + b_2_3·c_6_13·a_1_1·a_7_17 − b_2_3·c_6_12·a_1_2·a_7_17 − b_2_3·c_6_12·a_1_1·a_7_17 − b_2_32·c_6_13·a_1_1·a_5_7 + b_2_32·c_6_12·a_1_1·a_5_9 + b_2_32·c_6_12·a_1_1·a_5_7 + b_2_33·c_6_12·a_1_1·a_3_4 − b_2_34·c_6_13·a_1_1·a_1_2 − c_6_132·a_1_0·a_3_4 − c_6_132·a_1_0·a_3_3 + c_6_12·c_6_13·a_1_0·a_3_3 + c_6_122·a_1_0·a_3_4 + b_2_3·c_6_132·a_1_1·a_1_2 + b_2_3·c_6_12·c_6_13·a_1_1·a_1_2 + b_2_3·c_6_122·a_1_1·a_1_2
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_12, a Duflot regular element of degree 6
- c_6_13, a Duflot regular element of degree 6
- b_2_3, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- b_4_7 → 0, an element of degree 4
- a_5_5 → 0, an element of degree 5
- a_5_6 → 0, an element of degree 5
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_5_9 → 0, an element of degree 5
- b_6_11 → 0, an element of degree 6
- c_6_12 → − c_2_13, an element of degree 6
- c_6_13 → − c_2_23, an element of degree 6
- a_7_16 → 0, an element of degree 7
- a_7_17 → 0, an element of degree 7
- a_9_23 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_2, an element of degree 1
- b_2_3 → c_2_5, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → c_2_3·a_1_2, an element of degree 3
- a_3_5 → 0, an element of degree 3
- b_4_7 → c_2_3·c_2_5, an element of degree 4
- a_5_5 → c_2_3·c_2_5·a_1_2, an element of degree 5
- a_5_6 → − c_2_3·c_2_5·a_1_2, an element of degree 5
- a_5_7 → − c_2_32·a_1_2, an element of degree 5
- a_5_8 → c_2_3·c_2_5·a_1_2 − c_2_32·a_1_2, an element of degree 5
- a_5_9 → c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2, an element of degree 5
- b_6_11 → − c_2_3·c_2_52 − c_2_32·c_2_5, an element of degree 6
- c_6_12 → − c_2_3·c_2_52 − c_2_33, an element of degree 6
- c_6_13 → c_2_52·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43, an element of degree 6
- a_7_16 → − c_2_32·c_2_5·a_1_2 + c_2_33·a_1_2, an element of degree 7
- a_7_17 → − c_2_3·c_2_52·a_1_2 + c_2_3·c_2_52·a_1_1 − c_2_3·c_2_4·c_2_5·a_1_2
− c_2_32·c_2_5·a_1_2 + c_2_33·a_1_2, an element of degree 7
- a_9_23 → − c_2_3·c_2_53·a_1_1 − c_2_3·c_2_4·c_2_52·a_1_2 − c_2_3·c_2_43·a_1_2
− c_2_32·c_2_52·a_1_1 + c_2_32·c_2_4·c_2_5·a_1_2 − c_2_34·a_1_2, an element of degree 9
|