Cohomology of group number 41 of order 243

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243


General information on the group

  • The group has 3 minimal generators and exponent 9.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 2) · (t5  +  t3  +  1/2·t  +  1/2)

    (t  +  1) · (t  −  1)3 · (t2  −  t  +  1)2 · (t2  +  t  +  1)2
  • The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring generators

The cohomology ring has 20 minimal generators of maximal degree 9:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_2, a nilpotent element of degree 1
  4. b_2_3, an element of degree 2
  5. a_3_2, a nilpotent element of degree 3
  6. a_3_3, a nilpotent element of degree 3
  7. a_3_4, a nilpotent element of degree 3
  8. a_3_5, a nilpotent element of degree 3
  9. b_4_7, an element of degree 4
  10. a_5_5, a nilpotent element of degree 5
  11. a_5_6, a nilpotent element of degree 5
  12. a_5_7, a nilpotent element of degree 5
  13. a_5_8, a nilpotent element of degree 5
  14. a_5_9, a nilpotent element of degree 5
  15. b_6_11, an element of degree 6
  16. c_6_12, a Duflot regular element of degree 6
  17. c_6_13, a Duflot regular element of degree 6
  18. a_7_16, a nilpotent element of degree 7
  19. a_7_17, a nilpotent element of degree 7
  20. a_9_23, a nilpotent element of degree 9

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring relations

There are 15 "obvious" relations:
   a_1_02, a_1_12, a_1_22, a_3_22, a_3_32, a_3_42, a_3_52, a_5_52, a_5_62, a_5_72, a_5_82, a_5_92, a_7_162, a_7_172, a_9_232

Apart from that, there are 125 minimal relations of maximal degree 16:

  1. a_1_0·a_1_1·a_1_2
  2. b_2_3·a_1_0
  3. a_1_0·a_3_2
  4. a_1_1·a_3_3 − a_1_1·a_3_2
  5. a_1_1·a_3_2 + a_1_0·a_3_3
  6. a_1_2·a_3_3 − a_1_2·a_3_2 + a_1_1·a_3_4
  7. a_1_2·a_3_2 + a_1_1·a_3_2 + a_1_0·a_3_4
  8. a_1_2·a_3_4 − a_1_2·a_3_3 + a_1_2·a_3_2
  9. a_1_0·a_3_5
  10. a_1_0·a_1_1·a_3_4
  11. b_2_3·a_3_5
  12.  − b_2_3·a_3_2 + a_1_1·a_1_2·a_3_5
  13. b_4_7·a_1_1 − b_2_3·a_3_3 + b_2_3·a_3_2
  14. b_4_7·a_1_0 + b_2_3·a_3_2
  15. b_4_7·a_1_2 − b_2_3·a_3_4 + b_2_3·a_3_3
  16. a_3_2·a_3_5
  17.  − a_3_2·a_3_3 + a_1_1·a_5_5 − b_2_3·a_1_1·a_3_4
  18. a_1_0·a_5_5
  19.  − a_3_2·a_3_4 + a_3_2·a_3_3 + a_1_2·a_5_5 + b_2_3·a_1_1·a_3_4
  20.  − a_3_2·a_3_3 + a_1_1·a_5_6 + b_2_3·a_1_1·a_3_4
  21. a_3_2·a_3_3 + a_1_0·a_5_6
  22.  − a_3_3·a_3_4 + a_3_2·a_3_3 + a_1_2·a_5_6 + b_2_3·a_1_1·a_3_4
  23. a_3_3·a_3_4 − a_3_2·a_3_4 + a_1_1·a_5_7
  24. a_3_2·a_3_4 − a_3_2·a_3_3 + a_1_0·a_5_7
  25. a_1_2·a_5_7 + b_2_3·a_1_1·a_3_4
  26.  − a_3_3·a_3_5 + a_3_3·a_3_4 − a_3_2·a_3_4 + a_1_1·a_5_8 − b_2_3·a_1_1·a_3_4
  27. a_3_2·a_3_4 + a_3_2·a_3_3 + a_1_0·a_5_8
  28.  − a_3_4·a_3_5 + a_3_3·a_3_5 + a_3_3·a_3_4 − a_3_2·a_3_4 + a_1_2·a_5_8 + b_2_3·a_1_1·a_3_4
  29. a_1_0·a_5_9
  30. b_4_7·a_3_2
  31. b_4_7·a_3_5
  32. b_4_7·a_3_3 + b_2_3·a_5_6 − b_2_3·a_5_5 − b_2_32·a_3_4 + b_2_32·a_3_3
  33. b_4_7·a_3_4 − b_4_7·a_3_3 + b_2_3·a_5_7 + b_2_3·a_5_5 − b_2_32·a_3_4 − b_2_32·a_3_3
  34.  − b_2_3·a_5_5 + b_2_32·a_3_4 + a_1_1·a_1_2·a_5_8
  35.  − b_4_7·a_3_4 − b_4_7·a_3_3 − b_2_3·a_5_8 − b_2_3·a_5_5 − b_2_32·a_3_4 + a_1_1·a_1_2·a_5_9
  36. b_6_11·a_1_1 + b_4_7·a_3_3 + b_2_3·a_5_5 − b_2_32·a_3_4 + b_2_32·a_3_3
       − a_1_0·a_1_1·a_5_7
  37. b_6_11·a_1_0 + b_2_3·a_5_5 − b_2_32·a_3_4
  38. b_6_11·a_1_2 − b_4_7·a_3_4 + b_2_3·a_5_8 − b_2_3·a_5_5 + b_2_32·a_3_4 − b_2_32·a_3_3
  39. a_3_2·a_5_5
  40. a_3_5·a_5_5
  41. a_3_3·a_5_6 + a_3_3·a_5_5 + a_3_2·a_5_6
  42. a_3_4·a_5_6 + a_3_3·a_5_7 − a_3_3·a_5_5
  43. a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + a_3_2·a_5_7
  44.  − a_3_3·a_5_6 + b_2_3·a_1_1·a_5_7
  45. a_3_4·a_5_7 + a_3_4·a_5_6 − a_3_4·a_5_5
  46.  − a_3_5·a_5_6 + a_3_4·a_5_6 + a_3_3·a_5_8 + a_3_3·a_5_5
  47. a_3_4·a_5_5 + a_3_3·a_5_6 + a_3_3·a_5_5 + a_3_2·a_5_8
  48. a_3_5·a_5_8 − a_3_5·a_5_7 + a_3_5·a_5_6
  49.  − a_3_5·a_5_7 − a_3_5·a_5_6 + a_3_4·a_5_8 − a_3_4·a_5_6 + a_3_4·a_5_5 − a_3_3·a_5_6
  50. a_3_2·a_5_9
  51. a_3_5·a_5_9
  52. a_3_3·a_5_6 + a_3_3·a_5_5 + c_6_12·a_1_0·a_1_1
  53. a_3_4·a_5_6 − a_3_4·a_5_5 + a_3_3·a_5_6 + b_2_32·a_1_1·a_3_4 + c_6_12·a_1_1·a_1_2
  54. a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + c_6_12·a_1_0·a_1_2
  55. b_4_72 + b_2_3·b_6_11 + b_2_32·b_4_7 − b_2_3·a_1_1·a_5_9
  56. a_3_5·a_5_6 − a_3_4·a_5_6 + a_3_4·a_5_5 + a_3_3·a_5_6 + a_1_1·a_7_16
  57.  − a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + a_1_0·a_7_16 − c_6_13·a_1_0·a_1_1
  58. a_3_5·a_5_7 − a_3_4·a_5_6 + a_3_4·a_5_5 + a_3_3·a_5_6 + a_1_2·a_7_16 + c_6_13·a_1_1·a_1_2
  59.  − a_3_5·a_5_6 − a_3_4·a_5_6 + a_3_4·a_5_5 − a_3_3·a_5_9 + a_3_3·a_5_6 + a_1_1·a_7_17
       + b_2_32·a_1_1·a_3_4
  60.  − a_3_4·a_5_5 − a_3_3·a_5_6 − a_3_3·a_5_5 + a_1_0·a_7_17 + c_6_13·a_1_0·a_1_1
  61.  − a_3_5·a_5_7 − a_3_4·a_5_9 − a_3_4·a_5_6 + a_3_4·a_5_5 + a_3_3·a_5_9 + a_1_2·a_7_17
       + b_2_32·a_1_1·a_3_4 − c_6_13·a_1_1·a_1_2
  62.  − b_4_7·a_5_6 + b_4_7·a_5_5 − b_2_32·a_5_7 − b_2_33·a_3_3 + b_2_3·c_6_12·a_1_1
  63.  − b_4_7·a_5_7 − b_4_7·a_5_5 − b_2_32·a_5_7 + b_2_32·a_5_6 − b_2_33·a_3_4 + b_2_33·a_3_3
       + b_2_3·c_6_12·a_1_2
  64. b_6_11·a_3_3 − b_4_7·a_5_6 + b_4_7·a_5_5 − b_2_32·a_5_7 − b_2_32·a_5_6 − b_2_33·a_3_4
  65. b_6_11·a_3_2 + b_4_7·a_5_5 + b_2_32·a_5_7 + b_2_32·a_5_6 + b_2_33·a_3_4
  66. b_6_11·a_3_5
  67. b_6_11·a_3_4 + b_4_7·a_5_8 + b_4_7·a_5_7 + b_4_7·a_5_5 + b_2_32·a_5_7 − b_2_32·a_5_6
       − b_2_33·a_3_4 + b_2_33·a_3_3
  68.  − b_4_7·a_5_8 − b_4_7·a_5_7 + b_4_7·a_5_6 + b_2_3·a_7_16 + b_2_3·a_1_1·a_1_2·a_5_9
       − b_2_3·c_6_13·a_1_1
  69.  − b_4_7·a_5_5 − b_2_32·a_5_7 − b_2_32·a_5_6 − b_2_33·a_3_4 + a_1_1·a_1_2·a_7_16
  70.  − b_4_7·a_5_9 + b_4_7·a_5_8 + b_4_7·a_5_5 + b_2_3·a_7_17 + b_2_32·a_5_7 + b_2_32·a_5_6
       − b_2_33·a_3_4 + b_2_33·a_3_3 − b_2_3·a_1_1·a_1_2·a_5_9 + b_2_3·c_6_13·a_1_1
  71.  − b_4_7·a_5_8 + b_4_7·a_5_7 − b_4_7·a_5_6 − b_4_7·a_5_5 − b_2_32·a_5_7 + b_2_32·a_5_6
       + b_2_33·a_3_4 − b_2_33·a_3_3 + a_1_1·a_1_2·a_7_17
  72. a_5_5·a_5_8 − a_5_5·a_5_7 + a_5_5·a_5_6 − b_2_32·a_1_1·a_5_7
  73. a_5_5·a_5_6 + b_2_32·a_1_1·a_5_7 + b_2_33·a_1_1·a_3_4 + c_6_12·a_1_0·a_3_3
       + b_2_3·c_6_12·a_1_1·a_1_2
  74.  − a_5_6·a_5_8 + a_5_6·a_5_7 − b_2_32·a_1_1·a_5_7 + c_6_12·a_1_1·a_3_5
       + c_6_12·a_1_0·a_3_3
  75.  − a_5_7·a_5_8 + a_5_6·a_5_7 − a_5_5·a_5_7 + b_2_32·a_1_1·a_5_7 + c_6_12·a_1_2·a_3_5
  76. a_5_6·a_5_7 − a_5_5·a_5_7 + b_2_32·a_1_1·a_5_7 + c_6_12·a_1_1·a_3_4
  77. a_5_5·a_5_7 + a_5_5·a_5_6 + c_6_12·a_1_0·a_3_4
  78. b_4_7·b_6_11 − b_2_32·b_6_11 + b_2_33·b_4_7 − a_5_8·a_5_9 + a_5_7·a_5_9 − a_5_6·a_5_9
       + b_2_32·a_1_1·a_5_9 − b_2_32·c_6_12
  79.  − a_5_6·a_5_8 + a_3_3·a_7_16 + b_2_32·a_1_1·a_5_7 − c_6_13·a_1_0·a_3_3
  80.  − a_5_5·a_5_7 − a_5_5·a_5_6 + a_3_2·a_7_16 − c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
  81.  − a_5_7·a_5_8 + a_5_6·a_5_8 − a_5_5·a_5_7 + a_3_5·a_7_16 − b_2_32·a_1_1·a_5_7
       + c_6_13·a_1_1·a_3_5 − c_6_12·a_1_0·a_3_3
  82.  − a_5_7·a_5_8 − a_5_6·a_5_8 + a_5_5·a_5_7 − a_5_5·a_5_6 + a_3_4·a_7_16
       + b_2_32·a_1_1·a_5_7 + c_6_13·a_1_1·a_3_4
  83. a_5_8·a_5_9 − a_5_7·a_5_9 − a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + a_5_5·a_5_9
       + a_3_3·a_7_17 − b_2_32·a_1_1·a_5_7 + c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
  84.  − a_5_5·a_5_7 − a_5_5·a_5_6 + a_3_2·a_7_17 + c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
  85.  − a_5_8·a_5_9 + a_5_7·a_5_9 − a_5_6·a_5_9 − a_5_5·a_5_6 + b_2_3·a_1_1·a_7_17
       + b_2_32·a_1_1·a_5_7 + b_2_33·a_1_1·a_3_4 − c_6_12·a_1_0·a_3_3
  86. a_5_8·a_5_9 − a_5_7·a_5_9 + a_5_6·a_5_9 − a_5_5·a_5_9 − a_5_5·a_5_6 + b_2_3·a_1_2·a_7_17
       + b_2_33·a_1_1·a_3_4 − c_6_12·a_1_0·a_3_3 − b_2_3·c_6_13·a_1_1·a_1_2
  87.  − a_5_7·a_5_8 + a_5_6·a_5_8 − a_5_5·a_5_7 + a_3_5·a_7_17 − b_2_32·a_1_1·a_5_7
       − c_6_13·a_1_1·a_3_5 − c_6_12·a_1_0·a_3_3
  88. a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 + a_5_6·a_5_8 − a_5_6·a_5_7 + a_5_5·a_5_9
       + a_3_4·a_7_17 − c_6_13·a_1_1·a_3_4 − c_6_12·a_1_0·a_3_3
  89.  − a_5_6·a_5_9 + a_5_6·a_5_8 − a_5_5·a_5_9 − a_5_5·a_5_7 + a_1_1·a_9_23 − c_6_13·a_1_1·a_3_4
       + c_6_13·a_1_0·a_3_3 + c_6_12·a_1_0·a_3_3
  90. a_5_5·a_5_7 + a_5_5·a_5_6 + a_1_0·a_9_23 − c_6_13·a_1_0·a_3_4 − c_6_13·a_1_0·a_3_3
  91.  − a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_7 + a_5_5·a_5_9 + a_1_2·a_9_23 − c_6_13·a_1_1·a_3_4
       + c_6_13·a_1_0·a_3_4 − c_6_13·a_1_0·a_3_3
  92. b_6_11·a_5_6 + b_6_11·a_5_5 − b_2_34·a_3_3 + b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_1
  93. b_6_11·a_5_8 + b_6_11·a_5_5 − b_2_33·a_5_6 + b_2_34·a_3_4 + b_2_3·c_6_12·a_3_4
       + b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_2 + c_6_12·a_1_1·a_1_2·a_3_5
  94.  − b_6_11·a_5_7 − b_6_11·a_5_5 + b_4_7·a_7_16 + b_2_33·a_5_7 − b_2_34·a_3_4
       − b_2_3·c_6_13·a_3_3 − b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_2
       + c_6_13·a_1_1·a_1_2·a_3_5
  95. b_6_11·a_5_5 − b_2_33·a_5_7 − b_2_33·a_5_6 + b_2_34·a_3_4 + b_2_3·a_1_1·a_1_2·a_7_17
       − b_2_32·c_6_12·a_1_2 − b_2_32·c_6_12·a_1_1
  96. b_6_11·a_5_9 + b_6_11·a_5_7 + b_4_7·a_7_17 + b_2_32·a_7_17 − b_2_33·a_5_7
       − b_2_34·a_3_4 + b_2_34·a_3_3 − b_2_32·a_1_1·a_1_2·a_5_9 + b_2_3·c_6_13·a_3_3
       − b_2_3·c_6_12·a_3_4 + b_2_32·c_6_13·a_1_1 + b_2_32·c_6_12·a_1_2
       − c_6_13·a_1_1·a_1_2·a_3_5 − c_6_12·a_1_1·a_1_2·a_3_5
  97.  − b_6_11·a_5_9 + b_6_11·a_5_5 + b_2_3·a_9_23 − b_2_33·a_5_6 + b_2_34·a_3_4
       + b_2_34·a_3_3 − b_2_32·a_1_1·a_1_2·a_5_9 − b_2_3·c_6_13·a_3_4 − b_2_3·c_6_13·a_3_3
       − b_2_3·c_6_12·a_3_4 − b_2_32·c_6_12·a_1_2 + b_2_32·c_6_12·a_1_1
       + c_6_12·a_1_1·a_1_2·a_3_5
  98. b_6_11·a_5_7 − b_6_11·a_5_5 − b_2_34·a_3_4 + b_2_34·a_3_3 + a_1_1·a_1_2·a_9_23
       + b_2_3·c_6_12·a_3_4 − b_2_3·c_6_12·a_3_3 − b_2_32·c_6_12·a_1_2
       − c_6_12·a_1_1·a_1_2·a_3_5
  99. a_5_5·a_7_16 + b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 − c_6_13·a_1_0·a_5_6
       + c_6_12·a_1_0·a_5_7 − c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4
       − b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
  100. a_5_7·a_7_16 + b_2_33·a_1_1·a_5_7 + c_6_13·a_1_1·a_5_7 + c_6_12·a_1_2·a_5_8
  101. a_5_6·a_7_16 − b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 − c_6_13·a_1_0·a_5_6
       + c_6_12·a_1_1·a_5_8 + c_6_12·a_1_0·a_5_7 − c_6_12·a_1_0·a_5_6
       − b_2_3·c_6_13·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
  102. a_5_8·a_7_16 + b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 + c_6_13·a_1_1·a_5_8
       − b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
  103. b_6_112 − b_2_34·b_4_7 − a_5_9·a_7_16 + a_5_7·a_7_17 + a_5_6·a_7_17 − a_5_5·a_7_17
       − b_2_33·a_1_1·a_5_7 + b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12
       − c_6_13·a_1_1·a_5_9 − c_6_13·a_1_1·a_5_7 − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9
       − c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − b_2_3·c_6_13·a_1_1·a_3_4
       − b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
  104. a_5_9·a_7_16 − a_5_7·a_7_17 − a_5_5·a_7_17 + b_2_32·a_1_1·a_7_17 + b_2_33·a_1_1·a_5_7
       + b_2_34·a_1_1·a_3_4 + c_6_13·a_1_1·a_5_9 + c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6
       + c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 + c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7
       + c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 − b_2_3·c_6_12·a_1_1·a_3_4
  105. b_6_112 − b_2_34·b_4_7 + a_5_9·a_7_16 + a_5_7·a_7_17 − a_5_5·a_7_17
       + b_2_32·a_1_2·a_7_17 + b_2_33·a_1_1·a_5_7 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12
       + c_6_13·a_1_1·a_5_9 − c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6 + c_6_12·a_1_2·a_5_9
       − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9 − c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7
       + c_6_12·a_1_0·a_5_6 + b_2_3·c_6_13·a_1_1·a_3_4 − b_2_32·c_6_13·a_1_1·a_1_2
       − b_2_32·c_6_12·a_1_1·a_1_2
  106.  − b_6_112 + b_2_34·b_4_7 + a_5_9·a_7_17 + a_5_7·a_7_17 − a_5_5·a_7_17
       + b_2_34·a_1_1·a_3_4 − b_2_3·b_4_7·c_6_12 + b_2_33·c_6_12 − c_6_13·a_1_1·a_5_9
       − c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6 + c_6_12·a_1_2·a_5_9 − c_6_12·a_1_2·a_5_8
       + c_6_12·a_1_1·a_5_9 − c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7 + c_6_12·a_1_0·a_5_6
       + b_2_3·c_6_13·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
  107. b_6_112 − b_2_34·b_4_7 + a_5_8·a_7_17 − a_5_7·a_7_17 − a_5_5·a_7_17
       − b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − c_6_13·a_1_1·a_5_8
       + c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_6 − c_6_12·a_1_2·a_5_8 + c_6_12·a_1_1·a_5_9
       − c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7 + c_6_12·a_1_0·a_5_6
       + b_2_3·c_6_13·a_1_1·a_3_4 + b_2_3·c_6_12·a_1_1·a_3_4 − b_2_32·c_6_12·a_1_1·a_1_2
  108. b_6_112 − b_2_34·b_4_7 − a_5_9·a_7_16 + a_5_7·a_7_17 + a_5_5·a_7_17 + a_3_3·a_9_23
       + b_2_33·a_1_1·a_5_7 − b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12
       − c_6_13·a_1_1·a_5_9 + c_6_13·a_1_0·a_5_7 − c_6_13·a_1_0·a_5_6 − c_6_12·a_1_2·a_5_8
       + c_6_12·a_1_1·a_5_9 + c_6_12·a_1_1·a_5_8 − c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_7
       + c_6_12·a_1_0·a_5_6 − b_2_3·c_6_13·a_1_1·a_3_4 − b_2_32·c_6_12·a_1_1·a_1_2
  109. a_3_2·a_9_23 + c_6_13·a_1_0·a_5_7 − c_6_13·a_1_0·a_5_6 + c_6_12·a_1_0·a_5_7
       + c_6_12·a_1_0·a_5_6
  110. b_6_112 − b_2_34·b_4_7 + b_2_3·a_1_1·a_9_23 + b_2_33·a_1_1·a_5_7
       + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − b_2_3·c_6_13·a_1_1·a_3_4
       − b_2_3·c_6_12·a_1_1·a_3_4
  111. b_6_112 − b_2_34·b_4_7 + a_5_9·a_7_16 + b_2_3·a_1_2·a_9_23 + b_2_34·a_1_1·a_3_4
       + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 + c_6_13·a_1_1·a_5_9 − c_6_12·a_1_2·a_5_9
       + c_6_12·a_1_1·a_5_9 − b_2_3·c_6_13·a_1_1·a_3_4 + b_2_3·c_6_12·a_1_1·a_3_4
       + b_2_32·c_6_12·a_1_1·a_1_2
  112. a_3_5·a_9_23 + c_6_13·a_1_2·a_5_8 − c_6_13·a_1_1·a_5_8 + c_6_12·a_1_2·a_5_8
       + c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − b_2_3·c_6_13·a_1_1·a_3_4
  113. b_6_112 − b_2_34·b_4_7 − a_5_9·a_7_16 − a_5_5·a_7_17 + a_3_4·a_9_23
       + b_2_34·a_1_1·a_3_4 + b_2_3·b_4_7·c_6_12 − b_2_33·c_6_12 − c_6_13·a_1_1·a_5_9
       − c_6_13·a_1_1·a_5_7 − c_6_13·a_1_0·a_5_7 + c_6_13·a_1_0·a_5_6 + c_6_12·a_1_2·a_5_8
       + c_6_12·a_1_1·a_5_9 + c_6_12·a_1_1·a_5_8 + c_6_12·a_1_1·a_5_7 − c_6_12·a_1_0·a_5_6
       + b_2_3·c_6_13·a_1_1·a_3_4 − b_2_3·c_6_12·a_1_1·a_3_4 + b_2_32·c_6_12·a_1_1·a_1_2
  114.  − b_6_11·a_7_17 + b_6_11·a_7_16 + b_2_32·a_9_23 − b_2_33·a_7_17 + b_2_34·a_5_7
       + b_2_34·a_5_6 + b_2_35·a_3_4 + b_2_32·a_1_1·a_1_2·a_7_17 + b_2_3·c_6_13·a_5_6
       + b_2_3·c_6_12·a_5_9 − b_2_32·c_6_13·a_3_3 − b_2_32·c_6_12·a_3_4
       + b_2_32·c_6_12·a_3_3 − b_2_33·c_6_13·a_1_1 + b_2_33·c_6_12·a_1_2
       − b_2_33·c_6_12·a_1_1 + c_6_13·a_1_1·a_1_2·a_5_8 + c_6_12·a_1_1·a_1_2·a_5_9
  115. b_6_11·a_7_16 − b_2_35·a_3_4 − b_2_35·a_3_3 + b_2_3·a_1_1·a_1_2·a_9_23
       + b_2_32·a_1_1·a_1_2·a_7_17 − b_2_3·c_6_13·a_5_6 + b_2_3·c_6_12·a_5_7
       − b_2_3·c_6_12·a_5_6 − b_2_32·c_6_13·a_3_4 − b_2_32·c_6_12·a_3_4
       + b_2_32·c_6_12·a_3_3 − b_2_33·c_6_12·a_1_2 + b_2_33·c_6_12·a_1_1
       − c_6_13·a_1_1·a_1_2·a_5_8 − c_6_13·a_1_0·a_1_1·a_5_7 + c_6_12·a_1_1·a_1_2·a_5_9
       − c_6_12·a_1_1·a_1_2·a_5_8 − c_6_12·a_1_0·a_1_1·a_5_7
  116.  − b_6_11·a_7_17 + b_4_7·a_9_23 − b_2_34·a_5_7 + b_2_34·a_5_6 − b_2_35·a_3_4
       − b_2_35·a_3_3 − b_2_32·a_1_1·a_1_2·a_7_17 + b_2_3·c_6_13·a_5_7 + b_2_3·c_6_13·a_5_6
       − b_2_3·c_6_12·a_5_6 + b_2_32·c_6_13·a_3_4 + b_2_32·c_6_13·a_3_3
       − b_2_32·c_6_12·a_3_4 − b_2_32·c_6_12·a_3_3 + b_2_33·c_6_12·a_1_2
       + b_2_33·c_6_12·a_1_1 + c_6_13·a_1_1·a_1_2·a_5_8 + c_6_12·a_1_1·a_1_2·a_5_8
       + c_6_12·a_1_0·a_1_1·a_5_7
  117. a_5_7·a_9_23 − a_5_5·a_9_23 − b_2_33·a_1_2·a_7_17 − b_2_35·a_1_1·a_3_4
       + c_6_12·a_1_2·a_7_17 − c_6_12·a_1_2·a_7_16 − b_2_3·c_6_13·a_1_1·a_5_7
       − b_2_3·c_6_12·a_1_2·a_5_9 + b_2_3·c_6_12·a_1_1·a_5_7 − b_2_32·c_6_13·a_1_1·a_3_4
       + b_2_32·c_6_12·a_1_1·a_3_4 + b_2_33·c_6_13·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_0·a_1_2
       − c_6_12·c_6_13·a_1_0·a_1_1 + c_6_122·a_1_1·a_1_2 + c_6_122·a_1_0·a_1_1
  118. a_5_6·a_9_23 + a_5_5·a_9_23 − b_2_33·a_1_1·a_7_17 − b_2_34·a_1_1·a_5_7
       + c_6_12·a_1_1·a_7_17 − c_6_12·a_1_1·a_7_16 − b_2_3·c_6_13·a_1_1·a_5_7
       − b_2_3·c_6_12·a_1_1·a_5_9 − b_2_3·c_6_12·a_1_1·a_5_7 − b_2_32·c_6_13·a_1_1·a_3_4
       − b_2_32·c_6_12·a_1_1·a_3_4 + b_2_33·c_6_12·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_1·a_1_2
       + c_6_12·c_6_13·a_1_0·a_1_2 − c_6_122·a_1_1·a_1_2 + c_6_122·a_1_0·a_1_2
  119.  − a_7_16·a_7_17 + a_5_5·a_9_23 + b_2_32·a_1_1·a_9_23 − b_2_33·a_1_1·a_7_17
       − b_2_34·a_1_1·a_5_7 + b_2_35·a_1_1·a_3_4 + c_6_13·a_1_1·a_7_17 + c_6_13·a_1_1·a_7_16
       − c_6_12·a_1_2·a_7_17 + c_6_12·a_1_2·a_7_16 + c_6_12·a_1_1·a_7_17 − c_6_12·a_1_1·a_7_16
       − b_2_3·c_6_13·a_1_1·a_5_7 + b_2_3·c_6_12·a_1_1·a_5_9 − b_2_32·c_6_13·a_1_1·a_3_4
       − b_2_32·c_6_12·a_1_1·a_3_4 − b_2_33·c_6_12·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_1·a_1_2
       − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 − c_6_122·a_1_0·a_1_2
       − c_6_122·a_1_0·a_1_1
  120. a_7_16·a_7_17 + a_5_5·a_9_23 + b_2_32·a_1_2·a_9_23 − b_2_33·a_1_2·a_7_17
       + b_2_35·a_1_1·a_3_4 − c_6_13·a_1_1·a_7_17 − c_6_13·a_1_1·a_7_16 + c_6_12·a_1_2·a_7_17
       − c_6_12·a_1_2·a_7_16 − c_6_12·a_1_1·a_7_17 + c_6_12·a_1_1·a_7_16
       − b_2_3·c_6_13·a_1_1·a_5_7 + b_2_3·c_6_12·a_1_2·a_5_9 − b_2_32·c_6_13·a_1_1·a_3_4
       + b_2_33·c_6_13·a_1_1·a_1_2 − b_2_33·c_6_12·a_1_1·a_1_2 + c_6_12·c_6_13·a_1_1·a_1_2
       − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 − c_6_122·a_1_0·a_1_2
       − c_6_122·a_1_0·a_1_1
  121. a_7_16·a_7_17 + a_5_9·a_9_23 + a_5_5·a_9_23 + b_2_33·a_1_2·a_7_17
       + b_2_33·a_1_1·a_7_17 + b_2_34·a_1_1·a_5_7 + c_6_13·a_1_2·a_7_17
       + c_6_13·a_1_2·a_7_16 + c_6_13·a_1_1·a_7_17 + c_6_13·a_1_1·a_7_16 − c_6_12·a_1_2·a_7_17
       − c_6_12·a_1_1·a_7_16 + b_2_3·c_6_13·a_1_1·a_5_7 + b_2_3·c_6_12·a_1_2·a_5_9
       + b_2_3·c_6_12·a_1_1·a_5_9 + b_2_3·c_6_12·a_1_1·a_5_7 − b_2_32·c_6_12·a_1_1·a_3_4
       − b_2_33·c_6_13·a_1_1·a_1_2 + b_2_33·c_6_12·a_1_1·a_1_2 + c_6_12·c_6_13·a_1_1·a_1_2
       − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 + c_6_122·a_1_1·a_1_2
       − c_6_122·a_1_0·a_1_2 − c_6_122·a_1_0·a_1_1
  122.  − a_7_16·a_7_17 + a_5_8·a_9_23 − a_5_5·a_9_23 − b_2_33·a_1_2·a_7_17
       + b_2_33·a_1_1·a_7_17 + b_2_34·a_1_1·a_5_7 − c_6_13·a_1_2·a_7_16
       + c_6_13·a_1_1·a_7_17 − c_6_13·a_1_1·a_7_16 − c_6_12·a_1_2·a_7_16 − c_6_12·a_1_1·a_7_16
       − b_2_3·c_6_12·a_1_2·a_5_9 + b_2_3·c_6_12·a_1_1·a_5_9 − b_2_3·c_6_12·a_1_1·a_5_7
       + b_2_33·c_6_13·a_1_1·a_1_2 − c_6_132·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_1·a_1_2
       − c_6_12·c_6_13·a_1_0·a_1_2 + c_6_12·c_6_13·a_1_0·a_1_1 − c_6_122·a_1_0·a_1_1
  123. b_6_11·a_9_23 − b_2_34·a_7_17 − b_2_35·a_5_7 − b_2_36·a_3_3
       − b_2_33·a_1_1·a_1_2·a_7_17 + b_2_34·a_1_1·a_1_2·a_5_9 + b_2_3·c_6_12·a_7_17
       − b_2_32·c_6_13·a_5_7 + b_2_32·c_6_13·a_5_6 − b_2_32·c_6_12·a_5_9
       + b_2_32·c_6_12·a_5_7 + b_2_33·c_6_13·a_3_3 − b_2_34·c_6_13·a_1_1
       + b_2_34·c_6_12·a_1_2 + c_6_13·a_1_1·a_1_2·a_7_17 − c_6_12·a_1_1·a_1_2·a_7_17
       + b_2_3·c_6_12·a_1_1·a_1_2·a_5_9 − b_2_3·c_6_12·c_6_13·a_1_2
       − b_2_3·c_6_12·c_6_13·a_1_1 + b_2_3·c_6_122·a_1_1
  124.  − a_7_16·a_9_23 + b_2_34·a_1_2·a_7_17 − b_2_34·a_1_1·a_7_17 − b_2_35·a_1_1·a_5_7
       + b_2_36·a_1_1·a_3_4 + c_6_13·a_1_1·a_9_23 − c_6_12·a_1_2·a_9_23 + c_6_12·a_1_1·a_9_23
       − b_2_3·c_6_12·a_1_2·a_7_17 + b_2_3·c_6_12·a_1_1·a_7_17 + b_2_32·c_6_12·a_1_2·a_5_9
       − b_2_32·c_6_12·a_1_1·a_5_9 + b_2_32·c_6_12·a_1_1·a_5_7
       + b_2_33·c_6_12·a_1_1·a_3_4 − b_2_34·c_6_13·a_1_1·a_1_2
       + b_2_34·c_6_12·a_1_1·a_1_2 − c_6_12·c_6_13·a_1_2·a_3_5 + c_6_12·c_6_13·a_1_1·a_3_5
       − c_6_122·a_1_2·a_3_5 − c_6_122·a_1_1·a_3_5 + b_2_3·c_6_12·c_6_13·a_1_1·a_1_2
       + b_2_3·c_6_122·a_1_1·a_1_2
  125. a_7_17·a_9_23 − a_7_16·a_9_23 + b_2_33·a_1_2·a_9_23 − b_2_33·a_1_1·a_9_23
       + b_2_34·a_1_2·a_7_17 + b_2_36·a_1_1·a_3_4 − c_6_13·a_1_2·a_9_23
       − c_6_12·a_1_2·a_9_23 − c_6_12·a_1_1·a_9_23 − b_2_3·c_6_13·a_1_2·a_7_17
       + b_2_3·c_6_13·a_1_1·a_7_17 − b_2_3·c_6_12·a_1_2·a_7_17 − b_2_3·c_6_12·a_1_1·a_7_17
       − b_2_32·c_6_13·a_1_1·a_5_7 + b_2_32·c_6_12·a_1_1·a_5_9
       + b_2_32·c_6_12·a_1_1·a_5_7 + b_2_33·c_6_12·a_1_1·a_3_4
       − b_2_34·c_6_13·a_1_1·a_1_2 − c_6_132·a_1_0·a_3_4 − c_6_132·a_1_0·a_3_3
       + c_6_12·c_6_13·a_1_0·a_3_3 + c_6_122·a_1_0·a_3_4 + b_2_3·c_6_132·a_1_1·a_1_2
       + b_2_3·c_6_12·c_6_13·a_1_1·a_1_2 + b_2_3·c_6_122·a_1_1·a_1_2


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 16.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_6_12, a Duflot regular element of degree 6
    2. c_6_13, a Duflot regular element of degree 6
    3. b_2_3, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_30, an element of degree 2
  5. a_3_20, an element of degree 3
  6. a_3_30, an element of degree 3
  7. a_3_40, an element of degree 3
  8. a_3_50, an element of degree 3
  9. b_4_70, an element of degree 4
  10. a_5_50, an element of degree 5
  11. a_5_60, an element of degree 5
  12. a_5_70, an element of degree 5
  13. a_5_80, an element of degree 5
  14. a_5_90, an element of degree 5
  15. b_6_110, an element of degree 6
  16. c_6_12 − c_2_13, an element of degree 6
  17. c_6_13 − c_2_23, an element of degree 6
  18. a_7_160, an element of degree 7
  19. a_7_170, an element of degree 7
  20. a_9_230, an element of degree 9

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_2a_1_2, an element of degree 1
  4. b_2_3c_2_5, an element of degree 2
  5. a_3_20, an element of degree 3
  6. a_3_30, an element of degree 3
  7. a_3_4c_2_3·a_1_2, an element of degree 3
  8. a_3_50, an element of degree 3
  9. b_4_7c_2_3·c_2_5, an element of degree 4
  10. a_5_5c_2_3·c_2_5·a_1_2, an element of degree 5
  11. a_5_6 − c_2_3·c_2_5·a_1_2, an element of degree 5
  12. a_5_7 − c_2_32·a_1_2, an element of degree 5
  13. a_5_8c_2_3·c_2_5·a_1_2 − c_2_32·a_1_2, an element of degree 5
  14. a_5_9c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2, an element of degree 5
  15. b_6_11 − c_2_3·c_2_52 − c_2_32·c_2_5, an element of degree 6
  16. c_6_12 − c_2_3·c_2_52 − c_2_33, an element of degree 6
  17. c_6_13c_2_52·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43, an element of degree 6
  18. a_7_16 − c_2_32·c_2_5·a_1_2 + c_2_33·a_1_2, an element of degree 7
  19. a_7_17 − c_2_3·c_2_52·a_1_2 + c_2_3·c_2_52·a_1_1 − c_2_3·c_2_4·c_2_5·a_1_2
       − c_2_32·c_2_5·a_1_2 + c_2_33·a_1_2, an element of degree 7
  20. a_9_23 − c_2_3·c_2_53·a_1_1 − c_2_3·c_2_4·c_2_52·a_1_2 − c_2_3·c_2_43·a_1_2
       − c_2_32·c_2_52·a_1_1 + c_2_32·c_2_4·c_2_5·a_1_2 − c_2_34·a_1_2, an element of degree 9


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009