Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 52 of order 243
General information on the group
- The group is also known as 81gp8xC3, the Direct product 81gp8 x C_3.
- The group has 3 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t4 − t3 + t2 + 1) |
| (t − 1)3 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_2_3, a nilpotent element of degree 2
- a_2_4, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- c_2_5, a Duflot regular element of degree 2
- a_3_8, a nilpotent element of degree 3
- a_4_10, a nilpotent element of degree 4
- b_4_11, an element of degree 4
- a_5_14, a nilpotent element of degree 5
- a_5_15, a nilpotent element of degree 5
- b_6_19, an element of degree 6
- c_6_20, a Duflot regular element of degree 6
- a_7_26, a nilpotent element of degree 7
Ring relations
There are 7 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_82, a_5_142, a_5_152, a_7_262
Apart from that, there are 59 minimal relations of maximal degree 13:
- a_1_0·a_1_1
- a_2_3·a_1_0
- a_2_4·a_1_1
- a_2_4·a_1_0 − a_2_3·a_1_1
- b_2_2·a_1_1
- a_2_32
- a_2_3·a_2_4
- a_2_42
- a_2_3·b_2_2
- a_2_4·b_2_2
- a_1_1·a_3_8
- a_1_0·a_3_8
- b_2_2·a_3_8
- a_2_3·a_3_8
- a_2_4·a_3_8
- a_4_10·a_1_1
- a_4_10·a_1_0
- b_4_11·a_1_0
- a_2_3·a_4_10
- a_2_4·a_4_10
- b_2_2·b_4_11 − b_2_2·a_4_10
- a_2_3·b_4_11
- a_1_1·a_5_14
- − b_2_2·a_4_10 + a_1_0·a_5_14
- − a_2_4·b_4_11 + a_1_1·a_5_15
- − b_2_2·a_4_10 + a_1_0·a_5_15
- a_4_10·a_3_8
- a_2_3·a_5_14
- a_2_4·a_5_14
- b_2_2·a_5_15 − b_2_2·a_5_14
- a_2_3·a_5_15
- a_2_4·a_5_15
- b_6_19·a_1_1 + b_4_11·a_3_8
- b_6_19·a_1_0
- a_4_102
- a_3_8·a_5_14
- − a_4_10·b_4_11 + a_3_8·a_5_15
- b_2_2·b_6_19 + b_2_2·a_1_0·a_5_14
- a_2_3·b_6_19
- a_4_10·b_4_11 + a_2_4·b_6_19
- a_4_10·b_4_11 + a_1_1·a_7_26
- a_1_0·a_7_26 − b_2_2·a_1_0·a_5_14
- b_4_11·a_5_14 − b_4_112·a_1_1
- a_4_10·a_5_14
- a_4_10·a_5_15
- b_6_19·a_3_8 − b_4_112·a_1_1
- b_2_2·a_7_26 − b_2_22·a_5_14 + b_2_2·c_6_20·a_1_0
- a_2_3·a_7_26 − a_2_3·c_6_20·a_1_1
- a_2_4·a_7_26 + a_2_3·c_6_20·a_1_1
- a_5_14·a_5_15 − b_4_11·a_1_1·a_5_15
- a_4_10·b_6_19 − b_4_11·a_1_1·a_5_15
- a_3_8·a_7_26 − b_4_11·a_1_1·a_5_15
- b_6_19·a_5_14 + b_4_112·a_3_8
- − b_6_19·a_5_15 + b_4_11·a_7_26 − b_4_11·c_6_20·a_1_1
- a_4_10·a_7_26
- b_6_192 + b_4_113
- a_5_14·a_7_26 − b_4_11·a_1_1·a_7_26 − c_6_20·a_1_0·a_5_14
- a_5_15·a_7_26 + c_6_20·a_1_1·a_5_15 − c_6_20·a_1_0·a_5_14
- b_6_19·a_7_26 + b_4_112·a_5_15 + b_4_11·c_6_20·a_3_8
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_5, a Duflot regular element of degree 2
- c_6_20, a Duflot regular element of degree 6
- b_4_11 − b_2_22, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- c_2_5 → c_2_1, an element of degree 2
- a_3_8 → 0, an element of degree 3
- a_4_10 → 0, an element of degree 4
- b_4_11 → 0, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- b_6_19 → 0, an element of degree 6
- c_6_20 → c_2_23, an element of degree 6
- a_7_26 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_2 → c_2_5, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- a_3_8 → 0, an element of degree 3
- a_4_10 → c_2_5·a_1_1·a_1_2, an element of degree 4
- b_4_11 → c_2_5·a_1_1·a_1_2, an element of degree 4
- a_5_14 → − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_2, an element of degree 5
- a_5_15 → − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_2, an element of degree 5
- b_6_19 → − c_2_52·a_1_1·a_1_2, an element of degree 6
- c_6_20 → − c_2_4·c_2_52 + c_2_43, an element of degree 6
- a_7_26 → − c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2 − c_2_43·a_1_2, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- a_3_8 → 0, an element of degree 3
- a_4_10 → 0, an element of degree 4
- b_4_11 → − c_2_52, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_15 → c_2_52·a_1_2, an element of degree 5
- b_6_19 → c_2_53, an element of degree 6
- c_6_20 → − c_2_53 − c_2_4·c_2_52 + c_2_43, an element of degree 6
- a_7_26 → − c_2_53·a_1_2, an element of degree 7
|