Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 62 of order 243
General information on the group
- The group is also known as E27xV9, the Direct product E27 x C_3 x C_3.
- The group has 4 minimal generators and exponent 3.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 3.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 4.
- The depth exceeds the Duflot bound, which is 3.
- The Poincaré series is
(t2 + 1)2 |
| (t − 1)4 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-∞,-∞,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_1_3, a nilpotent element of degree 1
- b_2_5, an element of degree 2
- b_2_6, an element of degree 2
- b_2_7, an element of degree 2
- b_2_8, an element of degree 2
- c_2_9, a Duflot regular element of degree 2
- c_2_10, a Duflot regular element of degree 2
- a_3_22, a nilpotent element of degree 3
- a_3_23, a nilpotent element of degree 3
- c_6_108, a Duflot regular element of degree 6
Ring relations
There are 6 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_1_32, a_3_222, a_3_232
Apart from that, there are 17 minimal relations of maximal degree 6:
- a_1_0·a_1_1
- b_2_6·a_1_0 − b_2_5·a_1_1
- b_2_7·a_1_1 + b_2_6·a_1_1 − b_2_5·a_1_1
- b_2_7·a_1_0 − b_2_6·a_1_1 + b_2_5·a_1_1
- b_2_8·a_1_0 − b_2_5·a_1_1
- − b_2_62 + b_2_5·b_2_7 + b_2_5·b_2_6
- − b_2_6·b_2_7 − b_2_62 + b_2_5·b_2_8
- − b_2_72 + b_2_6·b_2_8 + b_2_6·b_2_7 − b_2_62
- − b_2_72 + b_2_6·b_2_7 + a_1_1·a_3_22
- − b_2_6·b_2_7 − b_2_62 + b_2_5·b_2_6 + a_1_0·a_3_22
- − b_2_7·b_2_8 + b_2_72 + a_1_1·a_3_23
- − b_2_72 − b_2_62 + b_2_5·b_2_6 + a_1_0·a_3_23
- − b_2_8·a_3_22 + b_2_6·a_3_22
- − b_2_8·a_3_22 + b_2_5·a_3_23 − b_2_5·a_3_22 − b_2_5·b_2_6·a_1_1 + b_2_52·a_1_1
- b_2_7·a_3_23 + b_2_5·b_2_6·a_1_1 − b_2_52·a_1_1
- b_2_8·a_3_22 − b_2_7·a_3_22 + b_2_6·a_3_23 + b_2_5·b_2_6·a_1_1 − b_2_52·a_1_1
- a_3_22·a_3_23 + b_2_5·a_1_1·a_3_23 + b_2_5·a_1_0·a_3_23 − b_2_5·a_1_0·a_3_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 8.
- However, the last relation was already found in degree 6 and the last generator in degree 6.
- The following is a filter regular homogeneous system of parameters:
- c_2_9, a Duflot regular element of degree 2
- c_2_10, a Duflot regular element of degree 2
- c_6_108, a Duflot regular element of degree 6
- b_2_82 − b_2_5·b_2_7 − b_2_5·b_2_6 + b_2_52, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, -1, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 3 terms of the above HSOP, together with 1 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_1_3 → a_1_1, an element of degree 1
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- b_2_7 → 0, an element of degree 2
- b_2_8 → 0, an element of degree 2
- c_2_9 → c_2_3, an element of degree 2
- c_2_10 → c_2_4, an element of degree 2
- a_3_22 → 0, an element of degree 3
- a_3_23 → 0, an element of degree 3
- c_6_108 → − c_2_53, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → a_1_3, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_1_3 → a_1_1, an element of degree 1
- b_2_5 → c_2_9, an element of degree 2
- b_2_6 → − a_1_2·a_1_3, an element of degree 2
- b_2_7 → a_1_2·a_1_3, an element of degree 2
- b_2_8 → 0, an element of degree 2
- c_2_9 → c_2_6, an element of degree 2
- c_2_10 → c_2_7, an element of degree 2
- a_3_22 → − c_2_9·a_1_2 + c_2_8·a_1_3, an element of degree 3
- a_3_23 → − c_2_9·a_1_2 + c_2_8·a_1_3, an element of degree 3
- c_6_108 → − c_2_92·a_1_2·a_1_3 + c_2_8·c_2_92 − c_2_83, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_3, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_1_3 → a_1_1, an element of degree 1
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- b_2_7 → a_1_2·a_1_3, an element of degree 2
- b_2_8 → c_2_9, an element of degree 2
- c_2_9 → c_2_6, an element of degree 2
- c_2_10 → c_2_7, an element of degree 2
- a_3_22 → 0, an element of degree 3
- a_3_23 → − c_2_9·a_1_2 + c_2_8·a_1_3, an element of degree 3
- c_6_108 → c_2_8·c_2_92 − c_2_83, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → a_1_3, an element of degree 1
- a_1_1 → a_1_3, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_1_3 → a_1_1, an element of degree 1
- b_2_5 → c_2_9, an element of degree 2
- b_2_6 → − a_1_2·a_1_3 + c_2_9, an element of degree 2
- b_2_7 → − a_1_2·a_1_3, an element of degree 2
- b_2_8 → c_2_9, an element of degree 2
- c_2_9 → c_2_6, an element of degree 2
- c_2_10 → c_2_7, an element of degree 2
- a_3_22 → − c_2_9·a_1_2 + c_2_8·a_1_3, an element of degree 3
- a_3_23 → c_2_9·a_1_2 − c_2_8·a_1_3, an element of degree 3
- c_6_108 → c_2_8·c_2_92 − c_2_83, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → − a_1_3, an element of degree 1
- a_1_1 → a_1_3, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_1_3 → a_1_1, an element of degree 1
- b_2_5 → − c_2_9, an element of degree 2
- b_2_6 → a_1_2·a_1_3 + c_2_9, an element of degree 2
- b_2_7 → c_2_9, an element of degree 2
- b_2_8 → c_2_9, an element of degree 2
- c_2_9 → c_2_6, an element of degree 2
- c_2_10 → c_2_7, an element of degree 2
- a_3_22 → c_2_9·a_1_3 + c_2_9·a_1_2 − c_2_8·a_1_3, an element of degree 3
- a_3_23 → − c_2_9·a_1_3, an element of degree 3
- c_6_108 → c_2_92·a_1_2·a_1_3 + c_2_93 + c_2_8·c_2_92 − c_2_83, an element of degree 6
|