Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 28 of order 243
General information on the group
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_0, an element of degree 2
- b_2_2, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- b_4_4, an element of degree 4
- a_5_5, a nilpotent element of degree 5
- b_6_5, an element of degree 6
- c_6_6, a Duflot regular element of degree 6
Ring relations
There are 5 "obvious" relations:
a_1_02, a_1_12, a_3_22, a_3_32, a_5_52
Apart from that, there are 35 minimal relations of maximal degree 12:
- a_1_0·a_1_1
- a_2_1·a_1_1
- a_2_1·a_1_0
- b_2_2·a_1_1 + b_2_0·a_1_1
- b_2_2·a_1_0 − b_2_0·a_1_1
- a_2_12
- a_2_1·b_2_0
- b_2_22 + b_2_0·b_2_2
- a_2_1·b_2_2
- a_1_1·a_3_2
- a_1_0·a_3_2
- b_2_0·a_3_2
- b_2_2·a_3_2
- a_2_1·a_3_2
- a_2_1·a_3_3
- b_4_4·a_1_0 + b_2_02·a_1_1
- b_2_0·b_4_4 + b_2_02·b_2_2 + b_2_0·a_1_1·a_3_3 + b_2_0·a_1_0·a_3_3
- b_2_2·b_4_4 − b_2_02·b_2_2 − a_3_2·a_3_3
- a_2_1·b_4_4 + a_3_2·a_3_3
- − a_3_2·a_3_3 + a_1_1·a_5_5 + b_2_0·a_1_1·a_3_3
- a_1_0·a_5_5 + b_2_0·a_1_1·a_3_3 − b_2_0·a_1_0·a_3_3
- b_2_0·a_5_5 + b_2_0·b_2_2·a_3_3 − b_2_02·a_3_3
- b_2_2·a_5_5 + b_2_0·b_2_2·a_3_3
- a_2_1·a_5_5
- b_6_5·a_1_1 − b_4_4·a_3_2
- b_6_5·a_1_0
- a_3_3·a_5_5 + b_4_4·a_1_1·a_3_3 − b_2_02·a_1_1·a_3_3
- a_3_2·a_5_5 − b_4_4·a_1_1·a_3_3 + b_2_02·a_1_1·a_3_3
- b_2_0·b_6_5 + b_2_02·a_1_1·a_3_3
- b_2_2·b_6_5 − b_4_4·a_1_1·a_3_3
- a_2_1·b_6_5 + b_4_4·a_1_1·a_3_3 − b_2_02·a_1_1·a_3_3
- b_6_5·a_3_3 − b_4_4·a_5_5 + b_4_42·a_1_1 + b_2_02·b_2_2·a_3_3 − b_2_04·a_1_1
- b_6_5·a_3_2 − b_4_42·a_1_1 + b_2_04·a_1_1
- b_6_5·a_5_5 − b_4_42·a_3_3 − b_4_42·a_3_2 − b_2_03·b_2_2·a_3_3
- b_6_52 − b_4_43 − b_2_05·b_2_2 + b_4_42·a_1_1·a_3_3 − b_2_04·a_1_1·a_3_3
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_6, a Duflot regular element of degree 6
- b_4_4 + b_2_0·b_2_2 + b_2_02, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- b_4_4 → 0, an element of degree 4
- a_5_5 → 0, an element of degree 5
- b_6_5 → 0, an element of degree 6
- c_6_6 → − c_2_03, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → c_2_2, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- b_4_4 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_5 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- b_6_5 → 0, an element of degree 6
- c_6_6 → c_2_1·c_2_22 − c_2_13, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- b_4_4 → c_2_22, an element of degree 4
- a_5_5 → 0, an element of degree 5
- b_6_5 → − c_2_23, an element of degree 6
- c_6_6 → c_2_1·c_2_22 − c_2_13, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → − a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → − c_2_2, an element of degree 2
- b_2_2 → c_2_2, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → c_2_2·a_1_1 − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- b_4_4 → c_2_22, an element of degree 4
- a_5_5 → c_2_22·a_1_1 − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- b_6_5 → c_2_22·a_1_0·a_1_1, an element of degree 6
- c_6_6 → − c_2_23 + c_2_1·c_2_22 − c_2_13, an element of degree 6
|