Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 32 of order 243
General information on the group
- The group is also known as 81gp3xC3, the Direct product 81gp3 x C_3.
- The group has 3 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t2 + 1 |
| (t + 1) · (t − 1)4 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_2_2, a nilpotent element of degree 2
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- c_2_5, a Duflot regular element of degree 2
- c_2_6, a Duflot regular element of degree 2
- a_3_11, a nilpotent element of degree 3
- a_3_12, a nilpotent element of degree 3
- a_4_17, a nilpotent element of degree 4
- a_5_30, a nilpotent element of degree 5
- a_6_41, a nilpotent element of degree 6
- c_6_42, a Duflot regular element of degree 6
Ring relations
There are 6 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_112, a_3_122, a_5_302
Apart from that, there are 39 minimal relations of maximal degree 12:
- a_1_0·a_1_1
- a_2_2·a_1_0
- a_2_3·a_1_1 + a_2_2·a_1_1
- a_2_3·a_1_0 − a_2_2·a_1_1
- b_2_4·a_1_0
- a_2_22
- a_2_2·a_2_3
- a_2_2·b_2_4 − a_2_32
- a_1_1·a_3_11 − a_2_32
- a_1_0·a_3_11
- − a_2_3·b_2_4 + a_1_1·a_3_12 − a_2_32
- a_1_0·a_3_12 − a_2_32
- b_2_4·a_3_11
- a_2_2·a_3_11
- − a_2_3·a_3_11 + a_2_2·a_3_12
- a_2_3·a_3_12 + a_2_3·a_3_11
- a_4_17·a_1_1 − a_2_3·a_3_11
- a_4_17·a_1_0
- a_3_11·a_3_12
- a_2_2·a_4_17
- a_2_3·a_4_17
- − b_2_4·a_4_17 + a_1_1·a_5_30 + b_2_4·a_1_1·a_3_12 − a_2_32·c_2_6
- a_1_0·a_5_30
- a_4_17·a_3_11
- a_2_2·a_5_30
- a_4_17·a_3_12 + a_2_3·a_5_30 − a_2_2·c_2_6·a_3_12
- a_6_41·a_1_1 + a_4_17·a_3_12 − a_2_2·c_2_6·a_3_12
- a_6_41·a_1_0
- a_4_172
- a_3_11·a_5_30
- b_2_4·a_6_41 − a_3_12·a_5_30 − b_2_42·a_1_1·a_3_12 − c_2_6·a_1_1·a_5_30
− b_2_4·c_2_6·a_1_1·a_3_12 + a_2_32·c_2_62
- a_2_2·a_6_41
- a_2_3·a_6_41
- − a_4_17·a_5_30 + a_1_1·a_3_12·a_5_30
- a_6_41·a_3_12 + a_2_3·c_2_6·a_5_30 − a_2_2·c_6_42·a_1_1 − a_2_2·c_2_62·a_3_12
- a_6_41·a_3_11
- a_4_17·a_6_41
- a_6_41·a_5_30 − b_2_4·a_1_1·a_3_12·a_5_30 − c_2_6·a_1_1·a_3_12·a_5_30
- a_6_412
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_5, a Duflot regular element of degree 2
- c_2_6, a Duflot regular element of degree 2
- c_6_42, a Duflot regular element of degree 6
- b_2_4, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_2_5 → c_2_3, an element of degree 2
- c_2_6 → c_2_5, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_3_12 → 0, an element of degree 3
- a_4_17 → 0, an element of degree 4
- a_5_30 → 0, an element of degree 5
- a_6_41 → 0, an element of degree 6
- c_6_42 → − c_2_43, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_3, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- a_2_3 → a_1_1·a_1_3, an element of degree 2
- b_2_4 → c_2_9, an element of degree 2
- c_2_5 → c_2_6, an element of degree 2
- c_2_6 → c_2_8, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_3_12 → − c_2_9·a_1_1 + c_2_7·a_1_3, an element of degree 3
- a_4_17 → − c_2_9·a_1_2·a_1_3 − c_2_9·a_1_1·a_1_3, an element of degree 4
- a_5_30 → c_2_92·a_1_2 − c_2_92·a_1_1 + c_2_7·c_2_9·a_1_3, an element of degree 5
- a_6_41 → c_2_92·a_1_1·a_1_3 − c_2_92·a_1_1·a_1_2 − c_2_8·c_2_9·a_1_2·a_1_3
− c_2_8·c_2_9·a_1_1·a_1_3 − c_2_7·c_2_9·a_1_2·a_1_3, an element of degree 6
- c_6_42 → c_2_92·a_1_1·a_1_3 − c_2_8·c_2_9·a_1_2·a_1_3 + c_2_8·c_2_92 − c_2_82·c_2_9
+ c_2_7·c_2_92 − c_2_73, an element of degree 6
|