Cohomology of group number 17 of order 243

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243


General information on the group

  • The group has 2 minimal generators and exponent 9.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 3.
  • The depth exceeds the Duflot bound, which is 2.
  • The Poincaré series is
    ( − 1) · (t2  +  1)

    (t  −  1)3 · (t2  +  t  +  1)
  • The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring generators

The cohomology ring has 13 minimal generators of maximal degree 6:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_0, a nilpotent element of degree 2
  4. b_2_1, an element of degree 2
  5. b_2_2, an element of degree 2
  6. c_2_3, a Duflot regular element of degree 2
  7. a_3_4, a nilpotent element of degree 3
  8. a_3_5, a nilpotent element of degree 3
  9. a_3_6, a nilpotent element of degree 3
  10. a_4_6, a nilpotent element of degree 4
  11. a_5_13, a nilpotent element of degree 5
  12. a_6_13, a nilpotent element of degree 6
  13. c_6_18, a Duflot regular element of degree 6

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring relations

There are 6 "obvious" relations:
   a_1_02, a_1_12, a_3_42, a_3_52, a_3_62, a_5_132

Apart from that, there are 45 minimal relations of maximal degree 12:

  1. a_1_0·a_1_1
  2. a_2_0·a_1_1
  3. a_2_0·a_1_0
  4. b_2_1·a_1_0
  5. b_2_2·a_1_1 + b_2_2·a_1_0
  6. a_2_02
  7. a_2_0·b_2_1
  8. a_2_0·b_2_2 + a_1_1·a_3_4
  9.  − a_2_0·b_2_2 + a_1_0·a_3_4
  10.  − b_2_1·b_2_2 + a_1_1·a_3_5
  11. a_1_0·a_3_5
  12. a_1_0·a_3_6
  13. b_2_1·a_3_4
  14. a_2_0·a_3_4
  15. b_2_2·a_3_5 − b_2_22·a_1_0
  16. a_2_0·a_3_5
  17. a_2_0·a_3_6
  18. a_4_6·a_1_1
  19. a_4_6·a_1_0
  20. a_3_4·a_3_5 + b_2_2·a_1_0·a_3_4
  21. a_3_4·a_3_6
  22. b_2_1·a_4_6 − b_2_1·a_1_1·a_3_5
  23. a_2_0·a_4_6
  24.  − b_2_2·a_4_6 + a_1_1·a_5_13 − b_2_2·a_1_0·a_3_4 + b_2_1·a_1_1·a_3_5 − c_2_3·a_1_0·a_3_4
  25. b_2_2·a_4_6 + a_1_0·a_5_13 + b_2_2·a_1_0·a_3_4 + c_2_3·a_1_0·a_3_4
  26. a_4_6·a_3_6 − a_1_1·a_3_5·a_3_6
  27. a_4_6·a_3_5
  28. b_2_22·a_3_6 + a_4_6·a_3_4
  29. b_2_1·a_5_13 + b_2_12·a_3_5 + a_1_1·a_3_5·a_3_6
  30. b_2_22·a_3_6 + a_2_0·a_5_13
  31.  − b_2_22·a_3_6 + a_6_13·a_1_1
  32. b_2_22·a_3_6 + a_6_13·a_1_0
  33. a_4_62
  34. a_3_6·a_5_13 − b_2_1·a_3_5·a_3_6
  35. a_3_5·a_5_13 − b_2_2·a_1_0·a_5_13
  36. b_2_1·a_6_13 − b_2_12·a_1_1·a_3_5
  37. b_2_2·a_6_13 − a_3_4·a_5_13 − b_2_2·a_1_0·a_5_13 + b_2_22·a_1_0·a_3_4
       − c_2_3·a_1_0·a_5_13 + b_2_2·c_2_3·a_1_0·a_3_4 − c_2_32·a_1_0·a_3_4
  38. a_2_0·a_6_13
  39. a_4_6·a_5_13 + a_1_0·a_3_4·a_5_13 + a_2_0·c_2_3·a_5_13
  40. a_6_13·a_3_6 − b_2_1·a_1_1·a_3_5·a_3_6
  41. a_6_13·a_3_5 − a_1_0·a_3_4·a_5_13
  42. a_6_13·a_3_4 + a_1_0·a_3_4·a_5_13 + a_2_0·c_2_3·a_5_13
  43. a_4_6·a_6_13
  44. a_6_13·a_5_13 + b_2_2·a_1_0·a_3_4·a_5_13 + c_2_3·a_1_0·a_3_4·a_5_13
       − a_2_0·c_2_32·a_5_13
  45. a_6_132


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_2_3, a Duflot regular element of degree 2
    2. c_6_18, a Duflot regular element of degree 6
    3. b_2_22 + b_2_12, an element of degree 4
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 9].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_10, an element of degree 2
  5. b_2_20, an element of degree 2
  6. c_2_3c_2_1, an element of degree 2
  7. a_3_40, an element of degree 3
  8. a_3_50, an element of degree 3
  9. a_3_60, an element of degree 3
  10. a_4_60, an element of degree 4
  11. a_5_130, an element of degree 5
  12. a_6_130, an element of degree 6
  13. c_6_18 − c_2_23, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_1a_1_2, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_1c_2_5, an element of degree 2
  5. b_2_2 − a_1_1·a_1_2, an element of degree 2
  6. c_2_3c_2_3, an element of degree 2
  7. a_3_40, an element of degree 3
  8. a_3_5c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
  9. a_3_6 − c_2_5·a_1_0, an element of degree 3
  10. a_4_6 − c_2_5·a_1_1·a_1_2, an element of degree 4
  11. a_5_13 − c_2_5·a_1_0·a_1_1·a_1_2 − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_2, an element of degree 5
  12. a_6_13 − c_2_52·a_1_1·a_1_2, an element of degree 6
  13. c_6_18 − c_2_52·a_1_1·a_1_2 − c_2_32·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_10, an element of degree 2
  5. b_2_2 − c_2_5, an element of degree 2
  6. c_2_3c_2_3, an element of degree 2
  7. a_3_4 − c_2_5·a_1_2, an element of degree 3
  8. a_3_50, an element of degree 3
  9. a_3_60, an element of degree 3
  10. a_4_60, an element of degree 4
  11. a_5_13c_2_52·a_1_1 − c_2_52·a_1_0 − c_2_4·c_2_5·a_1_2 + c_2_3·c_2_5·a_1_2, an element of degree 5
  12. a_6_13 − c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_2, an element of degree 6
  13. c_6_18 − c_2_53 + c_2_4·c_2_52 − c_2_43 − c_2_3·c_2_52 − c_2_32·c_2_5, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009