Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 17 of order 243
General information on the group
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
( − 1) · (t2 + 1) |
| (t − 1)3 · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- c_2_3, a Duflot regular element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- a_4_6, a nilpotent element of degree 4
- a_5_13, a nilpotent element of degree 5
- a_6_13, a nilpotent element of degree 6
- c_6_18, a Duflot regular element of degree 6
Ring relations
There are 6 "obvious" relations:
a_1_02, a_1_12, a_3_42, a_3_52, a_3_62, a_5_132
Apart from that, there are 45 minimal relations of maximal degree 12:
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- b_2_1·a_1_0
- b_2_2·a_1_1 + b_2_2·a_1_0
- a_2_02
- a_2_0·b_2_1
- a_2_0·b_2_2 + a_1_1·a_3_4
- − a_2_0·b_2_2 + a_1_0·a_3_4
- − b_2_1·b_2_2 + a_1_1·a_3_5
- a_1_0·a_3_5
- a_1_0·a_3_6
- b_2_1·a_3_4
- a_2_0·a_3_4
- b_2_2·a_3_5 − b_2_22·a_1_0
- a_2_0·a_3_5
- a_2_0·a_3_6
- a_4_6·a_1_1
- a_4_6·a_1_0
- a_3_4·a_3_5 + b_2_2·a_1_0·a_3_4
- a_3_4·a_3_6
- b_2_1·a_4_6 − b_2_1·a_1_1·a_3_5
- a_2_0·a_4_6
- − b_2_2·a_4_6 + a_1_1·a_5_13 − b_2_2·a_1_0·a_3_4 + b_2_1·a_1_1·a_3_5 − c_2_3·a_1_0·a_3_4
- b_2_2·a_4_6 + a_1_0·a_5_13 + b_2_2·a_1_0·a_3_4 + c_2_3·a_1_0·a_3_4
- a_4_6·a_3_6 − a_1_1·a_3_5·a_3_6
- a_4_6·a_3_5
- b_2_22·a_3_6 + a_4_6·a_3_4
- b_2_1·a_5_13 + b_2_12·a_3_5 + a_1_1·a_3_5·a_3_6
- b_2_22·a_3_6 + a_2_0·a_5_13
- − b_2_22·a_3_6 + a_6_13·a_1_1
- b_2_22·a_3_6 + a_6_13·a_1_0
- a_4_62
- a_3_6·a_5_13 − b_2_1·a_3_5·a_3_6
- a_3_5·a_5_13 − b_2_2·a_1_0·a_5_13
- b_2_1·a_6_13 − b_2_12·a_1_1·a_3_5
- b_2_2·a_6_13 − a_3_4·a_5_13 − b_2_2·a_1_0·a_5_13 + b_2_22·a_1_0·a_3_4
− c_2_3·a_1_0·a_5_13 + b_2_2·c_2_3·a_1_0·a_3_4 − c_2_32·a_1_0·a_3_4
- a_2_0·a_6_13
- a_4_6·a_5_13 + a_1_0·a_3_4·a_5_13 + a_2_0·c_2_3·a_5_13
- a_6_13·a_3_6 − b_2_1·a_1_1·a_3_5·a_3_6
- a_6_13·a_3_5 − a_1_0·a_3_4·a_5_13
- a_6_13·a_3_4 + a_1_0·a_3_4·a_5_13 + a_2_0·c_2_3·a_5_13
- a_4_6·a_6_13
- a_6_13·a_5_13 + b_2_2·a_1_0·a_3_4·a_5_13 + c_2_3·a_1_0·a_3_4·a_5_13
− a_2_0·c_2_32·a_5_13
- a_6_132
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_6_18, a Duflot regular element of degree 6
- b_2_22 + b_2_12, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- c_2_3 → c_2_1, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_6 → 0, an element of degree 4
- a_5_13 → 0, an element of degree 5
- a_6_13 → 0, an element of degree 6
- c_6_18 → − c_2_23, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → c_2_5, an element of degree 2
- b_2_2 → − a_1_1·a_1_2, an element of degree 2
- c_2_3 → c_2_3, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- a_3_6 → − c_2_5·a_1_0, an element of degree 3
- a_4_6 → − c_2_5·a_1_1·a_1_2, an element of degree 4
- a_5_13 → − c_2_5·a_1_0·a_1_1·a_1_2 − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_2, an element of degree 5
- a_6_13 → − c_2_52·a_1_1·a_1_2, an element of degree 6
- c_6_18 → − c_2_52·a_1_1·a_1_2 − c_2_32·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → − c_2_5, an element of degree 2
- c_2_3 → c_2_3, an element of degree 2
- a_3_4 → − c_2_5·a_1_2, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_6 → 0, an element of degree 4
- a_5_13 → c_2_52·a_1_1 − c_2_52·a_1_0 − c_2_4·c_2_5·a_1_2 + c_2_3·c_2_5·a_1_2, an element of degree 5
- a_6_13 → − c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_2, an element of degree 6
- c_6_18 → − c_2_53 + c_2_4·c_2_52 − c_2_43 − c_2_3·c_2_52 − c_2_32·c_2_5, an element of degree 6
|