Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 18 of order 243
General information on the group
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
− 1 |
| (t − 1)3 · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_1, a nilpotent element of degree 2
- c_2_2, a Duflot regular element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_4_4, a nilpotent element of degree 4
- b_4_5, an element of degree 4
- a_5_7, a nilpotent element of degree 5
- a_5_8, a nilpotent element of degree 5
- a_6_7, a nilpotent element of degree 6
- b_6_9, an element of degree 6
- c_6_11, a Duflot regular element of degree 6
- a_7_14, a nilpotent element of degree 7
Ring relations
There are 8 "obvious" relations:
a_1_02, a_1_12, a_3_22, a_3_32, a_3_42, a_5_72, a_5_82, a_7_142
Apart from that, there are 80 minimal relations of maximal degree 13:
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- a_2_1·a_1_1
- a_2_1·a_1_0
- a_2_02
- a_2_0·a_2_1
- a_2_12
- a_1_1·a_3_2
- a_1_0·a_3_2
- a_1_1·a_3_4 − a_1_1·a_3_3
- − a_1_1·a_3_3 + a_1_0·a_3_4 + a_1_0·a_3_3
- a_2_0·a_3_2
- a_2_1·a_3_2
- a_2_0·a_3_3
- − a_2_1·a_3_3 + a_2_0·a_3_4
- a_2_1·a_3_4 + a_2_1·a_3_3
- a_4_4·a_1_1 + a_2_1·a_3_3
- a_4_4·a_1_0 − a_2_1·a_3_3
- b_4_5·a_1_1 + b_4_5·a_1_0
- a_3_2·a_3_4 − a_3_2·a_3_3
- a_3_3·a_3_4 − a_3_2·a_3_3 + c_2_2·a_1_0·a_3_4 + c_2_2·a_1_0·a_3_3
- a_2_0·a_4_4
- a_2_1·a_4_4
- a_2_0·b_4_5 − a_3_2·a_3_3
- a_2_1·b_4_5
- − a_3_3·a_3_4 + a_1_1·a_5_7
- a_3_3·a_3_4 + a_1_0·a_5_7
- a_1_1·a_5_8 + a_1_0·a_5_8
- a_4_4·a_3_2
- a_4_4·a_3_4 − a_4_4·a_3_3
- b_4_5·a_3_4 − b_4_5·a_3_3 + b_4_5·a_3_2 + a_4_4·a_3_3 + c_2_2·b_4_5·a_1_0
− a_2_0·c_2_2·a_3_4
- a_2_0·a_5_7 − a_2_0·c_2_2·a_3_4
- a_2_1·a_5_7
- a_4_4·a_3_3 + a_2_0·a_5_8
- a_2_1·a_5_8
- a_6_7·a_1_1 − a_4_4·a_3_3
- a_6_7·a_1_0 + a_4_4·a_3_3
- b_6_9·a_1_1 − b_4_5·a_3_4 + b_4_5·a_3_3 + b_4_5·a_3_2 + a_2_0·c_2_2·a_3_4
- b_6_9·a_1_0 + b_4_5·a_3_4 − b_4_5·a_3_3 − b_4_5·a_3_2 − a_2_0·c_2_2·a_3_4
- a_4_42
- a_3_3·a_5_7 + a_3_2·a_5_7 + b_4_5·a_1_0·a_3_3 − c_2_22·a_1_0·a_3_4
− c_2_22·a_1_0·a_3_3
- a_3_4·a_5_7 − b_4_5·a_1_0·a_3_3
- a_3_3·a_5_7 + c_2_2·a_1_0·a_5_7 + c_2_22·a_1_0·a_3_4 + c_2_22·a_1_0·a_3_3
- − a_4_4·b_4_5 + a_3_3·a_5_7 + a_3_2·a_5_8 + b_4_5·a_1_0·a_3_3 − c_2_22·a_1_0·a_3_4
− c_2_22·a_1_0·a_3_3
- a_4_4·b_4_5 + a_3_4·a_5_8 − a_3_3·a_5_8 − a_3_3·a_5_7 − b_4_5·a_1_0·a_3_3
+ c_2_2·a_1_0·a_5_8 + c_2_22·a_1_0·a_3_4 + c_2_22·a_1_0·a_3_3
- a_2_0·a_6_7
- a_2_1·a_6_7
- a_2_0·b_6_9 − a_3_3·a_5_7 + b_4_5·a_1_0·a_3_3 + c_2_22·a_1_0·a_3_4
+ c_2_22·a_1_0·a_3_3
- a_2_1·b_6_9
- a_4_4·b_4_5 − a_3_4·a_5_8 + a_3_3·a_5_8 + a_1_1·a_7_14 − b_4_5·a_1_0·a_3_3
+ c_2_22·a_1_0·a_3_4 + c_2_22·a_1_0·a_3_3
- − a_4_4·b_4_5 + a_3_4·a_5_8 − a_3_3·a_5_8 + a_1_0·a_7_14 + b_4_5·a_1_0·a_3_3
− c_2_22·a_1_0·a_3_4 − c_2_22·a_1_0·a_3_3
- a_4_4·a_5_8 − a_4_4·a_5_7 − a_2_0·c_2_22·a_3_4
- − a_4_4·a_5_7 + a_1_0·a_3_3·a_5_8 + a_2_0·c_2_2·a_5_8 − a_2_0·c_2_22·a_3_4
- a_6_7·a_3_3 − a_1_0·a_3_3·a_5_8 + a_2_0·c_2_22·a_3_4
- a_6_7·a_3_2 − a_1_0·a_3_3·a_5_8
- a_6_7·a_3_4 + a_4_4·a_5_7 − a_1_0·a_3_3·a_5_8 − a_2_0·c_2_22·a_3_4
- b_6_9·a_3_3 − b_4_5·a_5_7 + a_4_4·a_5_7 − a_1_0·a_3_3·a_5_8 + c_2_2·b_4_5·a_3_3
− c_2_2·b_4_5·a_3_2 + c_2_22·b_4_5·a_1_0
- b_6_9·a_3_2 + b_4_52·a_1_0 + a_1_0·a_3_3·a_5_8 − c_2_2·b_4_5·a_3_2
- b_6_9·a_3_4 − b_4_5·a_5_7 − b_4_52·a_1_0 − a_4_4·a_5_7 + a_1_0·a_3_3·a_5_8
+ c_2_2·b_4_5·a_3_3 − c_2_2·b_4_5·a_3_2 − c_2_22·b_4_5·a_1_0
- − a_4_4·a_5_7 + a_2_0·a_7_14 − a_1_0·a_3_3·a_5_8 + a_2_0·c_2_22·a_3_4
- a_2_1·a_7_14
- a_4_4·a_6_7
- b_4_5·a_6_7 + a_4_4·b_6_9 + a_5_7·a_5_8 − b_4_5·a_1_0·a_5_8 + c_2_2·a_3_3·a_5_8
+ c_2_2·b_4_5·a_1_0·a_3_3 − c_2_22·a_1_0·a_5_8 − c_2_22·a_1_0·a_5_7 + c_2_23·a_1_0·a_3_4 + c_2_23·a_1_0·a_3_3
- b_4_5·a_6_7 + a_3_3·a_7_14 + b_4_5·a_1_0·a_5_8 − b_4_5·a_1_0·a_5_7 − c_6_11·a_1_0·a_3_4
+ c_6_11·a_1_0·a_3_3 − c_2_2·a_3_3·a_5_8 − c_2_2·b_4_5·a_1_0·a_3_3 − c_2_22·a_1_0·a_5_7 − c_2_23·a_1_0·a_3_4 − c_2_23·a_1_0·a_3_3
- b_4_5·a_6_7 + a_5_7·a_5_8 + a_3_2·a_7_14 − b_4_5·a_1_0·a_5_8 + b_4_5·a_1_0·a_5_7
+ c_2_2·a_3_3·a_5_8 + c_2_2·b_4_5·a_1_0·a_3_3 − c_2_22·a_1_0·a_5_8
- b_4_5·a_6_7 + a_3_4·a_7_14 − b_4_5·a_1_0·a_5_7 + c_6_11·a_1_0·a_3_4 − c_6_11·a_1_0·a_3_3
− c_2_2·a_3_3·a_5_8 + c_2_22·a_1_0·a_5_8 − c_2_22·a_1_0·a_5_7
- − b_4_5·a_6_7 − a_5_7·a_5_8 − b_4_5·a_1_0·a_5_8 − b_4_5·a_1_0·a_5_7 − c_2_2·a_3_3·a_5_8
+ c_2_2·a_1_0·a_7_14 + c_2_2·b_4_5·a_1_0·a_3_3 − c_2_23·a_1_0·a_3_4 − c_2_23·a_1_0·a_3_3
- a_6_7·a_5_8 + a_6_7·a_5_7 − a_2_0·c_6_11·a_3_4 + a_2_0·c_2_22·a_5_8
− a_2_0·c_2_23·a_3_4
- b_6_9·a_5_7 − b_4_52·a_3_3 − c_2_2·b_4_52·a_1_0 + c_2_22·b_4_5·a_3_3
− c_2_22·b_4_5·a_3_2 − c_2_23·b_4_5·a_1_0 + a_2_0·c_2_23·a_3_4
- − a_6_7·a_5_7 + a_1_0·a_3_3·a_7_14 + a_2_0·c_2_22·a_5_8 + a_2_0·c_2_23·a_3_4
- − a_6_7·a_5_7 + a_4_4·a_7_14 − c_2_2·a_1_0·a_3_3·a_5_8 − a_2_0·c_2_22·a_5_8
+ a_2_0·c_2_23·a_3_4
- − b_6_9·a_5_8 + b_4_5·a_7_14 + b_4_52·a_3_2 + a_6_7·a_5_7 + c_2_2·b_4_5·a_5_7
+ c_2_2·b_4_52·a_1_0 − a_2_0·c_6_11·a_3_4 − c_2_2·a_1_0·a_3_3·a_5_8 − c_2_22·b_4_5·a_3_3 − c_2_22·b_4_5·a_3_2 + a_2_0·c_2_22·a_5_8
- a_6_72
- b_6_92 − b_4_53 + b_4_5·a_3_3·a_5_8 + b_4_52·a_1_0·a_3_3 + c_2_2·b_4_5·b_6_9
− c_2_2·b_4_5·a_1_0·a_5_7 + c_2_22·b_4_52 + c_2_22·b_4_5·a_1_0·a_3_3
- a_6_7·b_6_9 + b_4_5·a_3_3·a_5_8 + b_4_5·a_1_0·a_7_14 + b_4_52·a_1_0·a_3_3
+ c_2_2·a_3_3·a_7_14 + c_2_2·b_4_5·a_1_0·a_5_7 − c_2_2·c_6_11·a_1_0·a_3_4 + c_2_2·c_6_11·a_1_0·a_3_3 − c_2_22·a_3_3·a_5_8 − c_2_23·a_1_0·a_5_7 − c_2_24·a_1_0·a_3_4 − c_2_24·a_1_0·a_3_3
- − a_6_7·b_6_9 + a_5_8·a_7_14 − a_5_7·a_7_14 + b_4_52·a_1_0·a_3_3 + c_2_2·a_3_3·a_7_14
− c_2_2·b_4_5·a_1_0·a_5_8 + c_2_2·b_4_5·a_1_0·a_5_7 − c_2_2·c_6_11·a_1_0·a_3_4 + c_2_2·c_6_11·a_1_0·a_3_3 + c_2_22·b_4_5·a_1_0·a_3_3
- a_5_7·a_7_14 − b_4_5·a_3_3·a_5_8 + b_4_52·a_1_0·a_3_3 − c_2_2·b_4_5·a_1_0·a_5_8
+ c_2_2·b_4_5·a_1_0·a_5_7 + c_2_22·a_3_3·a_5_8 + c_2_22·a_1_0·a_7_14 + c_2_22·b_4_5·a_1_0·a_3_3 + c_2_23·a_1_0·a_5_8 + c_2_23·a_1_0·a_5_7 − c_2_24·a_1_0·a_3_4 − c_2_24·a_1_0·a_3_3
- b_6_9·a_7_14 − b_4_52·a_5_8 − b_4_53·a_1_0 + b_4_5·a_1_0·a_3_3·a_5_8
+ c_2_2·b_4_5·a_7_14 + c_2_2·b_4_52·a_3_3 + c_2_2·b_4_52·a_3_2 − c_2_2·a_1_0·a_3_3·a_7_14 + c_2_22·b_4_5·a_5_8 + c_2_22·b_4_52·a_1_0 + a_2_0·c_2_2·c_6_11·a_3_4 − c_2_22·a_1_0·a_3_3·a_5_8 − c_2_23·b_4_5·a_3_3 + c_2_23·b_4_5·a_3_2 − a_2_0·c_2_23·a_5_8 − c_2_24·b_4_5·a_1_0
- a_6_7·a_7_14 − b_4_5·a_1_0·a_3_3·a_5_8 − c_2_2·a_1_0·a_3_3·a_7_14
− a_2_0·c_2_2·c_6_11·a_3_4 − c_2_22·a_1_0·a_3_3·a_5_8 − a_2_0·c_2_24·a_3_4
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_2, a Duflot regular element of degree 2
- c_6_11, a Duflot regular element of degree 6
- b_4_5, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 5, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- c_2_2 → c_2_1, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- b_4_5 → 0, an element of degree 4
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_6_7 → 0, an element of degree 6
- b_6_9 → 0, an element of degree 6
- c_6_11 → − c_2_23, an element of degree 6
- a_7_14 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- c_2_2 → c_2_3, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → c_2_5·a_1_2, an element of degree 3
- a_3_4 → c_2_5·a_1_2, an element of degree 3
- a_4_4 → 0, an element of degree 4
- b_4_5 → c_2_52, an element of degree 4
- a_5_7 → − c_2_52·a_1_2 − c_2_3·c_2_5·a_1_2, an element of degree 5
- a_5_8 → c_2_52·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2, an element of degree 5
- a_6_7 → − c_2_52·a_1_1·a_1_2, an element of degree 6
- b_6_9 → c_2_52·a_1_1·a_1_2 − c_2_53 + c_2_3·c_2_52, an element of degree 6
- c_6_11 → c_2_52·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43 + c_2_3·c_2_52, an element of degree 6
- a_7_14 → − c_2_53·a_1_2 − c_2_53·a_1_1 + c_2_4·c_2_52·a_1_2 − c_2_3·c_2_52·a_1_2
+ c_2_3·c_2_52·a_1_1 − c_2_3·c_2_4·c_2_5·a_1_2 − c_2_32·c_2_5·a_1_2, an element of degree 7
|