Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 20 of order 243
General information on the group
- The group has 2 minimal generators and exponent 27.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t4 − t3 + t2 + 1 |
| (t − 1)2 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-3,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_4_1, a nilpotent element of degree 4
- b_4_2, an element of degree 4
- a_5_2, a nilpotent element of degree 5
- a_5_3, a nilpotent element of degree 5
- b_6_3, an element of degree 6
- c_6_4, a Duflot regular element of degree 6
- a_7_5, a nilpotent element of degree 7
Ring relations
There are 6 "obvious" relations:
a_1_02, a_1_12, a_3_22, a_5_22, a_5_32, a_7_52
Apart from that, there are 59 minimal relations of maximal degree 13:
- a_1_0·a_1_1
- a_2_0·a_1_0
- a_2_1·a_1_1 + a_2_0·a_1_1
- a_2_1·a_1_0 − a_2_0·a_1_1
- b_2_2·a_1_0
- a_2_02
- a_2_0·a_2_1
- a_2_12
- a_2_0·b_2_2
- a_2_1·b_2_2
- a_1_1·a_3_2
- a_1_0·a_3_2
- b_2_2·a_3_2
- a_2_0·a_3_2
- a_2_1·a_3_2
- a_4_1·a_1_1
- a_4_1·a_1_0
- b_4_2·a_1_1 + b_4_2·a_1_0
- a_2_0·a_4_1
- a_2_1·a_4_1
- b_2_2·b_4_2
- a_2_1·b_4_2
- − b_2_2·a_4_1 + a_1_1·a_5_2
- a_1_0·a_5_2
- b_2_2·a_4_1 + a_2_0·b_4_2 + a_1_1·a_5_3
- − a_2_0·b_4_2 + a_1_0·a_5_3
- a_4_1·a_3_2
- a_2_0·a_5_2
- a_2_1·a_5_2
- b_2_2·a_5_3 + b_2_2·a_5_2
- a_2_0·a_5_3
- a_2_1·a_5_3
- b_6_3·a_1_1 − b_4_2·a_3_2
- b_6_3·a_1_0 + b_4_2·a_3_2
- a_4_12
- a_3_2·a_5_2
- − a_4_1·b_4_2 + a_3_2·a_5_3
- b_2_2·b_6_3 − b_2_2·a_1_1·a_5_2
- a_4_1·b_4_2 + a_2_0·b_6_3
- a_2_1·b_6_3
- − a_4_1·b_4_2 + a_1_1·a_7_5 + b_2_2·a_1_1·a_5_2
- a_4_1·b_4_2 + a_1_0·a_7_5
- b_4_2·a_5_2 + b_4_22·a_1_0
- a_4_1·a_5_2
- a_4_1·a_5_3
- b_6_3·a_3_2 + b_4_22·a_1_0
- b_2_2·a_7_5 + b_2_22·a_5_2
- a_2_0·a_7_5
- a_2_1·a_7_5
- a_5_2·a_5_3 + b_4_2·a_1_0·a_5_3
- a_4_1·b_6_3 − a_5_2·a_5_3
- − a_5_2·a_5_3 + a_3_2·a_7_5
- b_6_3·a_5_2 − b_4_22·a_3_2
- − b_6_3·a_5_3 + b_4_2·a_7_5
- a_4_1·a_7_5
- a_5_3·a_7_5
- b_6_32 − b_4_23 + a_5_2·a_7_5
- − b_6_32 + b_4_23 + b_4_2·a_1_0·a_7_5
- b_6_3·a_7_5 − b_4_22·a_5_3
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_4, a Duflot regular element of degree 6
- b_4_2 + b_2_22, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, 3, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_2 → 0, an element of degree 4
- a_5_2 → 0, an element of degree 5
- a_5_3 → 0, an element of degree 5
- b_6_3 → 0, an element of degree 6
- c_6_4 → − c_2_03, an element of degree 6
- a_7_5 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_2_2, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_2 → 0, an element of degree 4
- a_5_2 → 0, an element of degree 5
- a_5_3 → 0, an element of degree 5
- b_6_3 → 0, an element of degree 6
- c_6_4 → c_2_1·c_2_22 − c_2_13, an element of degree 6
- a_7_5 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_2 → c_2_22, an element of degree 4
- a_5_2 → 0, an element of degree 5
- a_5_3 → c_2_22·a_1_1, an element of degree 5
- b_6_3 → − c_2_23, an element of degree 6
- c_6_4 → − c_2_23 + c_2_1·c_2_22 − c_2_13, an element of degree 6
- a_7_5 → − c_2_23·a_1_1, an element of degree 7
|