Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 45 of order 243
General information on the group
- The group has 3 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t8 − t7 + 2·t6 − 2·t5 + t4 − t3 − 1 |
| (t − 1)3 · (t2 − t + 1)2 · (t2 + t + 1)2 |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_2_3, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_5_3, a nilpotent element of degree 5
- a_5_4, a nilpotent element of degree 5
- a_5_5, a nilpotent element of degree 5
- a_5_6, a nilpotent element of degree 5
- c_6_8, a Duflot regular element of degree 6
- c_6_9, a Duflot regular element of degree 6
- a_7_12, a nilpotent element of degree 7
Ring relations
There are 11 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_22, a_3_32, a_3_42, a_5_32, a_5_42, a_5_52, a_5_62, a_7_122
Apart from that, there are 44 minimal relations of maximal degree 12:
- b_2_3·a_1_1
- b_2_3·a_1_2
- a_1_1·a_3_2
- a_1_2·a_3_2 + a_1_1·a_3_3
- a_1_2·a_3_3 − a_1_2·a_3_2 + a_1_1·a_3_4
- a_1_2·a_3_4 + a_1_2·a_3_3 + a_1_2·a_3_2
- b_2_3·a_3_2
- b_2_3·a_3_3
- b_2_3·a_3_4
- a_1_1·a_5_3
- − a_3_2·a_3_3 + a_1_2·a_5_3
- a_3_2·a_3_3 + a_1_1·a_5_4
- a_3_2·a_3_4 − a_3_2·a_3_3 + a_1_2·a_5_4
- − a_3_2·a_3_4 + a_3_2·a_3_3 + a_1_1·a_5_5
- − a_3_3·a_3_4 − a_3_2·a_3_4 + a_3_2·a_3_3 + a_1_2·a_5_5
- a_3_3·a_3_4 − a_3_2·a_3_3 + a_1_1·a_5_6
- a_1_2·a_5_6
- b_2_3·a_5_4 + b_2_3·a_5_3
- b_2_3·a_5_5 + b_2_3·a_5_3
- a_3_2·a_5_3
- − a_3_4·a_5_3 + a_3_3·a_5_4
- a_3_3·a_5_3 + a_3_2·a_5_4
- − a_3_4·a_5_4 − a_3_4·a_5_3 + a_3_3·a_5_5 − a_3_3·a_5_3
- − a_3_4·a_5_3 + a_3_3·a_5_3 + a_3_2·a_5_5
- a_3_4·a_5_5 − a_3_4·a_5_4 − a_3_4·a_5_3 + a_3_3·a_5_6 + a_3_3·a_5_3
- − a_3_4·a_5_4 + a_3_4·a_5_3 + a_3_2·a_5_6
- a_3_4·a_5_6 − a_3_4·a_5_5 − a_3_4·a_5_4 − a_3_3·a_5_3
- − a_3_4·a_5_5 + a_3_4·a_5_4 + a_3_4·a_5_3 − a_3_3·a_5_3 + c_6_8·a_1_1·a_1_2
- a_3_4·a_5_5 − a_3_4·a_5_4 − a_3_4·a_5_3 − a_3_3·a_5_3 + c_6_9·a_1_1·a_1_2
- a_3_4·a_5_5 − a_3_4·a_5_4 + a_3_3·a_5_3 + a_1_1·a_7_12 − c_6_8·a_1_0·a_1_1
- − a_3_4·a_5_5 − a_3_4·a_5_4 + a_1_2·a_7_12 − c_6_8·a_1_0·a_1_2
- b_2_3·a_7_12 + b_2_32·a_5_6 + b_2_3·c_6_8·a_1_0
- a_5_4·a_5_5 + a_5_3·a_5_5 − a_5_3·a_5_4
- a_5_4·a_5_6 + a_5_3·a_5_6 + c_6_8·a_1_1·a_3_3
- − a_5_5·a_5_6 + a_5_4·a_5_6 + c_6_8·a_1_1·a_3_4
- − a_5_4·a_5_6 − a_5_3·a_5_6 + a_5_3·a_5_4 + c_6_9·a_1_1·a_3_3
- a_5_5·a_5_6 − a_5_4·a_5_6 − a_5_3·a_5_5 + a_5_3·a_5_4 + c_6_9·a_1_1·a_3_4
- a_5_5·a_5_6 − a_5_4·a_5_6 + a_5_3·a_5_5 − a_5_3·a_5_4 + a_3_3·a_7_12 − c_6_8·a_1_0·a_3_3
- − a_5_4·a_5_6 − a_5_3·a_5_6 − a_5_3·a_5_5 + a_5_3·a_5_4 + a_3_2·a_7_12 − c_6_8·a_1_0·a_3_2
- a_5_5·a_5_6 − a_5_4·a_5_6 − a_5_3·a_5_5 − a_5_3·a_5_4 + a_3_4·a_7_12 − c_6_8·a_1_0·a_3_4
- a_5_3·a_7_12 + b_2_3·a_5_3·a_5_6 + c_6_9·a_1_1·a_5_5 − c_6_9·a_1_1·a_5_4
+ c_6_8·a_1_1·a_5_5 − c_6_8·a_1_0·a_5_3
- a_5_5·a_7_12 − b_2_3·a_5_3·a_5_6 − c_6_9·a_1_1·a_5_6 + c_6_8·a_1_1·a_5_5
− c_6_8·a_1_0·a_5_5
- a_5_4·a_7_12 − b_2_3·a_5_3·a_5_6 − c_6_9·a_1_1·a_5_6 + c_6_9·a_1_1·a_5_4
− c_6_8·a_1_1·a_5_6 + c_6_8·a_1_1·a_5_5 − c_6_8·a_1_0·a_5_4
- a_5_6·a_7_12 − c_6_9·a_1_1·a_5_6 + c_6_8·a_1_1·a_5_6 + c_6_8·a_1_1·a_5_5
+ c_6_8·a_1_1·a_5_4 − c_6_8·a_1_0·a_5_6
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_8, a Duflot regular element of degree 6
- c_6_9, a Duflot regular element of degree 6
- b_2_3, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_5_3 → 0, an element of degree 5
- a_5_4 → 0, an element of degree 5
- a_5_5 → 0, an element of degree 5
- a_5_6 → 0, an element of degree 5
- c_6_8 → − c_2_23, an element of degree 6
- c_6_9 → c_2_23 + c_2_13, an element of degree 6
- a_7_12 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → c_2_5, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_5_3 → c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2, an element of degree 5
- a_5_4 → − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_2, an element of degree 5
- a_5_5 → − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_2, an element of degree 5
- a_5_6 → − c_2_52·a_1_0 + c_2_3·c_2_5·a_1_2, an element of degree 5
- c_6_8 → − c_2_52·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43, an element of degree 6
- c_6_9 → − c_2_52·a_1_0·a_1_2 − c_2_4·c_2_52 + c_2_43 − c_2_3·c_2_52 + c_2_33, an element of degree 6
- a_7_12 → c_2_53·a_1_0 − c_2_4·c_2_52·a_1_2 + c_2_43·a_1_2 − c_2_3·c_2_52·a_1_2, an element of degree 7
|