Cohomology of group number 6 of order 243

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243


General information on the group

  • The group has 2 minimal generators and exponent 9.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t2  +  1) · (t5  +  2·t3  +  1)

    (t  +  1) · (t  −  1)3 · (t2  −  t  +  1)2 · (t2  +  t  +  1)2
  • The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring generators

The cohomology ring has 27 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_1, a nilpotent element of degree 2
  4. b_2_0, an element of degree 2
  5. b_2_2, an element of degree 2
  6. a_3_1, a nilpotent element of degree 3
  7. a_3_2, a nilpotent element of degree 3
  8. a_3_3, a nilpotent element of degree 3
  9. a_3_4, a nilpotent element of degree 3
  10. a_3_5, a nilpotent element of degree 3
  11. a_4_4, a nilpotent element of degree 4
  12. a_4_6, a nilpotent element of degree 4
  13. b_4_7, an element of degree 4
  14. a_5_6, a nilpotent element of degree 5
  15. a_5_7, a nilpotent element of degree 5
  16. a_5_8, a nilpotent element of degree 5
  17. a_5_9, a nilpotent element of degree 5
  18. a_5_10, a nilpotent element of degree 5
  19. a_6_7, a nilpotent element of degree 6
  20. a_6_10, a nilpotent element of degree 6
  21. a_6_9, a nilpotent element of degree 6
  22. b_6_12, an element of degree 6
  23. c_6_14, a Duflot regular element of degree 6
  24. c_6_15, a Duflot regular element of degree 6
  25. a_7_17, a nilpotent element of degree 7
  26. a_7_18, a nilpotent element of degree 7
  27. a_8_15, a nilpotent element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Ring relations

There are 14 "obvious" relations:
   a_1_02, a_1_12, a_3_12, a_3_22, a_3_32, a_3_42, a_3_52, a_5_62, a_5_72, a_5_82, a_5_92, a_5_102, a_7_172, a_7_182

Apart from that, there are 276 minimal relations of maximal degree 16:

  1. a_1_0·a_1_1
  2. a_2_1·a_1_1
  3. a_2_1·a_1_0
  4. b_2_0·a_1_1
  5. b_2_2·a_1_1
  6. b_2_2·a_1_0
  7. a_2_12
  8. a_2_1·b_2_0
  9.  − a_2_1·b_2_2 + a_1_1·a_3_1
  10.  − b_2_0·b_2_2 + a_1_0·a_3_1
  11. a_1_1·a_3_2
  12.  − a_2_1·b_2_2 + a_1_0·a_3_2
  13. a_1_1·a_3_3
  14. a_1_0·a_3_3
  15.  − a_2_1·b_2_2 + a_1_1·a_3_4
  16. a_1_0·a_3_4
  17. a_1_1·a_3_5
  18. b_2_2·a_3_1
  19. a_2_1·a_3_1
  20. b_2_0·a_3_2
  21. a_2_1·a_3_2
  22. b_2_2·a_3_3 − b_2_2·a_3_2
  23. a_2_1·a_3_3
  24. b_2_0·a_3_4
  25. b_2_2·a_3_4
  26. a_2_1·a_3_4
  27. a_2_1·a_3_5
  28. a_4_4·a_1_1
  29. a_4_4·a_1_0
  30. a_4_6·a_1_1
  31. a_4_6·a_1_0
  32. b_4_7·a_1_1
  33. b_4_7·a_1_0 − b_2_0·a_3_3
  34. a_3_1·a_3_2
  35.  − a_3_2·a_3_3 + a_3_1·a_3_4
  36. a_3_3·a_3_4 + a_3_2·a_3_4
  37. a_3_4·a_3_5 − a_3_3·a_3_4
  38. a_3_2·a_3_5 + a_3_2·a_3_3
  39. b_2_0·a_4_4 − b_2_0·a_1_0·a_3_5
  40. b_2_2·a_4_4 + a_3_3·a_3_4
  41. a_2_1·a_4_4
  42. b_2_0·a_4_6 − b_2_0·a_1_0·a_3_5
  43. b_2_2·a_4_6 + a_3_2·a_3_3
  44. a_2_1·a_4_6
  45. b_2_2·b_4_7 − b_2_23 − a_3_3·a_3_4 + a_3_1·a_3_3
  46. a_2_1·b_4_7
  47. a_1_1·a_5_6
  48.  − a_3_3·a_3_5 + a_1_0·a_5_6 + b_2_0·a_1_0·a_3_5
  49. a_3_2·a_3_3 + a_1_1·a_5_7
  50. a_3_1·a_3_3 + a_1_0·a_5_7 + b_2_0·a_1_0·a_3_5
  51. a_3_3·a_3_4 − a_3_2·a_3_3 + a_1_1·a_5_8
  52. a_3_3·a_3_5 + a_3_2·a_3_3 − a_3_1·a_3_3 + a_1_0·a_5_8 + b_2_0·a_1_0·a_3_5
  53. a_3_3·a_3_4 + a_1_1·a_5_9
  54.  − a_3_3·a_3_5 − a_3_2·a_3_3 + a_1_0·a_5_9 − b_2_0·a_1_0·a_3_5
  55. a_3_3·a_3_4 + a_1_1·a_5_10
  56.  − a_3_3·a_3_5 − a_3_3·a_3_4 + a_3_2·a_3_3 − a_3_1·a_3_3 + a_1_0·a_5_10
  57. b_2_22·a_3_5 + b_2_22·a_3_2 + a_4_4·a_3_3
  58. a_4_4·a_3_1 + a_1_0·a_3_1·a_3_5
  59.  − b_2_22·a_3_5 − b_2_22·a_3_2 + a_4_4·a_3_5
  60. a_4_4·a_3_4
  61.  − b_2_22·a_3_5 − b_2_22·a_3_2 + a_4_4·a_3_2
  62. a_4_6·a_3_3
  63. b_2_22·a_3_5 + b_2_22·a_3_2 + a_4_6·a_3_1 + a_1_0·a_3_1·a_3_5
  64. a_4_6·a_3_5
  65. a_4_6·a_3_4
  66. a_4_6·a_3_2
  67. b_4_7·a_3_4
  68. b_4_7·a_3_2 − b_2_22·a_3_5 + b_2_22·a_3_2
  69.  − b_4_7·a_3_5 − b_4_7·a_3_3 + b_2_22·a_3_5 + b_2_22·a_3_2 + b_2_0·a_5_6 + b_2_02·a_3_5
       + b_2_02·a_3_3 − a_1_0·a_3_1·a_3_5
  70. a_2_1·a_5_6
  71.  − b_4_7·a_3_1 + b_2_0·a_5_7 + b_2_02·a_3_5 + b_2_02·a_3_3 + a_1_0·a_3_1·a_3_5
  72. b_2_2·a_5_7 − b_2_22·a_3_5 + a_1_0·a_3_1·a_3_5
  73. b_2_22·a_3_5 + b_2_22·a_3_2 + a_2_1·a_5_7
  74. b_4_7·a_3_5 + b_4_7·a_3_3 + b_4_7·a_3_1 + b_2_0·a_5_8 + b_2_02·a_3_5 + a_1_0·a_3_1·a_3_5
  75.  − b_2_22·a_3_5 − b_2_22·a_3_2 + a_2_1·a_5_8
  76.  − b_4_7·a_3_5 − b_2_22·a_3_5 + b_2_22·a_3_2 + b_2_0·a_5_9 − b_2_02·a_3_5 − b_2_02·a_3_3
  77. b_2_2·a_5_9 − b_2_2·a_5_6 + b_2_22·a_3_5 + b_2_22·a_3_2 + a_1_0·a_3_1·a_3_5
  78. a_2_1·a_5_9
  79.  − b_4_7·a_3_5 − b_4_7·a_3_3 + b_4_7·a_3_1 − b_2_22·a_3_5 − b_2_22·a_3_2 + b_2_0·a_5_10
       + b_2_02·a_3_3 − a_1_0·a_3_1·a_3_5
  80. b_2_22·a_3_5 + b_2_22·a_3_2 + a_2_1·a_5_10
  81. b_2_22·a_3_5 + b_2_22·a_3_2 + a_6_7·a_1_1
  82. a_6_7·a_1_0 + a_1_0·a_3_1·a_3_5
  83. b_2_22·a_3_5 + b_2_22·a_3_2 + a_6_10·a_1_1
  84. a_6_10·a_1_0 − a_1_0·a_3_1·a_3_5
  85. a_6_9·a_1_1
  86. b_2_22·a_3_5 + b_2_22·a_3_2 + a_6_9·a_1_0 + a_1_0·a_3_1·a_3_5
  87. b_6_12·a_1_1
  88. b_6_12·a_1_0 + b_4_7·a_3_3 + b_2_22·a_3_5 + a_1_0·a_3_1·a_3_5
  89. a_4_42
  90. a_4_4·a_4_6
  91. a_4_62
  92. a_4_6·b_4_7 − a_4_4·b_4_7
  93.  − a_4_4·b_4_7 + b_2_0·a_1_0·a_5_6 + b_2_02·a_1_0·a_3_5
  94. a_3_5·a_5_6 + a_3_3·a_5_6
  95. a_3_4·a_5_6
  96. a_3_2·a_5_6
  97. a_3_1·a_5_7 + b_2_0·a_3_1·a_3_5 − b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
  98. a_3_5·a_5_7 + a_3_3·a_5_7 + a_3_1·a_5_6 + b_2_0·a_3_1·a_3_5 − b_2_0·a_1_0·a_5_7
       − b_2_02·a_1_0·a_3_5
  99. a_3_2·a_5_7
  100. a_3_1·a_5_8 + a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5 − b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
  101. a_4_4·b_4_7 + a_3_5·a_5_8 + a_3_3·a_5_8 − a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5
       + b_2_0·a_1_0·a_5_7 + b_2_02·a_1_0·a_3_5
  102. a_3_4·a_5_8 + a_3_4·a_5_7
  103. a_3_4·a_5_7 − a_3_3·a_5_8 − a_3_3·a_5_7 − a_3_3·a_5_6 + a_3_2·a_5_8
  104. a_4_4·b_4_7 + a_3_4·a_5_7 + a_3_3·a_5_9 − a_3_3·a_5_6
  105.  − a_4_4·b_4_7 − a_3_3·a_5_7 + a_3_1·a_5_9 − a_3_1·a_5_6 + b_2_0·a_3_1·a_3_5
       − b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
  106. a_4_4·b_4_7 + a_3_5·a_5_9 − a_3_4·a_5_7
  107. a_3_4·a_5_9
  108.  − a_3_4·a_5_7 + a_3_2·a_5_9
  109.  − a_3_4·a_5_7 + a_3_1·a_5_10 − a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5
  110.  − a_4_4·b_4_7 + a_3_5·a_5_10 + a_3_3·a_5_10 − a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5
       + b_2_0·a_1_0·a_5_7 + b_2_02·a_1_0·a_3_5
  111. a_3_4·a_5_10 − a_3_4·a_5_7
  112. a_3_4·a_5_7 − a_3_3·a_5_10 − a_3_3·a_5_7 + a_3_3·a_5_6 + a_3_2·a_5_10
  113.  − a_4_4·b_4_7 + b_2_0·a_6_7 + b_2_0·a_3_1·a_3_5
  114. b_2_2·a_6_7 − a_3_4·a_5_7 + a_3_3·a_5_8 + a_3_3·a_5_7 + a_3_3·a_5_6
  115. a_2_1·a_6_7
  116. b_2_0·a_6_10 − b_2_0·a_3_1·a_3_5 + b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
  117. b_2_2·a_6_10 + a_3_4·a_5_7
  118. a_2_1·a_6_10
  119. a_4_4·b_4_7 + b_2_0·a_6_9 + b_2_0·a_3_1·a_3_5 − b_2_02·a_1_0·a_3_5
  120. b_2_2·a_6_9 + a_3_4·a_5_7 + a_3_3·a_5_10 + a_3_3·a_5_7 − a_3_3·a_5_6
  121. a_2_1·a_6_9
  122. b_4_72 − b_2_24 + b_2_0·b_6_12 − a_4_4·b_4_7 + b_2_0·a_3_1·a_3_5 + b_2_02·a_1_0·a_3_5
  123. b_2_2·b_6_12 + a_4_4·b_4_7 − a_3_3·a_5_10 + a_3_3·a_5_8 + a_3_3·a_5_7 − a_3_3·a_5_6
  124. a_2_1·b_6_12
  125. a_1_1·a_7_17
  126.  − a_4_4·b_4_7 + a_3_3·a_5_6 + a_1_0·a_7_17 + b_2_0·a_1_0·a_5_7 + b_2_02·a_1_0·a_3_5
  127. a_3_4·a_5_7 + a_1_1·a_7_18
  128. a_4_4·b_4_7 + a_3_3·a_5_7 + a_3_3·a_5_6 + a_1_0·a_7_18 + b_2_02·a_1_0·a_3_5
  129. a_4_4·a_5_6
  130. a_4_6·a_5_6
  131. a_4_4·a_5_7 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
  132.  − b_2_22·a_5_6 + a_4_6·a_5_7 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
  133.  − b_2_22·a_5_6 + a_4_4·a_5_8 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  134. b_2_22·a_5_6 + a_4_6·a_5_8 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  135. b_4_7·a_5_8 + b_4_7·a_5_7 + b_4_7·a_5_6 − b_2_22·a_5_8 − b_2_22·a_5_6 + b_2_23·a_3_2
       + b_2_02·a_5_9 − b_2_02·a_5_6 + b_2_03·a_3_5 + b_2_03·a_3_3 + a_1_0·a_3_1·a_5_6
       − b_2_0·a_1_0·a_3_1·a_3_5
  136.  − b_2_22·a_5_6 + a_4_4·a_5_9
  137. a_4_6·a_5_9
  138.  − b_2_22·a_5_6 + a_4_4·a_5_10 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  139. b_4_7·a_5_10 + b_4_7·a_5_8 − b_4_7·a_5_7 − b_2_22·a_5_10 − b_2_22·a_5_8 − b_2_23·a_3_2
       − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  140. a_4_6·a_5_10 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  141.  − b_4_7·a_5_9 + b_4_7·a_5_8 + b_4_7·a_5_7 − b_4_7·a_5_6 − b_2_22·a_5_8 + b_2_23·a_3_2
       − b_2_02·a_5_6 − b_2_03·a_3_5 + b_2_03·a_3_3 + b_2_0·a_1_0·a_3_1·a_3_5
       + b_2_0·c_6_14·a_1_0
  142. a_6_7·a_3_3 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
  143. a_6_7·a_3_1 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
  144. a_6_7·a_3_5
  145. b_2_22·a_5_6 + a_6_7·a_3_4
  146. a_6_7·a_3_2
  147. a_6_10·a_3_3 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  148. b_2_22·a_5_6 + a_6_10·a_3_1 − b_2_0·a_1_0·a_3_1·a_3_5
  149. a_6_10·a_3_5 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
  150. b_2_22·a_5_6 + a_6_10·a_3_4
  151. a_6_10·a_3_2
  152. a_6_9·a_3_3 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
  153.  − b_2_22·a_5_6 + a_6_9·a_3_1 − a_1_0·a_3_1·a_5_6
  154. a_6_9·a_3_5
  155. a_6_9·a_3_4
  156. b_2_22·a_5_6 + a_6_9·a_3_2
  157. b_6_12·a_3_3 − b_4_7·a_5_9 + b_4_7·a_5_6 + b_2_22·a_5_6 − b_2_02·a_5_6 − b_2_03·a_3_5
       − b_2_03·a_3_3 + b_2_0·a_1_0·a_3_1·a_3_5
  158. b_6_12·a_3_1 + b_4_7·a_5_7 + b_2_23·a_3_2 + b_2_02·a_5_6 + b_2_03·a_3_5 + b_2_03·a_3_3
       − a_1_0·a_3_1·a_5_6
  159. b_6_12·a_3_5 + b_4_7·a_5_9 + b_2_22·a_5_6 − b_2_02·a_5_6 − b_2_03·a_3_5 − b_2_03·a_3_3
       + b_2_0·a_1_0·a_3_1·a_3_5
  160. b_6_12·a_3_4
  161. b_6_12·a_3_2
  162. b_4_7·a_5_8 + b_4_7·a_5_7 − b_4_7·a_5_6 − b_2_22·a_5_8 + b_2_22·a_5_6 + b_2_23·a_3_2
       + b_2_0·a_7_17 + b_2_02·a_5_7 − b_2_02·a_5_6 − b_2_03·a_3_3 + a_1_0·a_3_1·a_5_6
       − b_2_0·a_1_0·a_3_1·a_3_5
  163. a_2_1·a_7_17
  164. b_4_7·a_5_8 − b_4_7·a_5_7 − b_4_7·a_5_6 − b_2_22·a_5_8 + b_2_22·a_5_6 − b_2_23·a_3_2
       + b_2_0·a_7_18 + b_2_02·a_5_6 − b_2_03·a_3_5 − b_2_03·a_3_3 + a_1_0·a_3_1·a_5_6
       − b_2_0·a_1_0·a_3_1·a_3_5
  165. b_2_2·a_7_18 − b_2_2·a_7_17 + b_2_22·a_5_10 − b_2_22·a_5_6 − b_2_23·a_3_2
       + a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  166. b_2_22·a_5_6 + a_2_1·a_7_18
  167. a_8_15·a_1_1
  168.  − b_2_22·a_5_6 + a_8_15·a_1_0 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
  169. a_5_6·a_5_10 + a_5_6·a_5_8 − a_5_6·a_5_7
  170. a_5_9·a_5_10 + a_5_7·a_5_10 − a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 + a_5_6·a_5_8
       + a_5_6·a_5_7 + b_2_2·a_3_2·a_5_10 + b_2_2·a_3_2·a_5_8 + b_2_02·a_1_0·a_5_6
       + b_2_03·a_1_0·a_3_5
  171. a_5_7·a_5_9 − a_5_7·a_5_8 − a_5_6·a_5_8 + a_5_6·a_5_7 − b_2_2·a_3_2·a_5_8
       + b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 + b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6
       + c_6_14·a_1_0·a_3_1
  172. a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
       + c_6_14·a_1_0·a_3_5
  173. a_5_8·a_5_9 + a_5_7·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6
       + b_2_03·a_1_0·a_3_5 + c_6_14·a_1_0·a_3_2
  174.  − a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_9 + c_6_15·a_1_0·a_3_2
  175. a_4_4·a_6_7
  176. b_4_7·a_6_7 + a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_8 − a_5_6·a_5_9 + a_5_6·a_5_7
       + b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6
       + b_2_03·a_1_0·a_3_5
  177. a_4_6·a_6_7
  178. a_4_4·a_6_10
  179. b_4_7·a_6_10 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5 + b_2_02·a_1_0·a_5_7
       + b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5
  180. a_4_6·a_6_10
  181. a_4_4·a_6_9
  182. b_4_7·a_6_9 + a_5_8·a_5_9 − a_5_7·a_5_10 + a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9
       + a_5_6·a_5_7 + b_2_2·a_3_2·a_5_8 + b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5
       − b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
  183. a_4_6·a_6_9
  184. a_4_4·b_6_12 − a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
  185. b_4_7·b_6_12 + b_2_02·b_6_12 + b_2_03·b_4_7 − a_5_9·a_5_10 + a_5_8·a_5_9 + a_5_7·a_5_10
       − a_5_7·a_5_9 + a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_2·a_3_2·a_5_8 + b_2_0·a_3_1·a_5_6
       − b_2_02·a_3_1·a_3_5 + b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5
       − b_2_02·c_6_14
  186. a_4_6·b_6_12 − a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
  187.  − a_5_9·a_5_10 + a_5_8·a_5_9 + a_5_7·a_5_10 − a_5_7·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8
       − a_5_6·a_5_7 + a_3_3·a_7_17 + b_2_2·a_3_2·a_5_8
  188.  − a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_0·a_1_0·a_7_17 + b_2_02·a_1_0·a_5_7
       − b_2_02·a_1_0·a_5_6
  189. a_5_9·a_5_10 + a_5_8·a_5_9 + a_5_7·a_5_8 − a_5_6·a_5_9 − a_5_6·a_5_8 + a_3_1·a_7_17
       + b_2_2·a_3_2·a_5_8 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7
       + b_2_02·a_1_0·a_5_6
  190. a_5_9·a_5_10 − a_5_8·a_5_9 − a_5_7·a_5_10 + a_5_7·a_5_9 − a_5_6·a_5_9 − a_5_6·a_5_7
       + a_3_5·a_7_17 − b_2_2·a_3_2·a_5_8 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5
       + b_2_02·a_1_0·a_5_7 + b_2_03·a_1_0·a_3_5
  191.  − a_5_9·a_5_10 − a_5_8·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + a_3_4·a_7_17
       + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
  192. a_5_9·a_5_10 + a_5_7·a_5_10 − a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 + a_5_6·a_5_8
       + a_5_6·a_5_7 + a_3_2·a_7_17 − b_2_2·a_3_2·a_5_8 + b_2_02·a_1_0·a_5_6
       + b_2_03·a_1_0·a_3_5
  193. a_5_7·a_5_9 + a_5_6·a_5_9 − a_5_6·a_5_8 + a_3_3·a_7_18 + b_2_2·a_3_2·a_5_8
       + b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6
       + b_2_03·a_1_0·a_3_5
  194. a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_8 − a_5_6·a_5_9 + a_5_6·a_5_8 − a_5_6·a_5_7
       − b_2_2·a_3_2·a_5_8 + b_2_0·a_1_0·a_7_18 + b_2_03·a_1_0·a_3_5
  195.  − a_5_8·a_5_9 − a_5_7·a_5_9 + a_5_7·a_5_8 − a_5_6·a_5_9 − a_5_6·a_5_8 + a_3_1·a_7_18
       + b_2_2·a_3_2·a_5_8 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 + b_2_02·a_1_0·a_5_6
  196.  − a_5_7·a_5_9 − a_5_6·a_5_9 − a_5_6·a_5_8 − a_5_6·a_5_7 + a_3_5·a_7_18 − b_2_2·a_3_2·a_5_8
       + b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 − b_2_03·a_1_0·a_3_5
  197. a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_6·a_5_9 − a_5_6·a_5_8 − a_5_6·a_5_7 + a_3_4·a_7_18
       − b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5
  198.  − a_5_9·a_5_10 − a_5_8·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + a_3_2·a_7_18
       + b_2_2·a_3_2·a_5_8 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
  199. b_2_0·a_8_15 − a_5_9·a_5_10 − a_5_8·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 − a_5_6·a_5_8
       + a_5_6·a_5_7 + b_2_2·a_3_2·a_5_8 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5
       − b_2_02·a_1_0·a_5_7 + b_2_03·a_1_0·a_3_5
  200. b_2_2·a_8_15 + a_5_9·a_5_10 − a_5_8·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_10 + a_5_7·a_5_8
       − a_5_6·a_5_9 − a_5_6·a_5_8 − a_5_6·a_5_7 − b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5
  201. a_2_1·a_8_15
  202.  − a_6_7·a_5_7 + a_6_7·a_5_6
  203. a_6_7·a_5_9 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
  204. a_6_7·a_5_8 − a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
  205. a_6_10·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  206. a_6_10·a_5_6
  207. a_6_10·a_5_9 − a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
  208. a_6_10·a_5_10 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  209. a_6_10·a_5_8
  210. a_6_9·a_5_7 + a_6_7·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  211. a_6_9·a_5_6 − a_6_7·a_5_7
  212. a_6_9·a_5_9 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
  213. a_6_9·a_5_10 + a_6_7·a_5_7
  214. a_6_9·a_5_8 + a_6_7·a_5_10 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
  215. b_6_12·a_5_9 − b_2_03·a_5_9 − b_2_03·a_5_6 + b_2_04·a_3_3 + b_2_02·a_1_0·a_3_1·a_3_5
       − b_2_0·c_6_14·a_3_5 − b_2_02·c_6_14·a_1_0
  216. b_6_12·a_5_10 + b_6_12·a_5_7 − b_6_12·a_5_6 − b_2_03·a_5_9 + b_2_03·a_5_6
       − b_2_04·a_3_5 + b_2_04·a_3_3 − a_6_7·a_5_10 + a_6_7·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6
       + b_2_02·a_1_0·a_3_1·a_3_5 + b_2_02·c_6_14·a_1_0
  217. b_6_12·a_5_8 + b_6_12·a_5_7 + b_6_12·a_5_6 + b_2_03·a_5_9 − b_2_03·a_5_6 + b_2_04·a_3_5
       − b_2_04·a_3_3 − a_6_7·a_5_10 + a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6
       − b_2_02·a_1_0·a_3_1·a_3_5 − b_2_02·c_6_14·a_1_0
  218.  − b_6_12·a_5_6 + b_2_02·a_7_17 − b_2_03·a_5_9 + b_2_03·a_5_7 + b_2_03·a_5_6
       − b_2_04·a_3_3 − a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_0·c_6_14·a_3_5
       + b_2_0·c_6_14·a_3_3
  219.  − a_6_7·a_5_7 + a_1_0·a_3_1·a_7_17 − b_2_0·a_1_0·a_3_1·a_5_6
       − b_2_02·a_1_0·a_3_1·a_3_5
  220. b_2_22·a_7_17 − b_2_23·a_5_10 + b_2_23·a_5_8 + b_2_24·a_3_2 + a_6_7·a_5_10
       − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  221. a_4_4·a_7_17 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  222. b_6_12·a_5_7 + b_6_12·a_5_6 + b_4_7·a_7_17 − b_2_23·a_5_10 + b_2_23·a_5_8
       + b_2_24·a_3_2 − b_2_03·a_5_9 + b_2_03·a_5_7 − b_2_04·a_3_5 + a_6_7·a_5_10
       + b_2_0·c_6_14·a_3_5 + b_2_0·c_6_14·a_3_3 − b_2_0·c_6_14·a_3_1 − b_2_02·c_6_14·a_1_0
  223. a_4_6·a_7_17 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  224. b_6_12·a_5_7 + b_2_02·a_7_18 − b_2_03·a_5_9 + b_2_03·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6
       + b_2_02·a_1_0·a_3_1·a_3_5 − b_2_0·c_6_14·a_3_1
  225. a_6_7·a_5_7 + a_4_4·a_7_18 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  226.  − b_6_12·a_5_7 + b_6_12·a_5_6 + b_4_7·a_7_18 + b_2_23·a_5_8 + b_2_03·a_5_9
       − b_2_03·a_5_6 + b_2_04·a_3_5 − b_2_04·a_3_3 + a_6_7·a_5_10 + a_6_7·a_5_7
       − b_2_0·a_1_0·a_3_1·a_5_6 + b_2_0·c_6_14·a_3_5 + b_2_0·c_6_14·a_3_3
       − b_2_02·c_6_14·a_1_0
  227. a_6_7·a_5_7 + a_4_6·a_7_18 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  228. a_8_15·a_3_3 + a_6_7·a_5_10 + a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6
       + b_2_02·a_1_0·a_3_1·a_3_5
  229. a_8_15·a_3_1 − a_6_7·a_5_7 + b_2_02·a_1_0·a_3_1·a_3_5
  230. a_8_15·a_3_5 − a_6_7·a_5_10 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  231. a_8_15·a_3_4
  232. a_8_15·a_3_2 + a_6_7·a_5_10 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
  233. a_6_72
  234. a_6_102
  235. a_6_7·a_6_10
  236. a_6_10·a_6_9
  237. a_6_92
  238. a_6_7·a_6_9
  239.  − a_6_9·b_6_12 + a_6_7·b_6_12 − b_2_03·a_1_0·a_5_6 − b_2_04·a_1_0·a_3_5
       + b_2_0·c_6_14·a_1_0·a_3_5
  240. b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_6_9·b_6_12 + a_5_7·a_7_17
       + b_2_22·a_3_2·a_5_10 − b_2_22·a_3_2·a_5_8 − b_2_02·a_3_1·a_5_6
       + b_2_03·a_3_1·a_3_5 − b_2_03·a_1_0·a_5_7 − b_2_03·a_1_0·a_5_6 + b_2_04·a_1_0·a_3_5
       + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − c_6_15·a_1_0·a_5_8 − c_6_15·a_1_0·a_5_7
       − c_6_15·a_1_0·a_5_6 − c_6_14·a_3_1·a_3_5 − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_6
       + b_2_0·c_6_14·a_1_0·a_3_1
  241. b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_5_6·a_7_17 + b_2_02·a_3_1·a_5_6
       − b_2_03·a_1_0·a_5_7 − b_2_03·a_1_0·a_5_6 + b_2_04·a_1_0·a_3_5 + b_2_0·b_4_7·c_6_14
       − b_2_03·c_6_14 − b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
  242.  − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 + a_6_10·b_6_12 + b_2_02·a_1_0·a_7_17
       + b_2_03·a_3_1·a_3_5 + b_2_03·a_1_0·a_5_7 + b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14
       + b_2_03·c_6_14 − b_2_0·c_6_14·a_1_0·a_3_5 + b_2_0·c_6_14·a_1_0·a_3_1
  243. b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_6_9·b_6_12 − a_6_10·b_6_12
       + b_2_0·a_3_1·a_7_17 + b_2_02·a_3_1·a_5_6 − b_2_03·a_1_0·a_5_7 − b_2_04·a_1_0·a_3_5
       + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − b_2_0·c_6_14·a_1_0·a_3_5
  244.  − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_9·b_6_12 + a_6_10·b_6_12 + a_5_9·a_7_17
       − b_2_02·a_3_1·a_5_6 + b_2_03·a_1_0·a_5_7 + b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14
       + b_2_03·c_6_14 + c_6_15·a_1_0·a_5_10 − c_6_15·a_1_0·a_5_8 + c_6_15·a_1_0·a_5_6
       + c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_6
       + b_2_0·c_6_14·a_1_0·a_3_1
  245.  − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_10·b_6_12 + a_5_10·a_7_17
       − b_2_2·a_5_8·a_5_10 − b_2_22·a_3_2·a_5_10 − b_2_02·a_3_1·a_5_6 − b_2_03·a_1_0·a_5_7
       − b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 + c_6_15·a_1_0·a_5_10
       − c_6_15·a_1_0·a_5_8 + c_6_15·a_1_0·a_5_6 + c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_10
       − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_7 + c_6_14·a_1_0·a_5_6
  246.  − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 + a_6_9·b_6_12 + a_6_10·b_6_12 + a_5_8·a_7_17
       − b_2_2·a_5_8·a_5_10 − b_2_22·a_3_2·a_5_8 + b_2_03·a_3_1·a_3_5 − b_2_03·a_1_0·a_5_6
       − b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 + c_6_15·a_1_0·a_5_10
       + c_6_15·a_1_0·a_5_7 − c_6_15·a_1_0·a_5_6 + c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_10
       − c_6_14·a_1_0·a_5_6 + b_2_0·c_6_14·a_1_0·a_3_1
  247. b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 − a_6_9·b_6_12 − a_6_10·b_6_12 + a_5_7·a_7_18
       − b_2_22·a_3_2·a_5_8 − b_2_02·a_3_1·a_5_6 + b_2_03·a_3_1·a_3_5 + b_2_03·a_1_0·a_5_7
       − b_2_03·a_1_0·a_5_6 + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − c_6_15·a_1_0·a_5_10
       − c_6_15·a_1_0·a_5_8 + c_6_15·a_1_0·a_5_7 − c_6_14·a_3_1·a_3_5 − c_6_14·a_1_0·a_5_10
       + c_6_14·a_1_0·a_5_6 + b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
  248.  − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_10·b_6_12 + a_5_6·a_7_18
       − b_2_02·a_3_1·a_5_6 + b_2_03·a_1_0·a_5_7 + b_2_03·a_1_0·a_5_6 − b_2_04·a_1_0·a_3_5
       − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 + c_6_14·a_3_1·a_3_5 − c_6_14·a_1_0·a_5_7
       − b_2_0·c_6_14·a_1_0·a_3_5 + b_2_0·c_6_14·a_1_0·a_3_1
  249.  − a_6_9·b_6_12 − a_6_10·b_6_12 + b_2_02·a_1_0·a_7_18 + b_2_03·a_1_0·a_5_7
       − b_2_04·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
  250.  − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_9·b_6_12 + a_5_9·a_7_18
       − b_2_02·a_3_1·a_5_6 + b_2_03·a_1_0·a_5_6 + b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14
       + b_2_03·c_6_14 − c_6_15·a_1_0·a_5_10 + c_6_15·a_1_0·a_5_8 − c_6_15·a_1_0·a_5_6
       + c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_6
       + b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
  251. a_5_10·a_7_18 − b_2_2·a_5_8·a_5_10 + c_6_15·a_1_0·a_5_10 − c_6_15·a_1_0·a_5_8
       + c_6_15·a_1_0·a_5_6 − c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_7
       + c_6_14·a_1_0·a_5_6
  252. b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 − a_6_9·b_6_12 − a_6_10·b_6_12 + a_5_8·a_7_18
       − b_2_02·a_3_1·a_5_6 + b_2_03·a_3_1·a_3_5 + b_2_03·a_1_0·a_5_7 − b_2_03·a_1_0·a_5_6
       + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − c_6_15·a_1_0·a_5_8 − c_6_15·a_1_0·a_5_7
       − c_6_15·a_1_0·a_5_6 − c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_8 + c_6_14·a_1_0·a_5_7
       + b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
  253. a_4_4·a_8_15
  254. b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_6_9·b_6_12 + a_6_10·b_6_12 + b_4_7·a_8_15
       − b_2_2·a_5_8·a_5_10 + b_2_22·a_3_2·a_5_10 − b_2_22·a_3_2·a_5_8 − b_2_03·a_3_1·a_3_5
       + b_2_03·a_1_0·a_5_7 + b_2_03·a_1_0·a_5_6 − b_2_04·a_1_0·a_3_5 + b_2_0·b_4_7·c_6_14
       − b_2_03·c_6_14 + b_2_0·c_6_14·a_1_0·a_3_1
  255. a_4_6·a_8_15
  256. a_6_10·a_7_17 − b_2_0·a_1_0·a_3_1·a_7_17 − b_2_02·a_1_0·a_3_1·a_5_6
       − b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_15·a_5_7 + a_2_1·c_6_14·a_5_7
  257. a_6_9·a_7_17 + a_3_2·a_5_8·a_5_10 − b_2_02·a_1_0·a_3_1·a_5_6
       − b_2_03·a_1_0·a_3_1·a_3_5 + c_6_14·a_1_0·a_3_1·a_3_5
  258. a_6_7·a_7_17 + a_3_2·a_5_8·a_5_10 − b_2_0·a_1_0·a_3_1·a_7_17
       − b_2_02·a_1_0·a_3_1·a_5_6 − b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_15·a_5_7
       + a_2_1·c_6_14·a_5_7 + c_6_14·a_1_0·a_3_1·a_3_5
  259.  − b_6_12·a_7_17 + b_2_03·a_7_18 + b_2_03·a_7_17 + b_2_04·a_5_9 − b_2_04·a_5_7
       − b_2_04·a_5_6 + b_2_05·a_3_5 + b_2_05·a_3_3 + b_2_0·a_1_0·a_3_1·a_7_17
       − b_2_0·c_6_14·a_5_6 − b_2_02·c_6_14·a_3_5 + b_2_02·c_6_14·a_3_3
       − b_2_02·c_6_14·a_3_1 − b_2_03·c_6_14·a_1_0 − c_6_14·a_1_0·a_3_1·a_3_5
  260. b_6_12·a_7_18 − b_6_12·a_7_17 − b_2_04·a_5_9 − b_2_04·a_5_7 − b_2_05·a_3_3
       − a_3_2·a_5_8·a_5_10 + b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5
       + b_2_0·c_6_14·a_5_7 − b_2_02·c_6_14·a_3_5 − b_2_02·c_6_14·a_3_3
       + b_2_02·c_6_14·a_3_1 + b_2_03·c_6_14·a_1_0 + c_6_14·a_1_0·a_3_1·a_3_5
  261. a_6_10·a_7_18 + b_2_0·a_1_0·a_3_1·a_7_17 + b_2_02·a_1_0·a_3_1·a_5_6
       + b_2_03·a_1_0·a_3_1·a_3_5 − a_2_1·c_6_15·a_5_7 − a_2_1·c_6_14·a_5_7
  262. a_6_9·a_7_18 + a_3_2·a_5_8·a_5_10 + b_2_0·a_1_0·a_3_1·a_7_17 − a_2_1·c_6_14·a_5_7
  263. a_6_7·a_7_18 + b_2_0·a_1_0·a_3_1·a_7_17 + b_2_02·a_1_0·a_3_1·a_5_6
       + b_2_03·a_1_0·a_3_1·a_3_5 − a_2_1·c_6_15·a_5_7 + a_2_1·c_6_14·a_5_7
       − c_6_14·a_1_0·a_3_1·a_3_5
  264. a_8_15·a_5_7 + a_3_2·a_5_8·a_5_10 + b_2_0·a_1_0·a_3_1·a_7_17
       − b_2_02·a_1_0·a_3_1·a_5_6 − b_2_03·a_1_0·a_3_1·a_3_5 − c_6_14·a_1_0·a_3_1·a_3_5
  265. a_8_15·a_5_6 + b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5
       + c_6_14·a_1_0·a_3_1·a_3_5
  266. a_8_15·a_5_9 + b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5
       − a_2_1·c_6_14·a_5_7
  267. a_8_15·a_5_10 − a_3_2·a_5_8·a_5_10 + b_2_0·a_1_0·a_3_1·a_7_17
       + b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_14·a_5_7
       − c_6_14·a_1_0·a_3_1·a_3_5
  268. a_8_15·a_5_8 − a_3_2·a_5_8·a_5_10 + b_2_02·a_1_0·a_3_1·a_5_6
       + b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_14·a_5_7
  269. a_7_17·a_7_18 − b_2_22·a_5_8·a_5_10 − b_2_23·a_3_2·a_5_8 + b_2_03·a_3_1·a_5_6
       + b_2_03·a_1_0·a_7_18 + b_2_03·a_1_0·a_7_17 + b_2_04·a_3_1·a_3_5
       + b_2_04·a_1_0·a_5_6 − b_2_05·a_1_0·a_3_5 + c_6_15·a_1_1·a_7_18 − c_6_14·a_3_1·a_5_6
       + c_6_14·a_1_1·a_7_18 + b_2_0·c_6_14·a_1_0·a_5_7 + b_2_02·c_6_14·a_1_0·a_3_5
  270. b_6_12·a_8_15 + b_2_02·a_3_1·a_7_17 − b_2_03·a_3_1·a_5_6 + b_2_03·a_1_0·a_7_18
       + b_2_03·a_1_0·a_7_17 − b_2_04·a_3_1·a_3_5 + b_2_04·a_1_0·a_5_7
       + b_2_04·a_1_0·a_5_6 − b_2_0·c_6_14·a_3_1·a_3_5 − b_2_0·c_6_14·a_1_0·a_5_6
       + b_2_02·c_6_14·a_1_0·a_3_5 − b_2_02·c_6_14·a_1_0·a_3_1
  271. a_6_10·a_8_15
  272. a_6_9·a_8_15
  273. a_6_7·a_8_15
  274. a_8_15·a_7_18 + b_2_2·a_3_2·a_5_8·a_5_10 − b_2_02·a_1_0·a_3_1·a_7_17
       + b_2_03·a_1_0·a_3_1·a_5_6 + b_2_04·a_1_0·a_3_1·a_3_5
  275. a_8_15·a_7_17 + b_2_2·a_3_2·a_5_8·a_5_10 − b_2_02·a_1_0·a_3_1·a_7_17
       − c_6_14·a_1_0·a_3_1·a_5_6
  276. a_8_152


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 16.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_6_14, a Duflot regular element of degree 6
    2. c_6_15, a Duflot regular element of degree 6
    3. b_2_22 + b_2_02, an element of degree 4
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 13].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. b_2_00, an element of degree 2
  5. b_2_20, an element of degree 2
  6. a_3_10, an element of degree 3
  7. a_3_20, an element of degree 3
  8. a_3_30, an element of degree 3
  9. a_3_40, an element of degree 3
  10. a_3_50, an element of degree 3
  11. a_4_40, an element of degree 4
  12. a_4_60, an element of degree 4
  13. b_4_70, an element of degree 4
  14. a_5_60, an element of degree 5
  15. a_5_70, an element of degree 5
  16. a_5_80, an element of degree 5
  17. a_5_90, an element of degree 5
  18. a_5_100, an element of degree 5
  19. a_6_70, an element of degree 6
  20. a_6_100, an element of degree 6
  21. a_6_90, an element of degree 6
  22. b_6_120, an element of degree 6
  23. c_6_14c_2_23, an element of degree 6
  24. c_6_15 − c_2_23 + c_2_13, an element of degree 6
  25. a_7_170, an element of degree 7
  26. a_7_180, an element of degree 7
  27. a_8_150, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_0a_1_2, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. b_2_0c_2_5, an element of degree 2
  5. b_2_2 − a_1_0·a_1_2, an element of degree 2
  6. a_3_1c_2_5·a_1_0 − c_2_3·a_1_2, an element of degree 3
  7. a_3_20, an element of degree 3
  8. a_3_3 − c_2_4·a_1_2, an element of degree 3
  9. a_3_40, an element of degree 3
  10. a_3_5 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
  11. a_4_4c_2_5·a_1_1·a_1_2, an element of degree 4
  12. a_4_6c_2_5·a_1_1·a_1_2, an element of degree 4
  13. b_4_7 − c_2_4·c_2_5, an element of degree 4
  14. a_5_6 − c_2_5·a_1_0·a_1_1·a_1_2 + c_2_52·a_1_1 + c_2_4·c_2_5·a_1_1, an element of degree 5
  15. a_5_7c_2_5·a_1_0·a_1_1·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_0 + c_2_3·c_2_4·a_1_2, an element of degree 5
  16. a_5_8c_2_5·a_1_0·a_1_1·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2 − c_2_4·c_2_5·a_1_1
       + c_2_4·c_2_5·a_1_0 − c_2_3·c_2_4·a_1_2, an element of degree 5
  17. a_5_9 − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_1 − c_2_42·a_1_2, an element of degree 5
  18. a_5_10 − c_2_5·a_1_0·a_1_1·a_1_2 + c_2_4·c_2_5·a_1_2 + c_2_4·c_2_5·a_1_1 + c_2_4·c_2_5·a_1_0
       − c_2_3·c_2_4·a_1_2, an element of degree 5
  19. a_6_7c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_2
       + c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
  20. a_6_10 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 − c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
  21. a_6_9c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_1·a_1_2
       − c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
  22. b_6_12 − c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_1·a_1_2
       − c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2 − c_2_42·c_2_5, an element of degree 6
  23. c_6_14c_2_52·a_1_1·a_1_2 + c_2_4·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_2
       − c_2_4·c_2_52 − c_2_42·c_2_5 + c_2_43, an element of degree 6
  24. c_6_15 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_1·a_1_2
       − c_2_3·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_52 − c_2_42·c_2_5 − c_2_43 − c_2_3·c_2_52
       + c_2_33, an element of degree 6
  25. a_7_17 − c_2_52·a_1_0·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_1·a_1_2 − c_2_4·c_2_52·a_1_2
       − c_2_4·c_2_52·a_1_1 + c_2_4·c_2_52·a_1_0 − c_2_42·c_2_5·a_1_2 + c_2_42·c_2_5·a_1_1
       − c_2_3·c_2_4·c_2_5·a_1_2, an element of degree 7
  26. a_7_18 − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_1 + c_2_4·c_2_52·a_1_1 − c_2_42·c_2_5·a_1_2
       + c_2_42·c_2_5·a_1_1 − c_2_42·c_2_5·a_1_0 + c_2_3·c_2_42·a_1_2, an element of degree 7
  27. a_8_15c_2_53·a_1_1·a_1_2 + c_2_4·c_2_52·a_1_1·a_1_2 − c_2_4·c_2_52·a_1_0·a_1_2
       + c_2_4·c_2_52·a_1_0·a_1_1 + c_2_42·c_2_5·a_1_1·a_1_2 − c_2_42·c_2_5·a_1_0·a_1_2
       + c_2_3·c_2_4·c_2_5·a_1_1·a_1_2, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. b_2_00, an element of degree 2
  5. b_2_2 − c_2_5, an element of degree 2
  6. a_3_10, an element of degree 3
  7. a_3_2c_2_5·a_1_2, an element of degree 3
  8. a_3_3c_2_5·a_1_2, an element of degree 3
  9. a_3_40, an element of degree 3
  10. a_3_5 − c_2_5·a_1_2, an element of degree 3
  11. a_4_40, an element of degree 4
  12. a_4_60, an element of degree 4
  13. b_4_7c_2_52, an element of degree 4
  14. a_5_60, an element of degree 5
  15. a_5_7c_2_52·a_1_2, an element of degree 5
  16. a_5_8c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2, an element of degree 5
  17. a_5_90, an element of degree 5
  18. a_5_10 − c_2_52·a_1_2 + c_2_52·a_1_1 − c_2_52·a_1_0 − c_2_4·c_2_5·a_1_2 + c_2_3·c_2_5·a_1_2, an element of degree 5
  19. a_6_7 − c_2_52·a_1_1·a_1_2, an element of degree 6
  20. a_6_100, an element of degree 6
  21. a_6_9 − c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_2, an element of degree 6
  22. b_6_12 − c_2_52·a_1_0·a_1_2, an element of degree 6
  23. c_6_14c_2_52·a_1_0·a_1_2 + c_2_53 − c_2_4·c_2_52 + c_2_43, an element of degree 6
  24. c_6_15 − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_2 + c_2_4·c_2_52 − c_2_43 − c_2_3·c_2_52
       + c_2_33, an element of degree 6
  25. a_7_17 − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_0 − c_2_3·c_2_52·a_1_2, an element of degree 7
  26. a_7_18 − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2, an element of degree 7
  27. a_8_15c_2_53·a_1_1·a_1_2 − c_2_53·a_1_0·a_1_2 − c_2_53·a_1_0·a_1_1
       + c_2_4·c_2_52·a_1_0·a_1_2 − c_2_3·c_2_52·a_1_1·a_1_2, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 243




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009