Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 6 of order 243
General information on the group
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t2 + 1) · (t5 + 2·t3 + 1) |
| (t + 1) · (t − 1)3 · (t2 − t + 1)2 · (t2 + t + 1)2 |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 27 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_0, an element of degree 2
- b_2_2, an element of degree 2
- a_3_1, a nilpotent element of degree 3
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_4_4, a nilpotent element of degree 4
- a_4_6, a nilpotent element of degree 4
- b_4_7, an element of degree 4
- a_5_6, a nilpotent element of degree 5
- a_5_7, a nilpotent element of degree 5
- a_5_8, a nilpotent element of degree 5
- a_5_9, a nilpotent element of degree 5
- a_5_10, a nilpotent element of degree 5
- a_6_7, a nilpotent element of degree 6
- a_6_10, a nilpotent element of degree 6
- a_6_9, a nilpotent element of degree 6
- b_6_12, an element of degree 6
- c_6_14, a Duflot regular element of degree 6
- c_6_15, a Duflot regular element of degree 6
- a_7_17, a nilpotent element of degree 7
- a_7_18, a nilpotent element of degree 7
- a_8_15, a nilpotent element of degree 8
Ring relations
There are 14 "obvious" relations:
a_1_02, a_1_12, a_3_12, a_3_22, a_3_32, a_3_42, a_3_52, a_5_62, a_5_72, a_5_82, a_5_92, a_5_102, a_7_172, a_7_182
Apart from that, there are 276 minimal relations of maximal degree 16:
- a_1_0·a_1_1
- a_2_1·a_1_1
- a_2_1·a_1_0
- b_2_0·a_1_1
- b_2_2·a_1_1
- b_2_2·a_1_0
- a_2_12
- a_2_1·b_2_0
- − a_2_1·b_2_2 + a_1_1·a_3_1
- − b_2_0·b_2_2 + a_1_0·a_3_1
- a_1_1·a_3_2
- − a_2_1·b_2_2 + a_1_0·a_3_2
- a_1_1·a_3_3
- a_1_0·a_3_3
- − a_2_1·b_2_2 + a_1_1·a_3_4
- a_1_0·a_3_4
- a_1_1·a_3_5
- b_2_2·a_3_1
- a_2_1·a_3_1
- b_2_0·a_3_2
- a_2_1·a_3_2
- b_2_2·a_3_3 − b_2_2·a_3_2
- a_2_1·a_3_3
- b_2_0·a_3_4
- b_2_2·a_3_4
- a_2_1·a_3_4
- a_2_1·a_3_5
- a_4_4·a_1_1
- a_4_4·a_1_0
- a_4_6·a_1_1
- a_4_6·a_1_0
- b_4_7·a_1_1
- b_4_7·a_1_0 − b_2_0·a_3_3
- a_3_1·a_3_2
- − a_3_2·a_3_3 + a_3_1·a_3_4
- a_3_3·a_3_4 + a_3_2·a_3_4
- a_3_4·a_3_5 − a_3_3·a_3_4
- a_3_2·a_3_5 + a_3_2·a_3_3
- b_2_0·a_4_4 − b_2_0·a_1_0·a_3_5
- b_2_2·a_4_4 + a_3_3·a_3_4
- a_2_1·a_4_4
- b_2_0·a_4_6 − b_2_0·a_1_0·a_3_5
- b_2_2·a_4_6 + a_3_2·a_3_3
- a_2_1·a_4_6
- b_2_2·b_4_7 − b_2_23 − a_3_3·a_3_4 + a_3_1·a_3_3
- a_2_1·b_4_7
- a_1_1·a_5_6
- − a_3_3·a_3_5 + a_1_0·a_5_6 + b_2_0·a_1_0·a_3_5
- a_3_2·a_3_3 + a_1_1·a_5_7
- a_3_1·a_3_3 + a_1_0·a_5_7 + b_2_0·a_1_0·a_3_5
- a_3_3·a_3_4 − a_3_2·a_3_3 + a_1_1·a_5_8
- a_3_3·a_3_5 + a_3_2·a_3_3 − a_3_1·a_3_3 + a_1_0·a_5_8 + b_2_0·a_1_0·a_3_5
- a_3_3·a_3_4 + a_1_1·a_5_9
- − a_3_3·a_3_5 − a_3_2·a_3_3 + a_1_0·a_5_9 − b_2_0·a_1_0·a_3_5
- a_3_3·a_3_4 + a_1_1·a_5_10
- − a_3_3·a_3_5 − a_3_3·a_3_4 + a_3_2·a_3_3 − a_3_1·a_3_3 + a_1_0·a_5_10
- b_2_22·a_3_5 + b_2_22·a_3_2 + a_4_4·a_3_3
- a_4_4·a_3_1 + a_1_0·a_3_1·a_3_5
- − b_2_22·a_3_5 − b_2_22·a_3_2 + a_4_4·a_3_5
- a_4_4·a_3_4
- − b_2_22·a_3_5 − b_2_22·a_3_2 + a_4_4·a_3_2
- a_4_6·a_3_3
- b_2_22·a_3_5 + b_2_22·a_3_2 + a_4_6·a_3_1 + a_1_0·a_3_1·a_3_5
- a_4_6·a_3_5
- a_4_6·a_3_4
- a_4_6·a_3_2
- b_4_7·a_3_4
- b_4_7·a_3_2 − b_2_22·a_3_5 + b_2_22·a_3_2
- − b_4_7·a_3_5 − b_4_7·a_3_3 + b_2_22·a_3_5 + b_2_22·a_3_2 + b_2_0·a_5_6 + b_2_02·a_3_5
+ b_2_02·a_3_3 − a_1_0·a_3_1·a_3_5
- a_2_1·a_5_6
- − b_4_7·a_3_1 + b_2_0·a_5_7 + b_2_02·a_3_5 + b_2_02·a_3_3 + a_1_0·a_3_1·a_3_5
- b_2_2·a_5_7 − b_2_22·a_3_5 + a_1_0·a_3_1·a_3_5
- b_2_22·a_3_5 + b_2_22·a_3_2 + a_2_1·a_5_7
- b_4_7·a_3_5 + b_4_7·a_3_3 + b_4_7·a_3_1 + b_2_0·a_5_8 + b_2_02·a_3_5 + a_1_0·a_3_1·a_3_5
- − b_2_22·a_3_5 − b_2_22·a_3_2 + a_2_1·a_5_8
- − b_4_7·a_3_5 − b_2_22·a_3_5 + b_2_22·a_3_2 + b_2_0·a_5_9 − b_2_02·a_3_5 − b_2_02·a_3_3
- b_2_2·a_5_9 − b_2_2·a_5_6 + b_2_22·a_3_5 + b_2_22·a_3_2 + a_1_0·a_3_1·a_3_5
- a_2_1·a_5_9
- − b_4_7·a_3_5 − b_4_7·a_3_3 + b_4_7·a_3_1 − b_2_22·a_3_5 − b_2_22·a_3_2 + b_2_0·a_5_10
+ b_2_02·a_3_3 − a_1_0·a_3_1·a_3_5
- b_2_22·a_3_5 + b_2_22·a_3_2 + a_2_1·a_5_10
- b_2_22·a_3_5 + b_2_22·a_3_2 + a_6_7·a_1_1
- a_6_7·a_1_0 + a_1_0·a_3_1·a_3_5
- b_2_22·a_3_5 + b_2_22·a_3_2 + a_6_10·a_1_1
- a_6_10·a_1_0 − a_1_0·a_3_1·a_3_5
- a_6_9·a_1_1
- b_2_22·a_3_5 + b_2_22·a_3_2 + a_6_9·a_1_0 + a_1_0·a_3_1·a_3_5
- b_6_12·a_1_1
- b_6_12·a_1_0 + b_4_7·a_3_3 + b_2_22·a_3_5 + a_1_0·a_3_1·a_3_5
- a_4_42
- a_4_4·a_4_6
- a_4_62
- a_4_6·b_4_7 − a_4_4·b_4_7
- − a_4_4·b_4_7 + b_2_0·a_1_0·a_5_6 + b_2_02·a_1_0·a_3_5
- a_3_5·a_5_6 + a_3_3·a_5_6
- a_3_4·a_5_6
- a_3_2·a_5_6
- a_3_1·a_5_7 + b_2_0·a_3_1·a_3_5 − b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
- a_3_5·a_5_7 + a_3_3·a_5_7 + a_3_1·a_5_6 + b_2_0·a_3_1·a_3_5 − b_2_0·a_1_0·a_5_7
− b_2_02·a_1_0·a_3_5
- a_3_2·a_5_7
- a_3_1·a_5_8 + a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5 − b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
- a_4_4·b_4_7 + a_3_5·a_5_8 + a_3_3·a_5_8 − a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5
+ b_2_0·a_1_0·a_5_7 + b_2_02·a_1_0·a_3_5
- a_3_4·a_5_8 + a_3_4·a_5_7
- a_3_4·a_5_7 − a_3_3·a_5_8 − a_3_3·a_5_7 − a_3_3·a_5_6 + a_3_2·a_5_8
- a_4_4·b_4_7 + a_3_4·a_5_7 + a_3_3·a_5_9 − a_3_3·a_5_6
- − a_4_4·b_4_7 − a_3_3·a_5_7 + a_3_1·a_5_9 − a_3_1·a_5_6 + b_2_0·a_3_1·a_3_5
− b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
- a_4_4·b_4_7 + a_3_5·a_5_9 − a_3_4·a_5_7
- a_3_4·a_5_9
- − a_3_4·a_5_7 + a_3_2·a_5_9
- − a_3_4·a_5_7 + a_3_1·a_5_10 − a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5
- − a_4_4·b_4_7 + a_3_5·a_5_10 + a_3_3·a_5_10 − a_3_1·a_5_6 − b_2_0·a_3_1·a_3_5
+ b_2_0·a_1_0·a_5_7 + b_2_02·a_1_0·a_3_5
- a_3_4·a_5_10 − a_3_4·a_5_7
- a_3_4·a_5_7 − a_3_3·a_5_10 − a_3_3·a_5_7 + a_3_3·a_5_6 + a_3_2·a_5_10
- − a_4_4·b_4_7 + b_2_0·a_6_7 + b_2_0·a_3_1·a_3_5
- b_2_2·a_6_7 − a_3_4·a_5_7 + a_3_3·a_5_8 + a_3_3·a_5_7 + a_3_3·a_5_6
- a_2_1·a_6_7
- b_2_0·a_6_10 − b_2_0·a_3_1·a_3_5 + b_2_0·a_1_0·a_5_7 − b_2_02·a_1_0·a_3_5
- b_2_2·a_6_10 + a_3_4·a_5_7
- a_2_1·a_6_10
- a_4_4·b_4_7 + b_2_0·a_6_9 + b_2_0·a_3_1·a_3_5 − b_2_02·a_1_0·a_3_5
- b_2_2·a_6_9 + a_3_4·a_5_7 + a_3_3·a_5_10 + a_3_3·a_5_7 − a_3_3·a_5_6
- a_2_1·a_6_9
- b_4_72 − b_2_24 + b_2_0·b_6_12 − a_4_4·b_4_7 + b_2_0·a_3_1·a_3_5 + b_2_02·a_1_0·a_3_5
- b_2_2·b_6_12 + a_4_4·b_4_7 − a_3_3·a_5_10 + a_3_3·a_5_8 + a_3_3·a_5_7 − a_3_3·a_5_6
- a_2_1·b_6_12
- a_1_1·a_7_17
- − a_4_4·b_4_7 + a_3_3·a_5_6 + a_1_0·a_7_17 + b_2_0·a_1_0·a_5_7 + b_2_02·a_1_0·a_3_5
- a_3_4·a_5_7 + a_1_1·a_7_18
- a_4_4·b_4_7 + a_3_3·a_5_7 + a_3_3·a_5_6 + a_1_0·a_7_18 + b_2_02·a_1_0·a_3_5
- a_4_4·a_5_6
- a_4_6·a_5_6
- a_4_4·a_5_7 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
- − b_2_22·a_5_6 + a_4_6·a_5_7 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
- − b_2_22·a_5_6 + a_4_4·a_5_8 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- b_2_22·a_5_6 + a_4_6·a_5_8 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- b_4_7·a_5_8 + b_4_7·a_5_7 + b_4_7·a_5_6 − b_2_22·a_5_8 − b_2_22·a_5_6 + b_2_23·a_3_2
+ b_2_02·a_5_9 − b_2_02·a_5_6 + b_2_03·a_3_5 + b_2_03·a_3_3 + a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- − b_2_22·a_5_6 + a_4_4·a_5_9
- a_4_6·a_5_9
- − b_2_22·a_5_6 + a_4_4·a_5_10 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- b_4_7·a_5_10 + b_4_7·a_5_8 − b_4_7·a_5_7 − b_2_22·a_5_10 − b_2_22·a_5_8 − b_2_23·a_3_2
− a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- a_4_6·a_5_10 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- − b_4_7·a_5_9 + b_4_7·a_5_8 + b_4_7·a_5_7 − b_4_7·a_5_6 − b_2_22·a_5_8 + b_2_23·a_3_2
− b_2_02·a_5_6 − b_2_03·a_3_5 + b_2_03·a_3_3 + b_2_0·a_1_0·a_3_1·a_3_5 + b_2_0·c_6_14·a_1_0
- a_6_7·a_3_3 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
- a_6_7·a_3_1 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
- a_6_7·a_3_5
- b_2_22·a_5_6 + a_6_7·a_3_4
- a_6_7·a_3_2
- a_6_10·a_3_3 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- b_2_22·a_5_6 + a_6_10·a_3_1 − b_2_0·a_1_0·a_3_1·a_3_5
- a_6_10·a_3_5 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
- b_2_22·a_5_6 + a_6_10·a_3_4
- a_6_10·a_3_2
- a_6_9·a_3_3 + a_1_0·a_3_1·a_5_6 + b_2_0·a_1_0·a_3_1·a_3_5
- − b_2_22·a_5_6 + a_6_9·a_3_1 − a_1_0·a_3_1·a_5_6
- a_6_9·a_3_5
- a_6_9·a_3_4
- b_2_22·a_5_6 + a_6_9·a_3_2
- b_6_12·a_3_3 − b_4_7·a_5_9 + b_4_7·a_5_6 + b_2_22·a_5_6 − b_2_02·a_5_6 − b_2_03·a_3_5
− b_2_03·a_3_3 + b_2_0·a_1_0·a_3_1·a_3_5
- b_6_12·a_3_1 + b_4_7·a_5_7 + b_2_23·a_3_2 + b_2_02·a_5_6 + b_2_03·a_3_5 + b_2_03·a_3_3
− a_1_0·a_3_1·a_5_6
- b_6_12·a_3_5 + b_4_7·a_5_9 + b_2_22·a_5_6 − b_2_02·a_5_6 − b_2_03·a_3_5 − b_2_03·a_3_3
+ b_2_0·a_1_0·a_3_1·a_3_5
- b_6_12·a_3_4
- b_6_12·a_3_2
- b_4_7·a_5_8 + b_4_7·a_5_7 − b_4_7·a_5_6 − b_2_22·a_5_8 + b_2_22·a_5_6 + b_2_23·a_3_2
+ b_2_0·a_7_17 + b_2_02·a_5_7 − b_2_02·a_5_6 − b_2_03·a_3_3 + a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- a_2_1·a_7_17
- b_4_7·a_5_8 − b_4_7·a_5_7 − b_4_7·a_5_6 − b_2_22·a_5_8 + b_2_22·a_5_6 − b_2_23·a_3_2
+ b_2_0·a_7_18 + b_2_02·a_5_6 − b_2_03·a_3_5 − b_2_03·a_3_3 + a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- b_2_2·a_7_18 − b_2_2·a_7_17 + b_2_22·a_5_10 − b_2_22·a_5_6 − b_2_23·a_3_2
+ a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- b_2_22·a_5_6 + a_2_1·a_7_18
- a_8_15·a_1_1
- − b_2_22·a_5_6 + a_8_15·a_1_0 − a_1_0·a_3_1·a_5_6 − b_2_0·a_1_0·a_3_1·a_3_5
- a_5_6·a_5_10 + a_5_6·a_5_8 − a_5_6·a_5_7
- a_5_9·a_5_10 + a_5_7·a_5_10 − a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 + a_5_6·a_5_8
+ a_5_6·a_5_7 + b_2_2·a_3_2·a_5_10 + b_2_2·a_3_2·a_5_8 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- a_5_7·a_5_9 − a_5_7·a_5_8 − a_5_6·a_5_8 + a_5_6·a_5_7 − b_2_2·a_3_2·a_5_8
+ b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 + b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6 + c_6_14·a_1_0·a_3_1
- a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
+ c_6_14·a_1_0·a_3_5
- a_5_8·a_5_9 + a_5_7·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6
+ b_2_03·a_1_0·a_3_5 + c_6_14·a_1_0·a_3_2
- − a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_9 + c_6_15·a_1_0·a_3_2
- a_4_4·a_6_7
- b_4_7·a_6_7 + a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_8 − a_5_6·a_5_9 + a_5_6·a_5_7
+ b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- a_4_6·a_6_7
- a_4_4·a_6_10
- b_4_7·a_6_10 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5 + b_2_02·a_1_0·a_5_7
+ b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5
- a_4_6·a_6_10
- a_4_4·a_6_9
- b_4_7·a_6_9 + a_5_8·a_5_9 − a_5_7·a_5_10 + a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9
+ a_5_6·a_5_7 + b_2_2·a_3_2·a_5_8 + b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- a_4_6·a_6_9
- a_4_4·b_6_12 − a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- b_4_7·b_6_12 + b_2_02·b_6_12 + b_2_03·b_4_7 − a_5_9·a_5_10 + a_5_8·a_5_9 + a_5_7·a_5_10
− a_5_7·a_5_9 + a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_2·a_3_2·a_5_8 + b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5 + b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5 − b_2_02·c_6_14
- a_4_6·b_6_12 − a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- − a_5_9·a_5_10 + a_5_8·a_5_9 + a_5_7·a_5_10 − a_5_7·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8
− a_5_6·a_5_7 + a_3_3·a_7_17 + b_2_2·a_3_2·a_5_8
- − a_5_6·a_5_8 − a_5_6·a_5_7 + b_2_0·a_1_0·a_7_17 + b_2_02·a_1_0·a_5_7
− b_2_02·a_1_0·a_5_6
- a_5_9·a_5_10 + a_5_8·a_5_9 + a_5_7·a_5_8 − a_5_6·a_5_9 − a_5_6·a_5_8 + a_3_1·a_7_17
+ b_2_2·a_3_2·a_5_8 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 + b_2_02·a_1_0·a_5_6
- a_5_9·a_5_10 − a_5_8·a_5_9 − a_5_7·a_5_10 + a_5_7·a_5_9 − a_5_6·a_5_9 − a_5_6·a_5_7
+ a_3_5·a_7_17 − b_2_2·a_3_2·a_5_8 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5 + b_2_02·a_1_0·a_5_7 + b_2_03·a_1_0·a_3_5
- − a_5_9·a_5_10 − a_5_8·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + a_3_4·a_7_17
+ b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- a_5_9·a_5_10 + a_5_7·a_5_10 − a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 + a_5_6·a_5_8
+ a_5_6·a_5_7 + a_3_2·a_7_17 − b_2_2·a_3_2·a_5_8 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- a_5_7·a_5_9 + a_5_6·a_5_9 − a_5_6·a_5_8 + a_3_3·a_7_18 + b_2_2·a_3_2·a_5_8
+ b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 − b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_8 − a_5_6·a_5_9 + a_5_6·a_5_8 − a_5_6·a_5_7
− b_2_2·a_3_2·a_5_8 + b_2_0·a_1_0·a_7_18 + b_2_03·a_1_0·a_3_5
- − a_5_8·a_5_9 − a_5_7·a_5_9 + a_5_7·a_5_8 − a_5_6·a_5_9 − a_5_6·a_5_8 + a_3_1·a_7_18
+ b_2_2·a_3_2·a_5_8 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 + b_2_02·a_1_0·a_5_6
- − a_5_7·a_5_9 − a_5_6·a_5_9 − a_5_6·a_5_8 − a_5_6·a_5_7 + a_3_5·a_7_18 − b_2_2·a_3_2·a_5_8
+ b_2_0·a_3_1·a_5_6 + b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 − b_2_03·a_1_0·a_3_5
- a_5_9·a_5_10 + a_5_8·a_5_9 − a_5_6·a_5_9 − a_5_6·a_5_8 − a_5_6·a_5_7 + a_3_4·a_7_18
− b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5
- − a_5_9·a_5_10 − a_5_8·a_5_9 + a_5_6·a_5_9 + a_5_6·a_5_8 + a_5_6·a_5_7 + a_3_2·a_7_18
+ b_2_2·a_3_2·a_5_8 + b_2_02·a_1_0·a_5_6 + b_2_03·a_1_0·a_3_5
- b_2_0·a_8_15 − a_5_9·a_5_10 − a_5_8·a_5_9 + a_5_7·a_5_8 + a_5_6·a_5_9 − a_5_6·a_5_8
+ a_5_6·a_5_7 + b_2_2·a_3_2·a_5_8 − b_2_0·a_3_1·a_5_6 − b_2_02·a_3_1·a_3_5 − b_2_02·a_1_0·a_5_7 + b_2_03·a_1_0·a_3_5
- b_2_2·a_8_15 + a_5_9·a_5_10 − a_5_8·a_5_10 + a_5_8·a_5_9 − a_5_7·a_5_10 + a_5_7·a_5_8
− a_5_6·a_5_9 − a_5_6·a_5_8 − a_5_6·a_5_7 − b_2_02·a_1_0·a_5_6 − b_2_03·a_1_0·a_3_5
- a_2_1·a_8_15
- − a_6_7·a_5_7 + a_6_7·a_5_6
- a_6_7·a_5_9 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
- a_6_7·a_5_8 − a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
- a_6_10·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- a_6_10·a_5_6
- a_6_10·a_5_9 − a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
- a_6_10·a_5_10 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- a_6_10·a_5_8
- a_6_9·a_5_7 + a_6_7·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- a_6_9·a_5_6 − a_6_7·a_5_7
- a_6_9·a_5_9 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
- a_6_9·a_5_10 + a_6_7·a_5_7
- a_6_9·a_5_8 + a_6_7·a_5_10 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5
- b_6_12·a_5_9 − b_2_03·a_5_9 − b_2_03·a_5_6 + b_2_04·a_3_3 + b_2_02·a_1_0·a_3_1·a_3_5
− b_2_0·c_6_14·a_3_5 − b_2_02·c_6_14·a_1_0
- b_6_12·a_5_10 + b_6_12·a_5_7 − b_6_12·a_5_6 − b_2_03·a_5_9 + b_2_03·a_5_6
− b_2_04·a_3_5 + b_2_04·a_3_3 − a_6_7·a_5_10 + a_6_7·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6 + b_2_02·a_1_0·a_3_1·a_3_5 + b_2_02·c_6_14·a_1_0
- b_6_12·a_5_8 + b_6_12·a_5_7 + b_6_12·a_5_6 + b_2_03·a_5_9 − b_2_03·a_5_6 + b_2_04·a_3_5
− b_2_04·a_3_3 − a_6_7·a_5_10 + a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5 − b_2_02·c_6_14·a_1_0
- − b_6_12·a_5_6 + b_2_02·a_7_17 − b_2_03·a_5_9 + b_2_03·a_5_7 + b_2_03·a_5_6
− b_2_04·a_3_3 − a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6 + b_2_0·c_6_14·a_3_5 + b_2_0·c_6_14·a_3_3
- − a_6_7·a_5_7 + a_1_0·a_3_1·a_7_17 − b_2_0·a_1_0·a_3_1·a_5_6
− b_2_02·a_1_0·a_3_1·a_3_5
- b_2_22·a_7_17 − b_2_23·a_5_10 + b_2_23·a_5_8 + b_2_24·a_3_2 + a_6_7·a_5_10
− b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- a_4_4·a_7_17 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- b_6_12·a_5_7 + b_6_12·a_5_6 + b_4_7·a_7_17 − b_2_23·a_5_10 + b_2_23·a_5_8
+ b_2_24·a_3_2 − b_2_03·a_5_9 + b_2_03·a_5_7 − b_2_04·a_3_5 + a_6_7·a_5_10 + b_2_0·c_6_14·a_3_5 + b_2_0·c_6_14·a_3_3 − b_2_0·c_6_14·a_3_1 − b_2_02·c_6_14·a_1_0
- a_4_6·a_7_17 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- b_6_12·a_5_7 + b_2_02·a_7_18 − b_2_03·a_5_9 + b_2_03·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6
+ b_2_02·a_1_0·a_3_1·a_3_5 − b_2_0·c_6_14·a_3_1
- a_6_7·a_5_7 + a_4_4·a_7_18 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- − b_6_12·a_5_7 + b_6_12·a_5_6 + b_4_7·a_7_18 + b_2_23·a_5_8 + b_2_03·a_5_9
− b_2_03·a_5_6 + b_2_04·a_3_5 − b_2_04·a_3_3 + a_6_7·a_5_10 + a_6_7·a_5_7 − b_2_0·a_1_0·a_3_1·a_5_6 + b_2_0·c_6_14·a_3_5 + b_2_0·c_6_14·a_3_3 − b_2_02·c_6_14·a_1_0
- a_6_7·a_5_7 + a_4_6·a_7_18 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- a_8_15·a_3_3 + a_6_7·a_5_10 + a_6_7·a_5_7 + b_2_0·a_1_0·a_3_1·a_5_6
+ b_2_02·a_1_0·a_3_1·a_3_5
- a_8_15·a_3_1 − a_6_7·a_5_7 + b_2_02·a_1_0·a_3_1·a_3_5
- a_8_15·a_3_5 − a_6_7·a_5_10 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- a_8_15·a_3_4
- a_8_15·a_3_2 + a_6_7·a_5_10 − b_2_0·a_1_0·a_3_1·a_5_6 − b_2_02·a_1_0·a_3_1·a_3_5
- a_6_72
- a_6_102
- a_6_7·a_6_10
- a_6_10·a_6_9
- a_6_92
- a_6_7·a_6_9
- − a_6_9·b_6_12 + a_6_7·b_6_12 − b_2_03·a_1_0·a_5_6 − b_2_04·a_1_0·a_3_5
+ b_2_0·c_6_14·a_1_0·a_3_5
- b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_6_9·b_6_12 + a_5_7·a_7_17
+ b_2_22·a_3_2·a_5_10 − b_2_22·a_3_2·a_5_8 − b_2_02·a_3_1·a_5_6 + b_2_03·a_3_1·a_3_5 − b_2_03·a_1_0·a_5_7 − b_2_03·a_1_0·a_5_6 + b_2_04·a_1_0·a_3_5 + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − c_6_15·a_1_0·a_5_8 − c_6_15·a_1_0·a_5_7 − c_6_15·a_1_0·a_5_6 − c_6_14·a_3_1·a_3_5 − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_6 + b_2_0·c_6_14·a_1_0·a_3_1
- b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_5_6·a_7_17 + b_2_02·a_3_1·a_5_6
− b_2_03·a_1_0·a_5_7 − b_2_03·a_1_0·a_5_6 + b_2_04·a_1_0·a_3_5 + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
- − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 + a_6_10·b_6_12 + b_2_02·a_1_0·a_7_17
+ b_2_03·a_3_1·a_3_5 + b_2_03·a_1_0·a_5_7 + b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 − b_2_0·c_6_14·a_1_0·a_3_5 + b_2_0·c_6_14·a_1_0·a_3_1
- b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_6_9·b_6_12 − a_6_10·b_6_12
+ b_2_0·a_3_1·a_7_17 + b_2_02·a_3_1·a_5_6 − b_2_03·a_1_0·a_5_7 − b_2_04·a_1_0·a_3_5 + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − b_2_0·c_6_14·a_1_0·a_3_5
- − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_9·b_6_12 + a_6_10·b_6_12 + a_5_9·a_7_17
− b_2_02·a_3_1·a_5_6 + b_2_03·a_1_0·a_5_7 + b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 + c_6_15·a_1_0·a_5_10 − c_6_15·a_1_0·a_5_8 + c_6_15·a_1_0·a_5_6 + c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_6 + b_2_0·c_6_14·a_1_0·a_3_1
- − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_10·b_6_12 + a_5_10·a_7_17
− b_2_2·a_5_8·a_5_10 − b_2_22·a_3_2·a_5_10 − b_2_02·a_3_1·a_5_6 − b_2_03·a_1_0·a_5_7 − b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 + c_6_15·a_1_0·a_5_10 − c_6_15·a_1_0·a_5_8 + c_6_15·a_1_0·a_5_6 + c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_7 + c_6_14·a_1_0·a_5_6
- − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 + a_6_9·b_6_12 + a_6_10·b_6_12 + a_5_8·a_7_17
− b_2_2·a_5_8·a_5_10 − b_2_22·a_3_2·a_5_8 + b_2_03·a_3_1·a_3_5 − b_2_03·a_1_0·a_5_6 − b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 + c_6_15·a_1_0·a_5_10 + c_6_15·a_1_0·a_5_7 − c_6_15·a_1_0·a_5_6 + c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_6 + b_2_0·c_6_14·a_1_0·a_3_1
- b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 − a_6_9·b_6_12 − a_6_10·b_6_12 + a_5_7·a_7_18
− b_2_22·a_3_2·a_5_8 − b_2_02·a_3_1·a_5_6 + b_2_03·a_3_1·a_3_5 + b_2_03·a_1_0·a_5_7 − b_2_03·a_1_0·a_5_6 + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − c_6_15·a_1_0·a_5_10 − c_6_15·a_1_0·a_5_8 + c_6_15·a_1_0·a_5_7 − c_6_14·a_3_1·a_3_5 − c_6_14·a_1_0·a_5_10 + c_6_14·a_1_0·a_5_6 + b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
- − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_10·b_6_12 + a_5_6·a_7_18
− b_2_02·a_3_1·a_5_6 + b_2_03·a_1_0·a_5_7 + b_2_03·a_1_0·a_5_6 − b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 + c_6_14·a_3_1·a_3_5 − c_6_14·a_1_0·a_5_7 − b_2_0·c_6_14·a_1_0·a_3_5 + b_2_0·c_6_14·a_1_0·a_3_1
- − a_6_9·b_6_12 − a_6_10·b_6_12 + b_2_02·a_1_0·a_7_18 + b_2_03·a_1_0·a_5_7
− b_2_04·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
- − b_6_122 + b_2_03·b_6_12 − b_2_04·b_4_7 − a_6_9·b_6_12 + a_5_9·a_7_18
− b_2_02·a_3_1·a_5_6 + b_2_03·a_1_0·a_5_6 + b_2_04·a_1_0·a_3_5 − b_2_0·b_4_7·c_6_14 + b_2_03·c_6_14 − c_6_15·a_1_0·a_5_10 + c_6_15·a_1_0·a_5_8 − c_6_15·a_1_0·a_5_6 + c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_6 + b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
- a_5_10·a_7_18 − b_2_2·a_5_8·a_5_10 + c_6_15·a_1_0·a_5_10 − c_6_15·a_1_0·a_5_8
+ c_6_15·a_1_0·a_5_6 − c_6_14·a_3_1·a_3_5 + c_6_14·a_1_0·a_5_8 − c_6_14·a_1_0·a_5_7 + c_6_14·a_1_0·a_5_6
- b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 − a_6_9·b_6_12 − a_6_10·b_6_12 + a_5_8·a_7_18
− b_2_02·a_3_1·a_5_6 + b_2_03·a_3_1·a_3_5 + b_2_03·a_1_0·a_5_7 − b_2_03·a_1_0·a_5_6 + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 − c_6_15·a_1_0·a_5_8 − c_6_15·a_1_0·a_5_7 − c_6_15·a_1_0·a_5_6 − c_6_14·a_1_0·a_5_10 − c_6_14·a_1_0·a_5_8 + c_6_14·a_1_0·a_5_7 + b_2_0·c_6_14·a_1_0·a_3_5 − b_2_0·c_6_14·a_1_0·a_3_1
- a_4_4·a_8_15
- b_6_122 − b_2_03·b_6_12 + b_2_04·b_4_7 + a_6_9·b_6_12 + a_6_10·b_6_12 + b_4_7·a_8_15
− b_2_2·a_5_8·a_5_10 + b_2_22·a_3_2·a_5_10 − b_2_22·a_3_2·a_5_8 − b_2_03·a_3_1·a_3_5 + b_2_03·a_1_0·a_5_7 + b_2_03·a_1_0·a_5_6 − b_2_04·a_1_0·a_3_5 + b_2_0·b_4_7·c_6_14 − b_2_03·c_6_14 + b_2_0·c_6_14·a_1_0·a_3_1
- a_4_6·a_8_15
- a_6_10·a_7_17 − b_2_0·a_1_0·a_3_1·a_7_17 − b_2_02·a_1_0·a_3_1·a_5_6
− b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_15·a_5_7 + a_2_1·c_6_14·a_5_7
- a_6_9·a_7_17 + a_3_2·a_5_8·a_5_10 − b_2_02·a_1_0·a_3_1·a_5_6
− b_2_03·a_1_0·a_3_1·a_3_5 + c_6_14·a_1_0·a_3_1·a_3_5
- a_6_7·a_7_17 + a_3_2·a_5_8·a_5_10 − b_2_0·a_1_0·a_3_1·a_7_17
− b_2_02·a_1_0·a_3_1·a_5_6 − b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_15·a_5_7 + a_2_1·c_6_14·a_5_7 + c_6_14·a_1_0·a_3_1·a_3_5
- − b_6_12·a_7_17 + b_2_03·a_7_18 + b_2_03·a_7_17 + b_2_04·a_5_9 − b_2_04·a_5_7
− b_2_04·a_5_6 + b_2_05·a_3_5 + b_2_05·a_3_3 + b_2_0·a_1_0·a_3_1·a_7_17 − b_2_0·c_6_14·a_5_6 − b_2_02·c_6_14·a_3_5 + b_2_02·c_6_14·a_3_3 − b_2_02·c_6_14·a_3_1 − b_2_03·c_6_14·a_1_0 − c_6_14·a_1_0·a_3_1·a_3_5
- b_6_12·a_7_18 − b_6_12·a_7_17 − b_2_04·a_5_9 − b_2_04·a_5_7 − b_2_05·a_3_3
− a_3_2·a_5_8·a_5_10 + b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5 + b_2_0·c_6_14·a_5_7 − b_2_02·c_6_14·a_3_5 − b_2_02·c_6_14·a_3_3 + b_2_02·c_6_14·a_3_1 + b_2_03·c_6_14·a_1_0 + c_6_14·a_1_0·a_3_1·a_3_5
- a_6_10·a_7_18 + b_2_0·a_1_0·a_3_1·a_7_17 + b_2_02·a_1_0·a_3_1·a_5_6
+ b_2_03·a_1_0·a_3_1·a_3_5 − a_2_1·c_6_15·a_5_7 − a_2_1·c_6_14·a_5_7
- a_6_9·a_7_18 + a_3_2·a_5_8·a_5_10 + b_2_0·a_1_0·a_3_1·a_7_17 − a_2_1·c_6_14·a_5_7
- a_6_7·a_7_18 + b_2_0·a_1_0·a_3_1·a_7_17 + b_2_02·a_1_0·a_3_1·a_5_6
+ b_2_03·a_1_0·a_3_1·a_3_5 − a_2_1·c_6_15·a_5_7 + a_2_1·c_6_14·a_5_7 − c_6_14·a_1_0·a_3_1·a_3_5
- a_8_15·a_5_7 + a_3_2·a_5_8·a_5_10 + b_2_0·a_1_0·a_3_1·a_7_17
− b_2_02·a_1_0·a_3_1·a_5_6 − b_2_03·a_1_0·a_3_1·a_3_5 − c_6_14·a_1_0·a_3_1·a_3_5
- a_8_15·a_5_6 + b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5
+ c_6_14·a_1_0·a_3_1·a_3_5
- a_8_15·a_5_9 + b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5
− a_2_1·c_6_14·a_5_7
- a_8_15·a_5_10 − a_3_2·a_5_8·a_5_10 + b_2_0·a_1_0·a_3_1·a_7_17
+ b_2_02·a_1_0·a_3_1·a_5_6 + b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_14·a_5_7 − c_6_14·a_1_0·a_3_1·a_3_5
- a_8_15·a_5_8 − a_3_2·a_5_8·a_5_10 + b_2_02·a_1_0·a_3_1·a_5_6
+ b_2_03·a_1_0·a_3_1·a_3_5 + a_2_1·c_6_14·a_5_7
- a_7_17·a_7_18 − b_2_22·a_5_8·a_5_10 − b_2_23·a_3_2·a_5_8 + b_2_03·a_3_1·a_5_6
+ b_2_03·a_1_0·a_7_18 + b_2_03·a_1_0·a_7_17 + b_2_04·a_3_1·a_3_5 + b_2_04·a_1_0·a_5_6 − b_2_05·a_1_0·a_3_5 + c_6_15·a_1_1·a_7_18 − c_6_14·a_3_1·a_5_6 + c_6_14·a_1_1·a_7_18 + b_2_0·c_6_14·a_1_0·a_5_7 + b_2_02·c_6_14·a_1_0·a_3_5
- b_6_12·a_8_15 + b_2_02·a_3_1·a_7_17 − b_2_03·a_3_1·a_5_6 + b_2_03·a_1_0·a_7_18
+ b_2_03·a_1_0·a_7_17 − b_2_04·a_3_1·a_3_5 + b_2_04·a_1_0·a_5_7 + b_2_04·a_1_0·a_5_6 − b_2_0·c_6_14·a_3_1·a_3_5 − b_2_0·c_6_14·a_1_0·a_5_6 + b_2_02·c_6_14·a_1_0·a_3_5 − b_2_02·c_6_14·a_1_0·a_3_1
- a_6_10·a_8_15
- a_6_9·a_8_15
- a_6_7·a_8_15
- a_8_15·a_7_18 + b_2_2·a_3_2·a_5_8·a_5_10 − b_2_02·a_1_0·a_3_1·a_7_17
+ b_2_03·a_1_0·a_3_1·a_5_6 + b_2_04·a_1_0·a_3_1·a_3_5
- a_8_15·a_7_17 + b_2_2·a_3_2·a_5_8·a_5_10 − b_2_02·a_1_0·a_3_1·a_7_17
− c_6_14·a_1_0·a_3_1·a_5_6
- a_8_152
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_14, a Duflot regular element of degree 6
- c_6_15, a Duflot regular element of degree 6
- b_2_22 + b_2_02, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 13].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_1 → 0, an element of degree 3
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_4_6 → 0, an element of degree 4
- b_4_7 → 0, an element of degree 4
- a_5_6 → 0, an element of degree 5
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- a_6_7 → 0, an element of degree 6
- a_6_10 → 0, an element of degree 6
- a_6_9 → 0, an element of degree 6
- b_6_12 → 0, an element of degree 6
- c_6_14 → c_2_23, an element of degree 6
- c_6_15 → − c_2_23 + c_2_13, an element of degree 6
- a_7_17 → 0, an element of degree 7
- a_7_18 → 0, an element of degree 7
- a_8_15 → 0, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → c_2_5, an element of degree 2
- b_2_2 → − a_1_0·a_1_2, an element of degree 2
- a_3_1 → c_2_5·a_1_0 − c_2_3·a_1_2, an element of degree 3
- a_3_2 → 0, an element of degree 3
- a_3_3 → − c_2_4·a_1_2, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_3_5 → − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_4_4 → c_2_5·a_1_1·a_1_2, an element of degree 4
- a_4_6 → c_2_5·a_1_1·a_1_2, an element of degree 4
- b_4_7 → − c_2_4·c_2_5, an element of degree 4
- a_5_6 → − c_2_5·a_1_0·a_1_1·a_1_2 + c_2_52·a_1_1 + c_2_4·c_2_5·a_1_1, an element of degree 5
- a_5_7 → c_2_5·a_1_0·a_1_1·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_0 + c_2_3·c_2_4·a_1_2, an element of degree 5
- a_5_8 → c_2_5·a_1_0·a_1_1·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2 − c_2_4·c_2_5·a_1_1
+ c_2_4·c_2_5·a_1_0 − c_2_3·c_2_4·a_1_2, an element of degree 5
- a_5_9 → − c_2_52·a_1_1 + c_2_4·c_2_5·a_1_1 − c_2_42·a_1_2, an element of degree 5
- a_5_10 → − c_2_5·a_1_0·a_1_1·a_1_2 + c_2_4·c_2_5·a_1_2 + c_2_4·c_2_5·a_1_1 + c_2_4·c_2_5·a_1_0
− c_2_3·c_2_4·a_1_2, an element of degree 5
- a_6_7 → c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_2
+ c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
- a_6_10 → − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 − c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
- a_6_9 → c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_1·a_1_2
− c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2, an element of degree 6
- b_6_12 → − c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_1·a_1_2
− c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2 − c_2_42·c_2_5, an element of degree 6
- c_6_14 → c_2_52·a_1_1·a_1_2 + c_2_4·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_2
− c_2_4·c_2_52 − c_2_42·c_2_5 + c_2_43, an element of degree 6
- c_6_15 → − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_1·a_1_2
− c_2_3·c_2_5·a_1_1·a_1_2 − c_2_4·c_2_52 − c_2_42·c_2_5 − c_2_43 − c_2_3·c_2_52 + c_2_33, an element of degree 6
- a_7_17 → − c_2_52·a_1_0·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_0·a_1_1·a_1_2 − c_2_4·c_2_52·a_1_2
− c_2_4·c_2_52·a_1_1 + c_2_4·c_2_52·a_1_0 − c_2_42·c_2_5·a_1_2 + c_2_42·c_2_5·a_1_1 − c_2_3·c_2_4·c_2_5·a_1_2, an element of degree 7
- a_7_18 → − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_1 + c_2_4·c_2_52·a_1_1 − c_2_42·c_2_5·a_1_2
+ c_2_42·c_2_5·a_1_1 − c_2_42·c_2_5·a_1_0 + c_2_3·c_2_42·a_1_2, an element of degree 7
- a_8_15 → c_2_53·a_1_1·a_1_2 + c_2_4·c_2_52·a_1_1·a_1_2 − c_2_4·c_2_52·a_1_0·a_1_2
+ c_2_4·c_2_52·a_1_0·a_1_1 + c_2_42·c_2_5·a_1_1·a_1_2 − c_2_42·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_4·c_2_5·a_1_1·a_1_2, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → − c_2_5, an element of degree 2
- a_3_1 → 0, an element of degree 3
- a_3_2 → c_2_5·a_1_2, an element of degree 3
- a_3_3 → c_2_5·a_1_2, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_3_5 → − c_2_5·a_1_2, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_4_6 → 0, an element of degree 4
- b_4_7 → c_2_52, an element of degree 4
- a_5_6 → 0, an element of degree 5
- a_5_7 → c_2_52·a_1_2, an element of degree 5
- a_5_8 → c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2, an element of degree 5
- a_5_9 → 0, an element of degree 5
- a_5_10 → − c_2_52·a_1_2 + c_2_52·a_1_1 − c_2_52·a_1_0 − c_2_4·c_2_5·a_1_2 + c_2_3·c_2_5·a_1_2, an element of degree 5
- a_6_7 → − c_2_52·a_1_1·a_1_2, an element of degree 6
- a_6_10 → 0, an element of degree 6
- a_6_9 → − c_2_52·a_1_1·a_1_2 + c_2_52·a_1_0·a_1_2, an element of degree 6
- b_6_12 → − c_2_52·a_1_0·a_1_2, an element of degree 6
- c_6_14 → c_2_52·a_1_0·a_1_2 + c_2_53 − c_2_4·c_2_52 + c_2_43, an element of degree 6
- c_6_15 → − c_2_52·a_1_1·a_1_2 − c_2_52·a_1_0·a_1_2 + c_2_4·c_2_52 − c_2_43 − c_2_3·c_2_52
+ c_2_33, an element of degree 6
- a_7_17 → − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_0 − c_2_3·c_2_52·a_1_2, an element of degree 7
- a_7_18 → − c_2_52·a_1_0·a_1_1·a_1_2 + c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2, an element of degree 7
- a_8_15 → c_2_53·a_1_1·a_1_2 − c_2_53·a_1_0·a_1_2 − c_2_53·a_1_0·a_1_1
+ c_2_4·c_2_52·a_1_0·a_1_2 − c_2_3·c_2_52·a_1_1·a_1_2, an element of degree 8
|