Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 55 of order 243
General information on the group
- The group has 3 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2, 2, 2 and 3, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
t3 − t2 − 1 |
| (t − 1)3 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- a_3_8, a nilpotent element of degree 3
- b_4_10, an element of degree 4
- a_5_12, a nilpotent element of degree 5
- b_6_14, an element of degree 6
- c_6_15, a Duflot regular element of degree 6
- a_7_19, a nilpotent element of degree 7
Ring relations
There are 6 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_82, a_5_122, a_7_192
Apart from that, there are 39 minimal relations of maximal degree 13:
- a_1_0·a_1_1
- b_2_3·a_1_0 − b_2_2·a_1_1
- b_2_4·a_1_1 − b_2_2·a_1_1
- b_2_4·a_1_0 − b_2_3·a_1_1
- b_2_5·a_1_0 − b_2_2·a_1_1
- b_2_3·b_2_4 − b_2_2·b_2_3
- − b_2_32 + b_2_2·b_2_4
- b_2_42 − b_2_32
- b_2_3·b_2_5 − b_2_32
- b_2_2·b_2_5 − b_2_2·b_2_3
- − b_2_4·b_2_5 + b_2_2·b_2_3 + a_1_1·a_3_8
- a_1_0·a_3_8
- b_2_3·a_3_8 − b_2_2·b_2_3·a_1_1 + b_2_22·a_1_1
- b_2_2·a_3_8 + b_2_2·b_2_3·a_1_1 − b_2_22·a_1_1
- b_2_4·a_3_8 + b_2_2·b_2_3·a_1_1 − b_2_22·a_1_1
- b_4_10·a_1_0 − b_2_2·b_2_3·a_1_1
- b_2_3·b_4_10 − b_2_22·b_2_3
- b_2_2·b_4_10 − b_2_22·b_2_4
- − b_2_4·b_4_10 + b_2_22·b_2_4 + a_1_1·a_5_12 − b_2_5·a_1_1·a_3_8
- a_1_0·a_5_12
- b_2_3·a_5_12 + b_2_22·b_2_3·a_1_1 − b_2_23·a_1_1
- b_2_2·a_5_12 − b_2_22·b_2_3·a_1_1 + b_2_23·a_1_1
- b_2_4·a_5_12 − b_2_22·b_2_3·a_1_1 + b_2_23·a_1_1
- b_6_14·a_1_1 + b_4_10·a_3_8 − b_2_5·a_5_12 + b_2_5·b_4_10·a_1_1 + b_2_52·a_3_8
+ b_2_22·b_2_3·a_1_1
- b_6_14·a_1_0 + b_2_22·b_2_3·a_1_1 + b_2_23·a_1_1
- b_2_3·b_6_14 + b_2_23·b_2_4 + b_2_23·b_2_3
- b_2_2·b_6_14 + b_2_23·b_2_4 + b_2_23·b_2_3
- b_2_4·b_6_14 + b_2_23·b_2_4 + b_2_23·b_2_3 + a_3_8·a_5_12 + b_2_5·a_1_1·a_5_12
− b_2_52·a_1_1·a_3_8
- a_3_8·a_5_12 + a_1_1·a_7_19 + b_2_5·a_1_1·a_5_12 + b_2_52·a_1_1·a_3_8
- a_1_0·a_7_19
- b_2_3·a_7_19 − b_2_23·b_2_3·a_1_1 − b_2_24·a_1_1 − b_2_2·c_6_15·a_1_1
- b_2_2·a_7_19 − b_2_23·b_2_3·a_1_1 − b_2_24·a_1_1 − b_2_2·c_6_15·a_1_0
- − b_6_14·a_3_8 + b_4_102·a_1_1 + b_2_5·a_7_19 + b_2_5·b_4_10·a_3_8 − b_2_52·a_5_12
− b_2_52·b_4_10·a_1_1 − b_2_23·b_2_3·a_1_1 − b_2_24·a_1_1 − b_2_2·c_6_15·a_1_1
- b_2_4·a_7_19 − b_2_23·b_2_3·a_1_1 − b_2_24·a_1_1 − b_2_3·c_6_15·a_1_1
- a_3_8·a_7_19 − b_4_10·a_1_1·a_5_12 + b_2_5·a_1_1·a_7_19 − b_2_53·a_1_1·a_3_8
- − b_6_14·a_5_12 + b_4_10·a_7_19 − b_4_102·a_3_8 + b_2_5·b_4_10·a_5_12
+ b_2_5·b_4_102·a_1_1 + b_2_52·a_7_19 + b_2_53·a_5_12 + b_2_53·b_4_10·a_1_1 + b_2_54·a_3_8 + b_2_24·b_2_3·a_1_1 − b_2_25·a_1_1 − b_2_52·c_6_15·a_1_1 + b_2_2·b_2_3·c_6_15·a_1_1 + b_2_22·c_6_15·a_1_1
- b_6_142 + b_4_103 − b_2_5·b_4_10·b_6_14 + b_2_53·b_6_14 − b_2_54·b_4_10
+ b_2_25·b_2_4 + b_2_25·b_2_3 + b_2_52·a_1_1·a_7_19 − b_2_53·a_1_1·a_5_12 + b_2_53·c_6_15 − b_2_22·b_2_3·c_6_15
- − b_6_142 − b_4_103 + b_2_5·b_4_10·b_6_14 − b_2_53·b_6_14 + b_2_54·b_4_10
− b_2_25·b_2_4 − b_2_25·b_2_3 + a_5_12·a_7_19 − b_4_10·a_1_1·a_7_19 + b_2_5·b_4_10·a_1_1·a_5_12 + b_2_53·a_1_1·a_5_12 − b_2_54·a_1_1·a_3_8 − b_2_53·c_6_15 + b_2_22·b_2_3·c_6_15 + b_2_5·c_6_15·a_1_1·a_3_8
- − b_6_14·a_7_19 − b_4_102·a_5_12 + b_4_103·a_1_1 + b_2_5·b_4_10·a_7_19
− b_2_5·b_4_102·a_3_8 − b_2_52·b_4_10·a_5_12 − b_2_52·b_4_102·a_1_1 − b_2_53·b_4_10·a_3_8 − b_2_54·a_5_12 − b_2_54·b_4_10·a_1_1 + b_2_55·a_3_8 + b_2_25·b_2_3·a_1_1 − b_2_52·c_6_15·a_3_8 − b_2_53·c_6_15·a_1_1 − b_2_22·b_2_3·c_6_15·a_1_1 − b_2_23·c_6_15·a_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_15, a Duflot regular element of degree 6
- b_4_103 − b_2_52·b_4_102 + b_2_53·b_6_14 − b_2_54·b_4_10 − b_2_56 + b_2_25·b_2_3
− b_2_26 + b_2_53·c_6_15 − b_2_22·b_2_3·c_6_15, an element of degree 12
- b_2_52·b_4_103 − b_2_54·b_4_102 + b_2_55·b_6_14 − b_2_56·b_4_10 − b_2_27·b_2_4
+ b_2_27·b_2_3 + b_2_55·c_6_15 − b_2_24·b_2_3·c_6_15, an element of degree 16
- The Raw Filter Degree Type of that HSOP is [-1, -1, 15, 31].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
- We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 2 elements of degree 4.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_8 → 0, an element of degree 3
- b_4_10 → 0, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_6_14 → 0, an element of degree 6
- c_6_15 → c_2_03, an element of degree 6
- a_7_19 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_2 → c_2_2, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_8 → 0, an element of degree 3
- b_4_10 → 0, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_6_14 → 0, an element of degree 6
- c_6_15 → − c_2_1·c_2_22 + c_2_13, an element of degree 6
- a_7_19 → − c_2_1·c_2_22·a_1_1 + c_2_13·a_1_1, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → − a_1_1, an element of degree 1
- a_1_2 → a_1_1, an element of degree 1
- b_2_2 → c_2_2, an element of degree 2
- b_2_3 → − c_2_2, an element of degree 2
- b_2_4 → c_2_2, an element of degree 2
- b_2_5 → − c_2_2, an element of degree 2
- a_3_8 → c_2_2·a_1_1, an element of degree 3
- b_4_10 → c_2_22, an element of degree 4
- a_5_12 → − c_2_22·a_1_1, an element of degree 5
- b_6_14 → 0, an element of degree 6
- c_6_15 → − c_2_23 − c_2_1·c_2_22 + c_2_13, an element of degree 6
- a_7_19 → − c_2_23·a_1_1 − c_2_1·c_2_22·a_1_1 + c_2_13·a_1_1, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_1_2 → − a_1_1, an element of degree 1
- b_2_2 → c_2_2, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- b_2_4 → c_2_2, an element of degree 2
- b_2_5 → c_2_2, an element of degree 2
- a_3_8 → 0, an element of degree 3
- b_4_10 → c_2_22, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_6_14 → c_2_23, an element of degree 6
- c_6_15 → − c_2_1·c_2_22 + c_2_13, an element of degree 6
- a_7_19 → − c_2_23·a_1_1 − c_2_1·c_2_22·a_1_1 + c_2_13·a_1_1, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_2_4 → − a_1_1·a_1_2, an element of degree 2
- b_2_5 → c_2_4, an element of degree 2
- a_3_8 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- b_4_10 → − c_2_4·a_1_1·a_1_2 − c_2_52 + c_2_4·c_2_5 − c_2_3·c_2_4, an element of degree 4
- a_5_12 → c_2_52·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2 − c_2_42·a_1_2 − c_2_3·c_2_5·a_1_1
+ c_2_3·c_2_4·a_1_2, an element of degree 5
- b_6_14 → c_2_53 + c_2_4·c_2_52 + c_2_42·c_2_5 + c_2_3·c_2_42, an element of degree 6
- c_6_15 → c_2_52·a_1_1·a_1_2 − c_2_4·c_2_5·a_1_1·a_1_2 − c_2_42·a_1_1·a_1_2
+ c_2_3·c_2_4·a_1_1·a_1_2 − c_2_53 + c_2_4·c_2_52 − c_2_3·c_2_52 + c_2_3·c_2_4·c_2_5 + c_2_3·c_2_42 + c_2_32·c_2_4 + c_2_33, an element of degree 6
- a_7_19 → − c_2_53·a_1_2 + c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2 − c_2_4·c_2_52·a_1_1
− c_2_42·c_2_5·a_1_2 + c_2_42·c_2_5·a_1_1 − c_2_43·a_1_2 + c_2_3·c_2_52·a_1_1 − c_2_3·c_2_42·a_1_2 − c_2_3·c_2_42·a_1_1 − c_2_32·c_2_4·a_1_1, an element of degree 7
|