Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1518 of order 256
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its centre has rank 2.
- It has 5 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 4, 4, 4 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t4 − 2·t3 + 3·t2 − t + 1 |
| (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 4:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_2_6, an element of degree 2
- a_3_7, a nilpotent element of degree 3
- a_3_8, a nilpotent element of degree 3
- b_3_12, an element of degree 3
- b_3_13, an element of degree 3
- b_4_19, an element of degree 4
- c_4_21, a Duflot element of degree 4
- c_4_22, a Duflot element of degree 4
Ring relations
There are 53 minimal relations of maximal degree 8:
- a_1_02
- a_1_0·b_1_1
- a_1_0·b_1_2
- b_2_3·a_1_0
- b_2_4·a_1_0
- b_2_4·b_1_1 + b_2_3·b_1_2
- b_2_5·a_1_0
- b_2_6·b_1_2 + b_2_5·b_1_2 + b_2_6·a_1_0
- b_2_6·b_1_2 + b_2_6·b_1_1 + b_2_5·b_1_2 + b_2_5·b_1_1
- b_2_5·b_1_22 + b_2_42
- b_2_5·b_1_1·b_1_2 + b_2_3·b_2_4
- b_2_5·b_1_12 + b_2_32
- b_2_52 + b_2_42 + b_2_3·b_1_22 + b_2_3·b_1_1·b_1_2 + b_2_3·b_2_4 + b_2_32
- b_2_5·b_2_6 + b_2_42 + b_2_3·b_1_22 + b_2_3·b_1_1·b_1_2 + b_2_3·b_2_6 + b_2_3·b_2_5
+ b_2_3·b_2_4 + b_2_32 + b_1_2·a_3_7
- b_2_3·b_2_6 + b_2_3·b_2_5 + a_1_0·a_3_7
- b_2_3·b_2_6 + b_2_3·b_2_5 + b_1_1·a_3_7
- b_2_5·b_2_6 + b_2_4·b_2_6 + b_2_4·b_2_5 + b_2_42 + b_2_3·b_1_22 + b_2_3·b_1_1·b_1_2
+ b_2_3·b_2_6 + b_2_3·b_2_5 + b_2_3·b_2_4 + b_2_32 + b_1_2·a_3_8
- b_2_4·b_2_6 + b_2_4·b_2_5 + b_2_3·b_2_6 + b_2_3·b_2_5 + a_1_0·a_3_8
- b_2_5·b_2_6 + b_2_4·b_2_6 + b_2_4·b_2_5 + b_2_42 + b_2_3·b_1_22 + b_2_3·b_1_1·b_1_2
+ b_2_3·b_2_6 + b_2_3·b_2_5 + b_2_3·b_2_4 + b_2_32 + b_1_1·a_3_8
- b_1_2·b_3_12 + b_2_4·b_2_6 + b_2_42 + b_2_3·b_2_4
- b_2_4·b_2_6 + b_2_4·b_2_5 + a_1_0·b_3_12
- b_1_1·b_3_12 + b_2_5·b_2_6 + b_2_4·b_2_6 + b_2_4·b_2_5 + b_2_42 + b_2_3·b_1_22
+ b_2_3·b_1_1·b_1_2 + b_2_3·b_2_5
- b_2_5·b_2_6 + b_2_4·b_2_6 + b_2_4·b_2_5 + b_2_42 + b_2_3·b_1_22 + b_2_3·b_1_1·b_1_2
+ b_2_3·b_2_6 + b_2_3·b_2_5 + b_2_3·b_2_4 + b_2_32 + a_1_0·b_3_13
- b_2_3·a_3_7
- b_2_5·a_3_7
- b_2_4·a_3_7 + b_2_3·a_3_8
- b_2_5·a_3_8
- b_2_4·a_3_8 + b_2_4·a_3_7
- b_2_3·b_3_12 + b_2_3·b_1_1·b_1_22 + b_2_3·b_1_12·b_1_2 + b_2_3·b_2_5·b_1_2
+ b_2_3·b_2_5·b_1_1 + b_2_3·b_2_4·b_1_2 + b_2_32·b_1_2 + b_2_32·b_1_1 + b_2_4·a_3_7
- b_2_5·b_3_12 + b_2_4·b_2_5·b_1_2 + b_2_42·b_1_2 + b_2_3·b_1_23 + b_2_3·b_1_12·b_1_2
+ b_2_3·b_2_5·b_1_2 + b_2_3·b_2_5·b_1_1 + b_2_3·b_2_4·b_1_2 + b_2_32·b_1_2 + b_2_32·b_1_1
- b_2_4·b_3_12 + b_2_4·b_2_5·b_1_2 + b_2_42·b_1_2 + b_2_3·b_1_23 + b_2_3·b_1_1·b_1_22
+ b_2_3·b_2_5·b_1_2 + b_2_3·b_2_4·b_1_2 + b_2_32·b_1_2
- b_2_6·b_3_12 + b_2_4·b_2_5·b_1_2 + b_2_42·b_1_2 + b_2_3·b_1_23 + b_2_3·b_1_12·b_1_2
+ b_2_3·b_2_5·b_1_2 + b_2_3·b_2_5·b_1_1 + b_2_3·b_2_4·b_1_2 + b_2_32·b_1_2 + b_2_32·b_1_1 + b_2_6·a_3_8 + b_2_6·a_3_7 + b_2_62·a_1_0 + b_2_4·a_3_7
- b_2_6·b_3_13 + b_2_5·b_3_13 + b_2_6·a_3_8
- b_1_1·b_1_2·b_3_13 + b_4_19·b_1_2 + b_2_4·b_3_13 + b_2_4·b_1_23 + b_2_4·b_2_5·b_1_2
+ b_2_3·b_1_23 + b_2_3·b_2_5·b_1_2 + b_2_32·b_1_2
- b_4_19·a_1_0 + b_2_4·a_3_7
- b_1_12·b_3_13 + b_4_19·b_1_1 + b_2_3·b_3_13 + b_2_3·b_1_23 + b_2_3·b_1_1·b_1_22
+ b_2_3·b_2_5·b_1_2 + b_2_3·b_2_5·b_1_1 + b_2_32·b_1_1
- a_3_72
- a_3_82
- a_3_8·b_3_12 + a_3_7·a_3_8 + b_2_6·a_1_0·a_3_8
- b_3_122 + b_2_3·b_2_4·b_2_5 + b_2_3·b_2_42 + b_2_32·b_2_4
- a_3_7·b_3_12 + a_3_7·a_3_8 + b_2_6·a_1_0·a_3_7
- a_3_8·b_3_13
- a_3_7·b_3_13 + a_3_7·a_3_8
- b_3_132 + b_4_19·b_1_22 + b_4_19·b_1_12 + b_2_4·b_1_2·b_3_13 + b_2_4·b_1_24
+ b_2_42·b_2_5 + b_2_43 + b_2_3·b_1_13·b_1_2 + b_2_32·b_1_1·b_1_2 + b_2_32·b_1_12 + b_2_32·b_2_5 + b_2_33 + c_4_22·b_1_12 + c_4_21·b_1_22
- b_2_5·b_1_1·b_3_13 + b_2_3·b_1_1·b_3_13 + b_2_3·b_4_19 + b_2_3·b_2_4·b_1_22
+ b_2_3·b_2_4·b_2_5 + b_2_32·b_1_22 + b_2_32·b_2_5 + b_2_33
- b_3_12·b_3_13 + b_2_5·b_1_2·b_3_13 + b_2_5·b_4_19 + b_2_3·b_2_4·b_1_22
+ b_2_3·b_2_42 + b_2_32·b_1_1·b_1_2 + b_2_32·b_2_5 + b_2_33 + a_3_7·a_3_8 + b_2_6·a_1_0·a_3_8
- b_2_5·b_1_2·b_3_13 + b_2_4·b_4_19 + b_2_3·b_1_2·b_3_13 + b_2_3·b_1_24
+ b_2_3·b_1_13·b_1_2 + b_2_3·b_2_4·b_1_22 + b_2_32·b_1_22 + b_2_32·b_1_12 + b_2_32·b_2_5 + b_2_32·b_2_4
- b_3_12·b_3_13 + b_2_6·b_4_19 + b_2_5·b_1_2·b_3_13 + b_2_3·b_2_4·b_1_22
+ b_2_3·b_2_42 + b_2_32·b_1_1·b_1_2 + b_2_32·b_2_5 + b_2_33 + b_2_6·a_1_0·a_3_7
- b_4_19·a_3_8 + a_1_0·a_3_7·a_3_8
- b_4_19·a_3_7 + a_1_0·a_3_7·a_3_8
- b_4_19·b_3_12 + b_2_4·b_2_5·b_3_13 + b_2_42·b_3_13 + b_2_3·b_1_22·b_3_13
+ b_2_3·b_4_19·b_1_2 + b_2_3·b_2_4·b_3_13 + a_1_0·a_3_7·a_3_8
- b_4_19·b_3_13 + b_4_19·b_1_1·b_1_22 + b_4_19·b_1_13 + b_2_4·b_1_22·b_3_13
+ b_2_4·b_2_5·b_3_13 + b_2_43·b_1_2 + b_2_3·b_1_22·b_3_13 + b_2_3·b_1_25 + b_2_3·b_1_14·b_1_2 + b_2_3·b_4_19·b_1_1 + b_2_3·b_2_5·b_3_13 + b_2_32·b_3_13 + b_2_32·b_1_23 + b_2_32·b_1_1·b_1_22 + b_2_32·b_1_12·b_1_2 + b_2_32·b_1_13 + b_2_32·b_2_4·b_1_2 + b_2_33·b_1_1 + a_1_0·a_3_7·a_3_8 + c_4_22·b_1_13 + c_4_21·b_1_1·b_1_22 + b_2_4·c_4_21·b_1_2 + b_2_3·c_4_22·b_1_1
- b_4_19·b_1_12·b_1_22 + b_4_19·b_1_14 + b_4_192 + b_2_44 + b_2_3·b_1_26
+ b_2_3·b_1_15·b_1_2 + b_2_3·b_4_19·b_1_1·b_1_2 + b_2_3·b_2_5·b_4_19 + b_2_3·b_2_4·b_1_24 + b_2_32·b_1_13·b_1_2 + b_2_32·b_1_14 + b_2_32·b_2_4·b_2_5 + b_2_33·b_1_1·b_1_2 + b_2_33·b_1_12 + b_2_33·b_2_5 + b_2_34 + c_4_22·b_1_14 + c_4_21·b_1_12·b_1_22 + b_2_42·c_4_21 + b_2_32·c_4_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 8.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_21, a Duflot element of degree 4
- c_4_22, a Duflot element of degree 4
- b_1_22 + b_1_1·b_1_2 + b_1_12 + b_2_6 + b_2_5, an element of degree 2
- b_1_1·b_1_22 + b_1_12·b_1_2, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 6, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_3_8 → 0, an element of degree 3
- b_3_12 → 0, an element of degree 3
- b_3_13 → 0, an element of degree 3
- b_4_19 → 0, an element of degree 4
- c_4_21 → c_1_14, an element of degree 4
- c_4_22 → c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → c_1_22, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_3_8 → 0, an element of degree 3
- b_3_12 → 0, an element of degree 3
- b_3_13 → 0, an element of degree 3
- b_4_19 → 0, an element of degree 4
- c_4_21 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_22 → c_1_02·c_1_22 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_3_8 → 0, an element of degree 3
- b_3_12 → 0, an element of degree 3
- b_3_13 → c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_19 → c_1_1·c_1_2·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- c_4_21 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_22 → c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_0·c_1_2·c_1_32 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_2_3 → c_1_2·c_1_3, an element of degree 2
- b_2_4 → c_1_32, an element of degree 2
- b_2_5 → c_1_32, an element of degree 2
- b_2_6 → c_1_32, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_3_8 → 0, an element of degree 3
- b_3_12 → c_1_2·c_1_32, an element of degree 3
- b_3_13 → c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_19 → c_1_23·c_1_3 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_21 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_22 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_2_3 → c_1_32, an element of degree 2
- b_2_4 → c_1_2·c_1_3, an element of degree 2
- b_2_5 → c_1_32, an element of degree 2
- b_2_6 → c_1_32, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_3_8 → 0, an element of degree 3
- b_3_12 → c_1_2·c_1_32, an element of degree 3
- b_3_13 → c_1_2·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
- b_4_19 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3, an element of degree 4
- c_4_21 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_22 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_23
+ c_1_12·c_1_22 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_22 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3 + c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_2_3 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- b_2_4 → c_1_2·c_1_3, an element of degree 2
- b_2_5 → c_1_32, an element of degree 2
- b_2_6 → c_1_32, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_3_8 → 0, an element of degree 3
- b_3_12 → 0, an element of degree 3
- b_3_13 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_32 + c_1_0·c_1_22 + c_1_02·c_1_3
+ c_1_02·c_1_2, an element of degree 3
- b_4_19 → c_1_1·c_1_23 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_23
+ c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_21 → c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_22 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_0·c_1_2·c_1_32
+ c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
|