The Cohomology of the Groups of Order 256

In total, there are 56092 groups of order 256. We provide here the cohomology rings for six of them.


SmallGroup(256,299), which was discussed as a potential counterexample to the strong form of Benson's conjecture on filter degree type; our computations show that the conjecture holds in this example.
SmallGroup(256,1518)
SmallGroup(256,6661), the Sylow 2-subgroup of Symplectic group S4(7)
SmallGroup(256,6665), the Sylow 2-subgroup of 2A_11 and of Ly
SmallGroup(256,8935), the Sylow 2-subgroup of Symplectic group S4(4)
SmallGroup(256,26531), the Sylow 2-subgroup of Symmetric Group Sym10



Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 10.01.2019