Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 6665 of order 256
General information on the group
- The group is also known as Syl2(Ly), the Sylow 2-group of 2A_11 and of Ly.
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 1.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t9 − t8 − t2 − 1) |
| (t + 1) · (t − 1)4 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 8:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- b_3_8, an element of degree 3
- b_3_9, an element of degree 3
- b_4_12, an element of degree 4
- b_4_14, an element of degree 4
- b_5_19, an element of degree 5
- b_5_20, an element of degree 5
- b_6_27, an element of degree 6
- b_7_35, an element of degree 7
- b_8_44, an element of degree 8
- c_8_46, a Duflot regular element of degree 8
Ring relations
There are 65 minimal relations of maximal degree 16:
- b_1_0·b_1_1
- b_1_0·b_1_2
- a_2_4·b_1_2
- a_2_4·b_1_0
- b_2_5·b_1_1
- a_2_4·b_2_5
- b_1_0·b_3_8
- b_1_2·b_3_8 + b_1_1·b_3_8 + a_2_4·b_1_12
- b_1_2·b_3_9 + b_1_2·b_3_8
- b_1_2·b_3_8 + b_1_1·b_3_9 + a_2_42
- b_2_5·b_3_8
- a_2_4·b_3_8 + a_2_42·b_1_1
- a_2_4·b_3_9
- b_4_12·b_1_2
- b_4_12·b_1_1
- b_4_14·b_1_2 + b_4_14·b_1_1 + a_2_42·b_1_1
- b_3_8·b_3_9 + b_3_82 + a_2_42·b_1_12
- a_2_4·b_4_12
- b_3_82 + b_4_14·b_1_12
- b_1_2·b_5_19 + b_1_13·b_3_8 + a_2_4·b_1_14
- b_3_92 + b_3_82 + b_1_0·b_5_19 + b_1_03·b_3_9 + b_4_14·b_1_02 + b_2_5·b_1_0·b_3_9
+ b_2_5·b_4_14 + a_2_4·b_4_14 + a_2_42·b_1_12
- b_1_1·b_5_19 + b_1_13·b_3_8
- b_3_92 + b_3_82 + b_1_0·b_5_20 + b_2_5·b_1_0·b_3_9 + b_2_5·b_4_14 + a_2_4·b_4_14
+ a_2_42·b_1_12
- b_4_12·b_3_8
- a_2_4·b_5_19 + a_2_42·b_1_13
- a_2_4·b_5_20 + a_2_42·b_1_13
- b_6_27·b_1_2 + b_4_14·b_1_13 + b_2_5·b_5_20 + b_2_5·b_5_19 + b_2_5·b_1_02·b_3_9
+ b_2_5·b_4_14·b_1_0 + a_2_42·b_1_13
- b_6_27·b_1_0 + b_4_14·b_1_03 + b_4_12·b_3_9 + b_4_12·b_1_03 + b_2_5·b_5_19
+ b_2_5·b_1_02·b_3_9
- b_6_27·b_1_1 + b_4_14·b_1_13 + a_2_4·b_1_15 + a_2_42·b_1_13
- b_4_14·b_1_04 + b_4_122 + b_2_5·b_4_12·b_1_02 + b_2_52·b_1_0·b_3_9
+ b_2_52·b_4_14
- b_3_8·b_5_19 + b_4_14·b_1_14
- b_3_9·b_5_20 + b_3_9·b_5_19 + b_3_8·b_5_20 + b_1_03·b_5_19 + b_1_05·b_3_9
+ b_4_14·b_1_14 + b_4_14·b_1_0·b_3_9 + b_4_14·b_1_04 + b_2_5·b_1_03·b_3_9 + b_2_5·b_4_14·b_1_02
- a_2_4·b_6_27 + a_2_42·b_1_14
- b_3_8·b_5_20 + b_1_2·b_7_35 + b_1_23·b_5_20 + b_1_12·b_1_2·b_5_20 + b_1_15·b_3_8
+ b_4_14·b_1_1·b_3_8 + a_2_4·b_1_16 + a_2_42·b_1_14
- b_1_0·b_7_35 + b_1_03·b_5_19 + b_4_14·b_1_0·b_3_9 + b_4_14·b_1_04
+ b_4_12·b_1_0·b_3_9 + b_2_5·b_1_0·b_5_19 + b_2_5·b_1_03·b_3_9 + b_2_5·b_4_14·b_1_02 + b_2_5·b_4_12·b_1_02 + b_2_52·b_1_0·b_3_9
- b_3_8·b_5_20 + b_1_1·b_7_35 + b_1_1·b_1_22·b_5_20 + b_1_13·b_5_20 + b_1_15·b_3_8
+ b_4_14·b_1_1·b_3_8 + a_2_4·b_1_16 + a_2_42·b_1_14
- b_4_12·b_5_20 + b_4_12·b_5_19 + b_4_12·b_1_02·b_3_9 + b_4_12·b_4_14·b_1_0
- b_6_27·b_3_8 + b_4_14·b_1_12·b_3_8 + a_2_42·b_1_15
- b_2_5·b_7_35 + b_2_5·b_1_22·b_5_20 + b_2_5·b_1_02·b_5_19 + b_2_5·b_4_14·b_3_9
+ b_2_5·b_4_14·b_1_03 + b_2_5·b_4_12·b_3_9 + b_2_52·b_5_19 + b_2_52·b_1_02·b_3_9 + b_2_52·b_4_14·b_1_0 + b_2_52·b_4_12·b_1_0 + b_2_53·b_3_9
- a_2_4·b_7_35 + a_2_42·b_1_15
- b_1_24·b_5_20 + b_1_1·b_1_23·b_5_20 + b_1_12·b_1_22·b_5_20 + b_1_13·b_1_2·b_5_20
+ b_1_16·b_3_8 + b_8_44·b_1_2 + b_4_14·b_1_15 + a_2_4·b_1_17 + a_2_42·b_1_15
- b_1_0·b_3_9·b_5_19 + b_1_06·b_3_9 + b_8_44·b_1_0 + b_4_12·b_5_19 + b_4_12·b_1_02·b_3_9
+ b_4_12·b_1_05 + b_2_5·b_1_04·b_3_9 + b_2_5·b_4_14·b_3_9 + b_2_5·b_4_12·b_1_03 + b_2_52·b_4_14·b_1_0
- b_1_1·b_1_23·b_5_20 + b_1_12·b_1_22·b_5_20 + b_1_13·b_1_2·b_5_20 + b_1_14·b_5_20
+ b_1_16·b_3_8 + b_8_44·b_1_1 + b_4_14·b_1_15 + a_2_4·b_1_17 + a_2_42·b_1_15
- b_3_8·b_7_35 + b_4_14·b_1_1·b_5_20 + b_4_14·b_1_16 + b_4_142·b_1_12
- b_5_19·b_5_20 + b_5_192 + b_3_9·b_7_35 + b_1_13·b_7_35 + b_1_13·b_1_22·b_5_20
+ b_1_15·b_5_20 + b_1_17·b_3_8 + b_4_14·b_1_1·b_5_20 + b_4_14·b_1_13·b_3_8 + b_4_142·b_1_12 + b_4_142·b_1_02 + b_4_12·b_1_0·b_5_19 + b_4_12·b_1_03·b_3_9 + b_4_12·b_4_14·b_1_02 + b_2_5·b_3_9·b_5_19 + b_2_5·b_1_03·b_5_19 + b_2_5·b_1_05·b_3_9 + b_2_5·b_4_142 + b_2_5·b_4_12·b_4_14 + b_2_5·b_4_122 + b_2_52·b_1_0·b_5_19 + b_2_52·b_4_12·b_1_02 + a_2_4·b_1_18 + a_2_4·b_4_142
- b_5_192 + b_4_14·b_1_16 + b_4_14·b_1_0·b_5_19 + b_4_12·b_1_0·b_5_19
+ b_4_12·b_1_03·b_3_9 + b_4_12·b_1_06 + b_2_5·b_4_14·b_1_0·b_3_9 + b_2_5·b_4_142 + b_2_5·b_4_12·b_1_0·b_3_9 + b_2_52·b_1_0·b_5_19 + b_2_52·b_1_03·b_3_9 + a_2_4·b_4_142 + c_8_46·b_1_02
- b_4_14·b_1_03·b_3_9 + b_4_12·b_6_27 + b_4_12·b_4_14·b_1_02 + b_4_122·b_1_02
+ b_2_5·b_3_9·b_5_19 + b_2_5·b_1_23·b_5_20 + b_2_5·b_1_05·b_3_9 + b_2_5·b_8_44 + b_2_5·b_4_12·b_1_0·b_3_9 + b_2_5·b_4_12·b_1_04 + b_2_52·b_1_0·b_5_19 + b_2_52·b_4_14·b_1_02 + b_2_52·b_4_12·b_1_02 + b_2_53·b_1_0·b_3_9
- b_5_202 + b_5_192 + b_1_13·b_1_22·b_5_20 + b_1_14·b_1_2·b_5_20 + b_1_17·b_3_8
+ b_1_05·b_5_19 + b_1_07·b_3_9 + b_8_44·b_1_1·b_1_2 + b_4_14·b_1_16 + b_4_142·b_1_12 + b_4_142·b_1_02 + b_4_122·b_1_02 + b_2_5·b_1_23·b_5_20 + b_2_5·b_1_05·b_3_9 + b_2_5·b_4_12·b_1_04 + b_2_5·b_4_122 + b_2_52·b_1_2·b_5_20 + b_2_52·b_1_03·b_3_9 + b_2_52·b_4_14·b_1_02 + b_2_52·b_4_12·b_1_02 + b_2_53·b_1_0·b_3_9 + b_2_53·b_4_14 + a_2_4·b_1_18 + a_2_42·b_1_16 + c_8_46·b_1_22
- a_2_4·b_8_44 + a_2_42·b_1_16
- b_5_19·b_5_20 + b_5_192 + b_1_13·b_7_35 + b_1_13·b_1_22·b_5_20 + b_1_15·b_5_20
+ b_1_17·b_3_8 + b_1_07·b_3_9 + b_8_44·b_1_02 + b_4_14·b_1_13·b_3_8 + b_4_14·b_1_16 + b_4_14·b_1_0·b_5_19 + b_4_12·b_1_0·b_5_19 + b_4_12·b_1_03·b_3_9 + b_4_12·b_1_06 + b_2_5·b_1_05·b_3_9 + b_2_5·b_4_14·b_1_0·b_3_9 + b_2_5·b_4_12·b_1_04 + b_2_52·b_4_14·b_1_02 + a_2_4·b_1_18 + a_2_42·b_1_16
- b_4_12·b_7_35 + b_4_12·b_1_02·b_5_19 + b_4_12·b_4_14·b_3_9 + b_4_12·b_4_14·b_1_03
+ b_4_122·b_3_9 + b_2_5·b_4_12·b_5_19 + b_2_5·b_4_12·b_1_02·b_3_9 + b_2_5·b_4_12·b_4_14·b_1_0 + b_2_5·b_4_122·b_1_0 + b_2_52·b_4_12·b_3_9
- b_6_27·b_5_20 + b_6_27·b_5_19 + b_4_14·b_1_12·b_5_20 + b_4_14·b_1_14·b_3_8
+ b_4_142·b_1_03 + b_4_12·b_1_02·b_5_19 + b_4_12·b_4_14·b_3_9 + b_4_122·b_3_9 + b_2_5·b_1_04·b_5_19 + b_2_5·b_8_44·b_1_0 + b_2_5·b_4_14·b_5_19 + b_2_5·b_4_14·b_1_02·b_3_9 + b_2_5·b_4_12·b_5_19 + b_2_5·b_4_12·b_1_02·b_3_9 + b_2_5·b_4_12·b_1_05 + b_2_5·b_4_12·b_4_14·b_1_0 + b_2_5·b_4_122·b_1_0 + b_2_52·b_1_22·b_5_20 + b_2_52·b_1_02·b_5_19 + b_2_52·b_1_04·b_3_9 + b_2_53·b_5_20 + b_2_53·b_5_19 + b_2_53·b_1_02·b_3_9 + b_2_5·c_8_46·b_1_2
- b_8_44·b_3_8 + b_4_14·b_1_14·b_3_8 + b_4_14·b_1_17
- b_1_06·b_5_19 + b_8_44·b_3_9 + b_8_44·b_1_03 + b_6_27·b_5_19 + b_4_14·b_1_17
+ b_4_14·b_1_02·b_5_19 + b_4_12·b_4_14·b_1_03 + b_4_122·b_1_03 + b_2_5·b_1_04·b_5_19 + b_2_5·b_1_06·b_3_9 + b_2_5·b_4_14·b_5_19 + b_2_5·b_4_14·b_1_02·b_3_9 + b_2_5·b_4_12·b_5_19 + b_2_5·b_4_12·b_1_05 + b_2_5·b_4_12·b_4_14·b_1_0 + b_2_52·b_1_02·b_5_19 + b_2_52·b_1_04·b_3_9 + b_2_52·b_4_14·b_3_9 + b_2_52·b_4_14·b_1_03 + b_2_52·b_4_12·b_3_9 + b_2_53·b_5_19 + b_2_53·b_1_02·b_3_9 + c_8_46·b_1_03 + b_2_5·c_8_46·b_1_0
- b_6_272 + b_4_14·b_1_03·b_5_19 + b_4_142·b_1_14 + b_4_122·b_1_0·b_3_9
+ b_4_122·b_1_04 + b_2_5·b_4_142·b_1_02 + b_2_5·b_4_12·b_1_0·b_5_19 + b_2_5·b_4_12·b_6_27 + b_2_5·b_4_122·b_1_02 + b_2_52·b_3_9·b_5_19 + b_2_52·b_1_03·b_5_19 + b_2_52·b_1_05·b_3_9 + b_2_52·b_4_14·b_1_0·b_3_9 + b_2_52·b_4_142 + b_2_52·b_4_12·b_1_04 + b_2_52·b_4_12·b_4_14 + b_2_52·b_4_122 + b_2_53·b_1_2·b_5_20 + b_2_53·b_1_03·b_3_9 + b_2_53·b_6_27 + b_2_54·b_1_0·b_3_9 + b_2_54·b_4_14 + a_2_42·b_1_18 + b_2_52·c_8_46
- b_5_20·b_7_35 + b_1_15·b_7_35 + b_1_15·b_1_22·b_5_20 + b_1_17·b_5_20 + b_1_09·b_3_9
+ b_8_44·b_1_1·b_1_23 + b_8_44·b_1_04 + b_4_14·b_3_9·b_5_19 + b_4_14·b_1_1·b_7_35 + b_4_14·b_1_15·b_3_8 + b_4_14·b_1_18 + b_4_142·b_1_14 + b_4_142·b_1_0·b_3_9 + b_4_12·b_3_9·b_5_19 + b_4_12·b_1_03·b_5_19 + b_4_12·b_1_05·b_3_9 + b_4_12·b_4_14·b_1_0·b_3_9 + b_4_123 + b_2_5·b_1_05·b_5_19 + b_2_5·b_8_44·b_1_22 + b_2_5·b_4_14·b_1_0·b_5_19 + b_2_5·b_4_142·b_1_02 + b_2_5·b_4_12·b_6_27 + b_2_5·b_4_12·b_4_14·b_1_02 + b_2_5·b_4_122·b_1_02 + b_2_52·b_8_44 + b_2_52·b_4_142 + b_2_52·b_4_12·b_1_0·b_3_9 + b_2_52·b_4_12·b_4_14 + b_2_52·b_4_122 + b_2_53·b_1_03·b_3_9 + b_2_53·b_4_14·b_1_02 + b_2_54·b_4_14 + c_8_46·b_1_24 + c_8_46·b_1_1·b_3_8 + c_8_46·b_1_12·b_1_22 + c_8_46·b_1_04 + b_2_5·c_8_46·b_1_02 + a_2_4·c_8_46·b_1_12
- b_5_19·b_7_35 + b_4_14·b_3_9·b_5_19 + b_4_14·b_1_13·b_5_20 + b_4_14·b_1_18
+ b_4_12·b_3_9·b_5_19 + b_4_12·b_1_03·b_5_19 + b_4_12·b_1_05·b_3_9 + b_4_12·b_1_08 + b_2_5·b_1_07·b_3_9 + b_2_5·b_8_44·b_1_02 + b_2_5·b_4_142·b_1_02 + b_2_5·b_4_12·b_1_0·b_5_19 + b_2_5·b_4_12·b_1_03·b_3_9 + b_2_5·b_4_12·b_6_27 + b_2_5·b_4_12·b_4_14·b_1_02 + b_2_5·b_4_122·b_1_02 + b_2_52·b_1_23·b_5_20 + b_2_52·b_1_03·b_5_19 + b_2_52·b_1_05·b_3_9 + b_2_52·b_8_44 + b_2_52·b_4_142 + b_2_53·b_1_03·b_3_9 + b_2_53·b_4_12·b_1_02 + b_2_54·b_1_0·b_3_9 + c_8_46·b_1_04 + b_2_5·c_8_46·b_1_02
- b_4_14·b_1_03·b_5_19 + b_4_12·b_3_9·b_5_19 + b_4_12·b_1_05·b_3_9 + b_4_12·b_8_44
+ b_4_122·b_1_0·b_3_9 + b_4_122·b_1_04 + b_2_5·b_4_14·b_6_27 + b_2_5·b_4_142·b_1_02 + b_2_5·b_4_12·b_1_0·b_5_19 + b_2_5·b_4_12·b_1_03·b_3_9 + b_2_5·b_4_12·b_4_14·b_1_02 + b_2_5·b_4_122·b_1_02 + b_2_52·b_3_9·b_5_19 + b_2_52·b_4_14·b_1_0·b_3_9 + b_2_52·b_4_12·b_4_14
- b_6_27·b_7_35 + b_4_14·b_1_12·b_7_35 + b_4_14·b_6_27·b_3_9 + b_4_142·b_1_12·b_3_8
+ b_4_12·b_1_04·b_5_19 + b_4_12·b_1_06·b_3_9 + b_4_12·b_8_44·b_1_0 + b_4_122·b_5_19 + b_4_122·b_1_02·b_3_9 + b_4_122·b_1_05 + b_4_123·b_1_0 + b_2_5·b_1_08·b_3_9 + b_2_5·b_8_44·b_1_03 + b_2_5·b_4_14·b_1_02·b_5_19 + b_2_5·b_4_12·b_4_14·b_1_03 + b_2_5·b_4_122·b_1_03 + b_2_52·b_1_04·b_5_19 + b_2_52·b_1_06·b_3_9 + b_2_52·b_8_44·b_1_2 + b_2_52·b_8_44·b_1_0 + b_2_52·b_6_27·b_3_9 + b_2_52·b_4_14·b_5_19 + b_2_52·b_4_12·b_5_19 + b_2_52·b_4_12·b_1_02·b_3_9 + b_2_52·b_4_12·b_1_05 + b_2_52·b_4_12·b_4_14·b_1_0 + b_2_52·b_4_122·b_1_0 + b_2_53·b_1_22·b_5_20 + b_2_53·b_1_02·b_5_19 + b_2_53·b_1_04·b_3_9 + b_2_53·b_4_14·b_3_9 + b_2_53·b_4_12·b_3_9 + b_2_54·b_5_19 + a_2_42·b_1_19 + b_2_5·c_8_46·b_1_23 + b_2_5·c_8_46·b_1_03 + b_2_52·c_8_46·b_1_0
- b_1_010·b_3_9 + b_8_44·b_5_19 + b_8_44·b_1_05 + b_4_14·b_1_19 + b_4_14·b_8_44·b_1_1
+ b_4_14·b_8_44·b_1_0 + b_4_14·b_6_27·b_3_9 + b_4_142·b_1_12·b_3_8 + b_4_142·b_1_15 + b_4_142·b_1_02·b_3_9 + b_4_12·b_1_04·b_5_19 + b_4_12·b_1_06·b_3_9 + b_4_12·b_1_09 + b_4_12·b_4_14·b_5_19 + b_4_12·b_4_14·b_1_02·b_3_9 + b_4_12·b_4_142·b_1_0 + b_4_122·b_5_19 + b_4_122·b_1_05 + b_2_5·b_8_44·b_1_03 + b_2_5·b_4_12·b_1_02·b_5_19 + b_2_5·b_4_12·b_4_14·b_1_03 + b_2_5·b_4_122·b_3_9 + b_2_52·b_8_44·b_1_0 + b_2_52·b_4_14·b_5_19 + b_2_52·b_4_142·b_1_0 + b_2_52·b_4_12·b_1_02·b_3_9 + b_2_52·b_4_12·b_4_14·b_1_0 + b_2_52·b_4_122·b_1_0 + b_2_53·b_1_04·b_3_9 + b_2_53·b_4_14·b_3_9 + b_2_53·b_4_14·b_1_03 + b_2_54·b_1_02·b_3_9 + c_8_46·b_1_02·b_3_9 + b_4_12·c_8_46·b_1_0
- b_1_16·b_7_35 + b_1_16·b_1_22·b_5_20 + b_1_18·b_5_20 + b_1_110·b_3_8
+ b_8_44·b_5_20 + b_8_44·b_5_19 + b_8_44·b_1_1·b_1_24 + b_8_44·b_1_12·b_1_23 + b_8_44·b_1_02·b_3_9 + b_4_14·b_1_14·b_5_20 + b_4_14·b_1_19 + b_4_14·b_8_44·b_1_0 + b_2_5·b_8_44·b_1_23 + b_2_52·b_8_44·b_1_2 + a_2_4·b_1_111 + a_2_42·b_1_19 + c_8_46·b_1_25 + c_8_46·b_1_1·b_1_24 + c_8_46·b_1_12·b_1_23 + c_8_46·b_1_13·b_1_22
- b_7_352 + b_8_44·b_1_1·b_1_25 + b_8_44·b_1_13·b_1_23 + b_4_14·b_1_110
+ b_4_142·b_1_16 + b_4_142·b_1_0·b_5_19 + b_4_143·b_1_02 + b_4_12·b_1_05·b_5_19 + b_4_12·b_1_07·b_3_9 + b_4_12·b_1_010 + b_4_12·b_4_14·b_6_27 + b_4_12·b_4_142·b_1_02 + b_4_122·b_1_03·b_3_9 + b_4_122·b_4_14·b_1_02 + b_2_5·b_8_44·b_1_24 + b_2_5·b_4_14·b_3_9·b_5_19 + b_2_5·b_4_14·b_8_44 + b_2_5·b_4_142·b_1_0·b_3_9 + b_2_5·b_4_143 + b_2_5·b_4_12·b_1_03·b_5_19 + b_2_5·b_4_12·b_1_05·b_3_9 + b_2_5·b_4_12·b_4_14·b_1_0·b_3_9 + b_2_5·b_4_122·b_1_0·b_3_9 + b_2_52·b_1_07·b_3_9 + b_2_52·b_8_44·b_1_22 + b_2_52·b_8_44·b_1_02 + b_2_52·b_4_14·b_1_0·b_5_19 + b_2_52·b_4_142·b_1_02 + b_2_52·b_4_12·b_6_27 + b_2_52·b_4_12·b_4_14·b_1_02 + b_2_52·b_4_122·b_1_02 + b_2_53·b_3_9·b_5_19 + b_2_53·b_1_23·b_5_20 + b_2_53·b_1_05·b_3_9 + b_2_53·b_8_44 + b_2_53·b_4_12·b_1_04 + b_2_53·b_4_122 + b_2_54·b_1_0·b_5_19 + b_2_54·b_1_03·b_3_9 + b_2_55·b_1_0·b_3_9 + a_2_4·b_4_143 + c_8_46·b_1_26 + c_8_46·b_1_14·b_1_22 + c_8_46·b_1_06 + b_4_14·c_8_46·b_1_12 + b_2_52·c_8_46·b_1_02 + a_2_42·c_8_46·b_1_12
- b_7_352 + b_8_44·b_1_1·b_1_25 + b_8_44·b_1_13·b_1_23 + b_6_27·b_8_44
+ b_4_14·b_1_110 + b_4_14·b_8_44·b_1_12 + b_4_142·b_1_16 + b_4_142·b_1_0·b_5_19 + b_4_143·b_1_02 + b_4_12·b_1_07·b_3_9 + b_4_12·b_1_010 + b_4_12·b_4_14·b_1_0·b_5_19 + b_4_12·b_4_14·b_6_27 + b_4_12·b_4_142·b_1_02 + b_4_122·b_1_0·b_5_19 + b_4_122·b_6_27 + b_4_122·b_4_14·b_1_02 + b_4_123·b_1_02 + b_2_5·b_1_09·b_3_9 + b_2_5·b_8_44·b_1_24 + b_2_5·b_8_44·b_1_0·b_3_9 + b_2_5·b_8_44·b_1_04 + b_2_5·b_4_14·b_3_9·b_5_19 + b_2_5·b_4_143 + b_2_5·b_4_12·b_1_03·b_5_19 + b_2_5·b_4_12·b_1_08 + b_2_5·b_4_12·b_4_14·b_1_0·b_3_9 + b_2_5·b_4_122·b_1_0·b_3_9 + b_2_5·b_4_122·b_4_14 + b_2_5·b_4_123 + b_2_52·b_1_05·b_5_19 + b_2_52·b_1_07·b_3_9 + b_2_52·b_8_44·b_1_02 + b_2_52·b_4_142·b_1_02 + b_2_52·b_4_12·b_1_0·b_5_19 + b_2_53·b_3_9·b_5_19 + b_2_53·b_1_03·b_5_19 + b_2_53·b_1_05·b_3_9 + b_2_53·b_8_44 + b_2_53·b_4_142 + b_2_53·b_4_12·b_4_14 + b_2_54·b_4_12·b_1_02 + b_2_55·b_4_14 + a_2_4·b_4_143 + a_2_42·b_1_110 + c_8_46·b_1_26 + c_8_46·b_1_14·b_1_22 + c_8_46·b_1_06 + b_4_14·c_8_46·b_1_12 + b_4_12·c_8_46·b_1_02 + b_2_5·c_8_46·b_1_24 + b_2_5·c_8_46·b_1_0·b_3_9 + b_2_5·b_4_12·c_8_46 + a_2_42·c_8_46·b_1_12
- b_8_44·b_7_35 + b_8_44·b_1_1·b_1_26 + b_8_44·b_1_12·b_1_25
+ b_8_44·b_1_13·b_1_24 + b_8_44·b_1_14·b_1_23 + b_8_44·b_1_02·b_5_19 + b_4_14·b_1_14·b_7_35 + b_4_14·b_1_16·b_5_20 + b_4_14·b_1_111 + b_4_14·b_6_27·b_5_19 + b_4_142·b_1_14·b_3_8 + b_4_142·b_1_17 + b_4_142·b_1_02·b_5_19 + b_4_12·b_8_44·b_3_9 + b_4_12·b_4_142·b_1_03 + b_4_122·b_1_02·b_5_19 + b_4_122·b_4_14·b_1_03 + b_2_5·b_8_44·b_5_19 + b_2_5·b_8_44·b_1_25 + b_2_5·b_8_44·b_1_02·b_3_9 + b_2_5·b_4_14·b_8_44·b_1_0 + b_2_5·b_4_142·b_5_19 + b_2_5·b_4_142·b_1_02·b_3_9 + b_2_5·b_4_12·b_1_04·b_5_19 + b_2_5·b_4_12·b_8_44·b_1_0 + b_2_5·b_4_12·b_4_14·b_5_19 + b_2_5·b_4_12·b_4_142·b_1_0 + b_2_5·b_4_122·b_5_19 + b_2_5·b_4_122·b_1_02·b_3_9 + b_2_5·b_4_123·b_1_0 + b_2_52·b_1_08·b_3_9 + b_2_52·b_8_44·b_3_9 + b_2_52·b_8_44·b_1_23 + b_2_52·b_8_44·b_1_03 + b_2_52·b_4_142·b_3_9 + b_2_52·b_4_142·b_1_03 + b_2_52·b_4_12·b_1_07 + b_2_52·b_4_12·b_4_14·b_3_9 + b_2_52·b_4_122·b_3_9 + b_2_52·b_4_122·b_1_03 + b_2_53·b_1_04·b_5_19 + b_2_53·b_1_06·b_3_9 + b_2_53·b_8_44·b_1_0 + b_2_53·b_4_14·b_1_02·b_3_9 + b_2_53·b_4_12·b_5_19 + b_2_53·b_4_12·b_1_02·b_3_9 + b_2_53·b_4_12·b_4_14·b_1_0 + b_2_53·b_4_122·b_1_0 + b_2_54·b_1_02·b_5_19 + b_2_54·b_1_04·b_3_9 + b_2_54·b_4_14·b_1_03 + b_2_55·b_4_14·b_1_0 + c_8_46·b_1_27 + c_8_46·b_1_1·b_1_26 + c_8_46·b_1_14·b_1_23 + c_8_46·b_1_15·b_1_22 + b_4_14·c_8_46·b_1_03 + b_2_5·b_4_14·c_8_46·b_1_0
- b_8_44·b_1_1·b_1_27 + b_8_44·b_1_15·b_1_23 + b_8_44·b_1_03·b_5_19
+ b_8_44·b_1_05·b_3_9 + b_8_442 + b_4_14·b_1_112 + b_4_142·b_1_18 + b_4_12·b_1_012 + b_4_12·b_8_44·b_1_04 + b_4_12·b_4_14·b_3_9·b_5_19 + b_4_12·b_4_14·b_8_44 + b_4_122·b_3_9·b_5_19 + b_4_122·b_1_05·b_3_9 + b_4_122·b_8_44 + b_4_122·b_4_14·b_1_0·b_3_9 + b_4_123·b_1_0·b_3_9 + b_4_123·b_1_04 + b_2_5·b_8_44·b_1_26 + b_2_5·b_8_44·b_1_0·b_5_19 + b_2_5·b_8_44·b_1_03·b_3_9 + b_2_5·b_4_142·b_6_27 + b_2_5·b_4_12·b_1_010 + b_2_5·b_4_12·b_8_44·b_1_02 + b_2_5·b_4_12·b_4_142·b_1_02 + b_2_5·b_4_122·b_1_03·b_3_9 + b_2_52·b_8_44·b_1_24 + b_2_52·b_8_44·b_1_0·b_3_9 + b_2_52·b_4_14·b_3_9·b_5_19 + b_2_52·b_4_142·b_1_0·b_3_9 + b_2_52·b_4_12·b_1_03·b_5_19 + b_2_52·b_4_12·b_1_05·b_3_9 + b_2_52·b_4_12·b_8_44 + b_2_52·b_4_12·b_4_142 + b_2_52·b_4_122·b_1_04 + b_2_52·b_4_123 + b_2_53·b_8_44·b_1_02 + b_2_53·b_4_12·b_1_0·b_5_19 + b_2_54·b_1_05·b_3_9 + b_2_54·b_4_142 + b_2_54·b_4_12·b_1_04 + b_2_54·b_4_12·b_4_14 + b_2_55·b_4_14·b_1_02 + c_8_46·b_1_28 + c_8_46·b_1_12·b_1_26 + c_8_46·b_1_14·b_1_24 + c_8_46·b_1_16·b_1_22 + c_8_46·b_1_03·b_5_19 + c_8_46·b_1_08 + b_4_122·c_8_46 + b_2_5·c_8_46·b_1_06 + b_2_5·b_4_14·c_8_46·b_1_02 + b_2_5·b_4_12·c_8_46·b_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_46, a Duflot regular element of degree 8
- b_1_24 + b_1_12·b_1_22 + b_1_14 + b_1_04 + b_4_14 + b_2_52, an element of degree 4
- b_1_12·b_1_24 + b_1_14·b_1_22 + b_4_14·b_1_12 + b_4_14·b_1_02 + b_2_5·b_4_14
+ b_2_52·b_1_22 + b_2_52·b_1_02, an element of degree 6
- b_1_0, an element of degree 1
- The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 14, 15].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_12 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- b_5_19 → 0, an element of degree 5
- b_5_20 → 0, an element of degree 5
- b_6_27 → 0, an element of degree 6
- b_7_35 → 0, an element of degree 7
- b_8_44 → 0, an element of degree 8
- c_8_46 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_12 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- b_5_19 → 0, an element of degree 5
- b_5_20 → c_1_0·c_1_1·c_1_23 + c_1_0·c_1_12·c_1_22 + c_1_02·c_1_23
+ c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2, an element of degree 5
- b_6_27 → 0, an element of degree 6
- b_7_35 → c_1_0·c_1_1·c_1_25 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_13·c_1_23
+ c_1_0·c_1_14·c_1_22 + c_1_02·c_1_25 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_13·c_1_22 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_23 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_44 → c_1_0·c_1_1·c_1_26 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_26
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2, an element of degree 8
- c_8_46 → c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_1·c_1_25
+ c_1_02·c_1_12·c_1_24 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_12 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- b_5_19 → 0, an element of degree 5
- b_5_20 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_27 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_24
+ c_1_02·c_1_13·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- b_7_35 → c_1_0·c_1_14·c_1_22 + c_1_0·c_1_15·c_1_2 + c_1_02·c_1_13·c_1_22
+ c_1_02·c_1_14·c_1_2 + c_1_02·c_1_15 + c_1_04·c_1_13, an element of degree 7
- b_8_44 → c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_14·c_1_22
+ c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
- c_8_46 → c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_23
+ c_1_0·c_1_15·c_1_22 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_9 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_12 → 0, an element of degree 4
- b_4_14 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_19 → c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
- b_5_20 → c_1_1·c_1_24 + c_1_14·c_1_2 + c_1_0·c_1_1·c_1_23 + c_1_0·c_1_12·c_1_22
+ c_1_02·c_1_23 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2, an element of degree 5
- b_6_27 → c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_7_35 → c_1_1·c_1_26 + c_1_14·c_1_23 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22
+ c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_44 → c_1_1·c_1_27 + c_1_14·c_1_24, an element of degree 8
- c_8_46 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_12
+ c_1_02·c_1_1, an element of degree 3
- b_4_12 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2, an element of degree 4
- b_4_14 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3, an element of degree 4
- b_5_19 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3
+ c_1_13·c_1_32 + c_1_14·c_1_3 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_0·c_1_14 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_1, an element of degree 5
- b_5_20 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_23·c_1_3
+ c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_27 → c_1_22·c_1_34 + c_1_25·c_1_3 + c_1_1·c_1_22·c_1_33 + c_1_12·c_1_2·c_1_33
+ c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_15·c_1_3 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_13·c_1_32 + c_1_0·c_1_14·c_1_3 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_2·c_1_32 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_3 + c_1_03·c_1_1·c_1_22 + c_1_03·c_1_12·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- b_7_35 → c_1_2·c_1_36 + c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33
+ c_1_25·c_1_32 + c_1_26·c_1_3 + c_1_1·c_1_36 + c_1_12·c_1_35 + c_1_12·c_1_22·c_1_33 + c_1_12·c_1_23·c_1_32 + c_1_13·c_1_34 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_23·c_1_3 + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_16·c_1_3 + c_1_0·c_1_1·c_1_23·c_1_32 + c_1_0·c_1_1·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_34 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_13·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_2·c_1_3 + c_1_0·c_1_15·c_1_3 + c_1_0·c_1_15·c_1_2 + c_1_0·c_1_16 + c_1_02·c_1_1·c_1_34 + c_1_02·c_1_1·c_1_23·c_1_3 + c_1_02·c_1_12·c_1_22·c_1_3 + c_1_02·c_1_13·c_1_22 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2 + c_1_03·c_1_12·c_1_22 + c_1_03·c_1_13·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_04·c_1_13, an element of degree 7
- b_8_44 → c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_23·c_1_34
+ c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_17 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_14·c_1_2 + c_1_03·c_1_15 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2 + c_1_05·c_1_13 + c_1_06·c_1_12, an element of degree 8
- c_8_46 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_27·c_1_3
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_17·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_26·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_13·c_1_23·c_1_3 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_32 + c_1_0·c_1_15·c_1_2·c_1_3 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_13·c_1_2·c_1_32 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_15·c_1_3 + c_1_02·c_1_16 + c_1_03·c_1_13·c_1_22 + c_1_03·c_1_14·c_1_2 + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_13·c_1_3 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2 + c_1_08, an element of degree 8
|