Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 150 of order 64
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t3 + t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1) |
- The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 7 minimal generators of maximal degree 4:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- c_2_4, a Duflot regular element of degree 2
- b_3_6, an element of degree 3
- b_3_7, an element of degree 3
- c_4_11, a Duflot regular element of degree 4
Ring relations
There are 9 minimal relations of maximal degree 6:
- b_1_12 + b_1_0·b_1_1
- b_1_0·b_1_2
- b_1_1·b_1_22
- b_1_2·b_3_6
- b_1_1·b_3_6 + b_1_0·b_3_7 + b_1_0·b_3_6
- b_1_1·b_3_7
- b_3_72 + b_3_6·b_3_7
- b_3_62 + b_1_03·b_3_7 + b_1_03·b_3_6 + c_4_11·b_1_02
- b_3_6·b_3_7 + b_3_62 + b_1_03·b_3_7 + b_1_03·b_3_6 + c_4_11·b_1_0·b_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 6.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_4, a Duflot regular element of degree 2
- c_4_11, a Duflot regular element of degree 4
- b_1_2 + b_1_0, an element of degree 1
- The Raw Filter Degree Type of that HSOP is [-1, -1, 2, 4].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_2_4 → c_1_02, an element of degree 2
- b_3_6 → 0, an element of degree 3
- b_3_7 → 0, an element of degree 3
- c_4_11 → c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_2_4 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- b_3_6 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_7 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- c_4_11 → c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- c_2_4 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- b_3_6 → 0, an element of degree 3
- b_3_7 → 0, an element of degree 3
- c_4_11 → c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_2_4 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- b_3_6 → c_1_23 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_7 → 0, an element of degree 3
- c_4_11 → c_1_1·c_1_23 + c_1_14, an element of degree 4
|