The Cohomology of the Groups of Order 64

In total, there are 267 groups of order 64. With version 2.1 of our package, using Sage 4.5.2, the total computation time, only occupying one core in each case, was

  • less than 13 CPU-minutes (about 18:35 minutes walltime) on a 4-core Mac Pro desktop machine running at 2.6 Ghz with 8 GB RAM (Darwin Kernel Version 10.0.0) in 64 bit mode; we are grateful to William Stein for giving us access to this machine.
  • about 19 CPU-minutes (about 35:20 minutes walltime) on an Intel Core 2 CPU running at 2.6 Ghz with 2 GB RAM (openSUSE 11.0).
  • about 33 CPU-minutes (about 61 minutes walltime) on a Dual Core AMD Opteron(tm) Processor 270 running at 2.0 GHz with 16 GB RAM (openSUSE 10.2).


Groups numbered according to the Small Groups library

1–80 81–160 161–240 241–267


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
261 262 263 264 265 266 267


Groups with a custom name

Central product E32+ * C_4

Dihedral group of order 64

Direct product D8 x V_8

Direct product Q8 x Q8

Direct product Q8 x V_8

Modular group of order 64

Quaternion group of order 64

Semidihedral group of order 64

Sylow 2-subgroup of L_3(4)

Sylow 2-subgroup of A_8=L_4(2)

Sylow 2-subgroup of Mathieu Group M_12

Sylow 2-subgroup of Suzuki Group Sz(8)

Sylow 2-subgroup of U_3(4)




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 11.09.2015