Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 224 of order 64
General information on the group
- The group has 4 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t5 − 3·t4 + 2·t3 − t − 1) |
| (t + 1) · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_3, an element of degree 1
- a_4_8, a nilpotent element of degree 4
- b_4_9, an element of degree 4
- b_4_10, an element of degree 4
- b_4_11, an element of degree 4
- b_4_12, an element of degree 4
- c_4_13, a Duflot regular element of degree 4
- c_4_14, a Duflot regular element of degree 4
- b_6_37, an element of degree 6
Ring relations
There are 38 minimal relations of maximal degree 12:
- a_1_22 + a_1_0·a_1_2 + a_1_02
- a_1_2·b_1_1 + a_1_0·b_1_3 + a_1_0·b_1_1
- a_1_03
- a_1_0·b_1_32 + a_1_0·b_1_1·b_1_3 + a_1_02·b_1_1
- a_4_8·a_1_0
- a_4_8·a_1_2
- b_4_9·a_1_2 + b_4_9·a_1_0
- b_4_10·b_1_3 + b_4_10·b_1_1 + b_4_9·b_1_3 + a_4_8·b_1_3 + a_4_8·b_1_1
- b_4_10·a_1_0 + b_4_9·a_1_0 + a_4_8·b_1_1
- b_4_10·a_1_2
- b_4_11·b_1_1 + b_4_10·b_1_3 + b_4_9·b_1_1 + a_4_8·b_1_3
- b_4_11·a_1_0 + a_4_8·b_1_1
- b_4_11·a_1_2 + a_4_8·b_1_3 + a_4_8·b_1_1
- b_4_12·a_1_0 + b_4_9·a_1_0 + a_4_8·b_1_1
- b_4_12·a_1_2
- b_6_37·a_1_0 + a_4_8·b_1_12·b_1_3 + c_4_14·a_1_0·b_1_12 + c_4_13·a_1_0·b_1_12
+ c_4_14·a_1_02·b_1_1 + c_4_13·a_1_02·b_1_1
- b_6_37·a_1_2 + a_4_8·b_1_33 + a_4_8·b_1_12·b_1_3 + c_4_14·a_1_2·b_1_32
+ c_4_14·a_1_0·b_1_1·b_1_3 + c_4_14·a_1_0·b_1_12 + c_4_13·a_1_0·b_1_1·b_1_3 + c_4_13·a_1_0·b_1_12 + c_4_14·a_1_02·b_1_1 + c_4_13·a_1_02·b_1_3 + c_4_13·a_1_02·b_1_1 + c_4_13·a_1_02·a_1_2
- a_4_82
- a_4_8·b_4_9 + c_4_14·a_1_0·b_1_12·b_1_3 + c_4_14·a_1_0·b_1_13
- b_4_92 + c_4_14·b_1_12·b_1_32 + c_4_14·b_1_14
- a_4_8·b_4_10 + c_4_14·a_1_0·b_1_12·b_1_3
- b_4_102 + c_4_14·b_1_12·b_1_32
- b_4_9·b_4_10 + c_4_14·b_1_12·b_1_32 + c_4_14·b_1_13·b_1_3
+ c_4_14·a_1_0·b_1_12·b_1_3 + c_4_14·a_1_0·b_1_13
- a_4_8·b_4_11 + c_4_14·a_1_2·b_1_33 + c_4_14·a_1_0·b_1_13
- b_4_112 + c_4_14·b_1_34 + c_4_14·b_1_12·b_1_32 + c_4_14·b_1_14
- b_4_10·b_4_11 + c_4_14·b_1_1·b_1_33 + c_4_14·b_1_12·b_1_32 + c_4_14·b_1_13·b_1_3
+ c_4_14·a_1_2·b_1_33 + c_4_14·a_1_0·b_1_13
- b_4_9·b_4_11 + c_4_14·b_1_1·b_1_33 + c_4_14·b_1_14
- a_4_8·b_4_12 + c_4_14·a_1_0·b_1_12·b_1_3
- b_4_122 + b_4_9·b_1_1·b_1_33 + b_4_9·b_1_12·b_1_32 + c_4_14·b_1_12·b_1_32
- b_6_37·b_1_32 + b_4_11·b_1_34 + b_4_11·b_4_12 + b_4_9·b_1_34 + b_4_9·b_4_12
+ a_4_8·b_1_13·b_1_3 + c_4_14·b_1_34 + c_4_14·b_1_12·b_1_32 + c_4_13·b_1_12·b_1_32 + c_4_13·a_1_2·b_1_33
- b_6_37·b_1_1·b_1_3 + b_4_10·b_1_14 + b_4_10·b_4_12 + b_4_9·b_1_34
+ b_4_9·b_1_1·b_1_33 + b_4_9·b_1_12·b_1_32 + b_4_9·b_1_13·b_1_3 + a_4_8·b_1_13·b_1_3 + a_4_8·b_1_14 + c_4_14·b_1_1·b_1_33 + c_4_14·b_1_13·b_1_3 + c_4_13·b_1_13·b_1_3 + c_4_14·a_1_0·b_1_12·b_1_3
- b_6_37·b_1_12 + b_4_10·b_1_14 + b_4_10·b_4_12 + b_4_9·b_1_1·b_1_33
+ b_4_9·b_1_12·b_1_32 + b_4_9·b_1_13·b_1_3 + b_4_9·b_4_12 + a_4_8·b_1_13·b_1_3 + a_4_8·b_1_14 + c_4_14·b_1_12·b_1_32 + c_4_14·b_1_14 + c_4_13·b_1_14 + c_4_14·a_1_0·b_1_12·b_1_3
- a_4_8·b_6_37 + c_4_14·a_1_2·b_1_35 + c_4_14·a_1_0·b_1_14·b_1_3
+ a_4_8·c_4_14·b_1_32 + a_4_8·c_4_14·b_1_1·b_1_3 + a_4_8·c_4_14·b_1_12 + a_4_8·c_4_13·b_1_12
- b_4_12·b_6_37 + b_4_11·b_4_12·b_1_32 + b_4_9·b_4_12·b_1_32
+ c_4_14·b_1_12·b_1_34 + c_4_14·b_1_14·b_1_32 + b_4_12·c_4_14·b_1_32 + b_4_12·c_4_14·b_1_12 + b_4_12·c_4_13·b_1_12 + b_4_10·c_4_14·b_1_12 + b_4_9·c_4_14·b_1_1·b_1_3 + c_4_14·a_1_0·b_1_14·b_1_3 + a_4_8·c_4_14·b_1_12
- b_4_11·b_6_37 + c_4_14·b_1_36 + c_4_14·b_1_1·b_1_35 + c_4_14·b_1_12·b_1_34
+ b_4_12·c_4_14·b_1_32 + b_4_12·c_4_14·b_1_1·b_1_3 + b_4_12·c_4_14·b_1_12 + b_4_11·c_4_14·b_1_32 + b_4_10·c_4_14·b_1_12 + b_4_10·c_4_13·b_1_12 + b_4_9·c_4_14·b_1_1·b_1_3 + b_4_9·c_4_14·b_1_12 + b_4_9·c_4_13·b_1_1·b_1_3 + b_4_9·c_4_13·b_1_12 + c_4_14·a_1_0·b_1_14·b_1_3 + a_4_8·c_4_14·b_1_12 + a_4_8·c_4_13·b_1_32 + a_4_8·c_4_13·b_1_1·b_1_3 + a_4_8·c_4_13·b_1_12
- b_4_10·b_6_37 + c_4_14·b_1_1·b_1_35 + b_4_12·c_4_14·b_1_1·b_1_3
+ b_4_10·c_4_13·b_1_12 + b_4_9·c_4_14·b_1_32 + b_4_9·c_4_14·b_1_1·b_1_3 + c_4_14·a_1_2·b_1_35 + a_4_8·c_4_14·b_1_32 + a_4_8·c_4_14·b_1_1·b_1_3 + a_4_8·c_4_14·b_1_12
- b_4_9·b_6_37 + c_4_14·b_1_1·b_1_35 + c_4_14·b_1_12·b_1_34
+ b_4_12·c_4_14·b_1_1·b_1_3 + b_4_12·c_4_14·b_1_12 + b_4_9·c_4_14·b_1_32 + b_4_9·c_4_14·b_1_12 + b_4_9·c_4_13·b_1_12
- b_6_372 + c_4_14·b_1_38 + b_4_9·c_4_14·b_1_1·b_1_33
+ b_4_9·c_4_14·b_1_12·b_1_32 + c_4_142·b_1_34 + c_4_142·b_1_12·b_1_32 + c_4_142·b_1_14 + c_4_132·b_1_14
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_13, a Duflot regular element of degree 4
- c_4_14, a Duflot regular element of degree 4
- b_1_32 + b_1_1·b_1_3 + b_1_12, an element of degree 2
- b_1_3, an element of degree 1
- The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 6, 7].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_4_8 → 0, an element of degree 4
- b_4_9 → 0, an element of degree 4
- b_4_10 → 0, an element of degree 4
- b_4_11 → 0, an element of degree 4
- b_4_12 → 0, an element of degree 4
- c_4_13 → c_1_04, an element of degree 4
- c_4_14 → c_1_14, an element of degree 4
- b_6_37 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- a_4_8 → 0, an element of degree 4
- b_4_9 → c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_4_10 → c_1_12·c_1_2·c_1_3, an element of degree 4
- b_4_11 → c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_4_12 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_2·c_1_3, an element of degree 4
- c_4_13 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_2·c_1_3
+ c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_14 → c_1_14, an element of degree 4
- b_6_37 → c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34
+ c_1_12·c_1_23·c_1_3 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_24 + c_1_04·c_1_22, an element of degree 6
|