| Simon King       
     
 
        David J. Green
     
     
 
      Cohomology
      →Theory
 →Implementation
 
     
 
      Jena:
     
           
      Faculty
     
     
 
      External links:
     
        
    Singular
     
    Gap
     
 | 
         
 
 
  Cohomology of group number 19 of order 64
 
 
  General information on the group
  The group has 2 minimal generators and exponent 8.
   It is non-abelian.
   It has p-Rank 3.
   Its center has rank 1.
   It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
   
 
  Structure of the cohomology ring
  General information
   The cohomology ring is of dimension 3 and depth 1.
   The depth coincides with the Duflot bound.
   The Poincaré series is    | t6  −  t5  −  t4  +  2·t3  −  2·t2  +  t  −  1 |  | 
 |  | (t  −  1)3 · (t2  +  1) · (t4  +  1) | 
 The a-invariants are -∞,-5,-3,-3.  They were obtained using the filter regular HSOP of the Benson test.
   
 
  Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
 
   a_1_0, a nilpotent element of degree 1
   a_1_1, a nilpotent element of degree 1
   a_2_0, a nilpotent element of degree 2
   a_2_1, a nilpotent element of degree 2
   b_2_2, an element of degree 2
   b_2_3, an element of degree 2
   b_3_4, an element of degree 3
   b_3_5, an element of degree 3
   b_5_8, an element of degree 5
   b_5_9, an element of degree 5
   b_6_7, an element of degree 6
   b_6_12, an element of degree 6
   c_8_17, a Duflot regular element of degree 8
   
 
  Ring relations
There are 53 minimal relations of maximal degree 12:
 
   a_1_02
   a_1_12
   a_1_0·a_1_1
   a_2_0·a_1_0
   a_2_1·a_1_1
   a_2_1·a_1_0 + a_2_0·a_1_1
   b_2_3·a_1_0 + b_2_2·a_1_1 + b_2_2·a_1_0 + a_2_0·a_1_1
   a_2_02
   a_2_0·a_2_1
   a_2_12
   a_1_1·b_3_4 + a_2_0·b_2_3 + a_2_0·b_2_2
   a_1_0·b_3_4 + a_2_0·b_2_2
   a_1_1·b_3_5 + a_2_1·b_2_3 + a_2_1·b_2_2
   a_1_0·b_3_5 + a_2_1·b_2_2
   b_2_2·b_2_3·a_1_1
   b_2_22·a_1_0 + a_2_0·b_3_4
   a_2_1·b_3_4 + a_2_0·b_3_5
   b_2_32·a_1_1 + b_2_22·a_1_1 + a_2_1·b_3_5
   b_3_42 + b_2_2·b_2_32 + b_2_22·b_2_3 + b_2_23 + a_2_0·b_2_2·b_2_3
   b_3_52 + b_2_33 + b_2_23 + a_2_1·b_2_32 + a_2_1·b_2_2·b_2_3 + a_2_1·b_2_22+ a_2_0·b_2_22
 a_1_1·b_5_8 + a_2_0·b_2_32 + a_2_0·b_2_2·b_2_3
   a_1_0·b_5_8 + a_2_1·b_2_2·b_2_3 + a_2_0·b_2_2·b_2_3
   a_1_1·b_5_9 + a_2_1·b_2_32 + a_2_1·b_2_22 + a_2_0·b_2_32 + a_2_0·b_2_22
   a_1_0·b_5_9 + a_2_1·b_2_22 + a_2_0·b_2_22
   a_2_1·b_5_8 + a_2_0·b_2_3·b_3_5
   b_2_3·b_5_9 + b_2_3·b_5_8 + b_2_32·b_3_5 + b_2_2·b_5_9 + b_2_2·b_2_3·b_3_5+ b_2_22·b_3_5 + b_2_22·b_3_4 + a_2_0·b_5_8 + a_2_0·b_2_3·b_3_5 + a_2_0·b_2_2·b_3_5
 + a_2_0·b_2_2·b_3_4
 a_2_0·b_5_9 + a_2_0·b_5_8 + a_2_0·b_2_3·b_3_5 + a_2_0·b_2_3·b_3_4 + a_2_0·b_2_2·b_3_5+ a_2_0·b_2_2·b_3_4
 a_2_1·b_5_9 + a_2_1·b_2_3·b_3_5 + a_2_0·b_5_8 + a_2_0·b_2_3·b_3_5 + a_2_0·b_2_2·b_3_5+ a_2_0·b_2_2·b_3_4
 b_6_7·a_1_1 + a_2_0·b_5_8 + a_2_0·b_2_2·b_3_5 + a_2_0·b_2_2·b_3_4
   b_6_7·a_1_0 + a_2_0·b_2_2·b_3_5 + a_2_0·b_2_2·b_3_4
   b_6_12·a_1_1 + a_2_1·b_2_3·b_3_5 + a_2_0·b_2_3·b_3_4 + a_2_0·b_2_2·b_3_4
   b_6_12·a_1_0 + a_2_0·b_5_8 + a_2_0·b_2_2·b_3_4
   b_3_4·b_5_9 + b_2_3·b_3_4·b_3_5 + b_2_3·b_6_7 + b_2_2·b_3_4·b_3_5 + b_2_23·b_2_3+ b_2_24 + a_2_1·b_2_33 + a_2_1·b_2_22·b_2_3 + a_2_0·b_3_4·b_3_5 + a_2_0·b_2_23
 b_3_4·b_5_9 + b_3_4·b_5_8 + b_2_3·b_3_4·b_3_5 + b_2_2·b_6_7 + b_2_23·b_2_3+ a_2_1·b_2_22·b_2_3 + a_2_0·b_3_4·b_3_5
 a_2_0·b_3_4·b_3_5 + a_2_0·b_6_7 + a_2_0·b_2_23
   a_2_1·b_6_7 + a_2_0·b_3_4·b_3_5 + a_2_0·b_2_22·b_2_3 + a_2_0·b_2_23
   b_3_5·b_5_9 + b_2_3·b_3_4·b_3_5 + b_2_3·b_6_12 + b_2_2·b_3_4·b_3_5 + b_2_23·b_2_3+ b_2_24 + a_2_0·b_2_33
 b_3_5·b_5_9 + b_3_5·b_5_8 + b_2_34 + b_2_2·b_3_4·b_3_5 + b_2_2·b_6_12 + b_2_2·b_2_33+ b_2_22·b_2_32 + b_2_23·b_2_3 + a_2_1·b_2_33 + a_2_0·b_2_33 + a_2_0·b_2_23
 a_2_1·b_2_22·b_2_3 + a_2_0·b_6_12 + a_2_0·b_2_33 + a_2_0·b_2_23
   a_2_1·b_6_12 + a_2_1·b_2_33 + a_2_0·b_3_4·b_3_5
   b_6_7·b_3_4 + b_2_2·b_2_3·b_5_8 + b_2_22·b_5_9 + b_2_22·b_5_8 + a_2_0·b_2_32·b_3_5+ a_2_0·b_2_22·b_3_5
 b_6_12·b_3_4 + b_6_7·b_3_5 + b_2_33·b_3_4 + b_2_2·b_2_32·b_3_5 + b_2_2·b_2_32·b_3_4+ b_2_23·b_3_5 + a_2_1·b_2_32·b_3_5 + a_2_0·b_2_32·b_3_5 + a_2_0·b_2_2·b_2_3·b_3_4
 b_6_12·b_3_5 + b_2_32·b_5_8 + b_2_33·b_3_5 + b_2_33·b_3_4 + b_2_2·b_2_3·b_5_8+ b_2_2·b_2_32·b_3_4 + b_2_22·b_5_8 + b_2_22·b_2_3·b_3_5 + b_2_22·b_2_3·b_3_4
 + b_2_23·b_3_5 + a_2_1·b_2_32·b_3_5 + a_2_0·b_2_2·b_2_3·b_3_5
 + a_2_0·b_2_2·b_2_3·b_3_4 + a_2_0·b_2_22·b_3_5
 b_5_92 + b_5_82 + b_2_35 + b_2_24·b_2_3 + a_2_1·b_2_34 + a_2_0·b_2_2·b_6_7+ a_2_0·b_2_23·b_2_3
 b_5_8·b_5_9 + b_5_82 + b_2_32·b_3_4·b_3_5 + b_2_32·b_6_12 + b_2_35+ b_2_2·b_2_3·b_6_12 + b_2_2·b_2_34 + b_2_22·b_3_4·b_3_5 + b_2_22·b_6_12
 + b_2_22·b_6_7 + b_2_22·b_2_33 + b_2_23·b_2_32 + b_2_24·b_2_3 + a_2_1·b_2_34
 b_5_82 + b_2_2·b_2_34 + a_2_0·b_2_2·b_6_12 + a_2_0·b_2_23·b_2_3 + a_2_0·b_2_24
   b_6_7·b_5_9 + b_6_7·b_5_8 + b_2_3·b_6_7·b_3_5 + b_2_22·b_2_32·b_3_4 + b_2_23·b_5_9+ b_2_23·b_2_3·b_3_5 + b_2_23·b_2_3·b_3_4 + b_2_24·b_3_5 + b_2_24·b_3_4
 + a_2_0·b_2_22·b_2_3·b_3_5 + a_2_0·b_2_23·b_3_5 + a_2_0·b_2_23·b_3_4
 b_6_12·b_5_8 + b_6_7·b_5_9 + b_6_7·b_5_8 + b_2_33·b_5_8 + b_2_2·b_2_33·b_3_5+ b_2_2·b_2_33·b_3_4 + b_2_22·b_2_3·b_5_8 + b_2_22·b_2_32·b_3_5 + b_2_23·b_5_9
 + b_2_23·b_5_8 + b_2_24·b_3_5 + b_2_24·b_3_4 + a_2_1·b_2_33·b_3_5
 + a_2_0·b_2_33·b_3_5 + a_2_0·b_2_22·b_2_3·b_3_5 + a_2_0·b_2_23·b_3_5
 + a_2_0·b_2_23·b_3_4
 b_6_12·b_5_9 + b_6_7·b_5_9 + b_2_34·b_3_5 + b_2_34·b_3_4 + b_2_2·b_2_33·b_3_5+ b_2_2·b_2_33·b_3_4 + b_2_24·b_3_5 + b_2_24·b_3_4 + a_2_0·b_2_33·b_3_5
 + a_2_0·b_2_22·b_2_3·b_3_5
 b_6_7·b_5_8 + b_2_2·b_6_7·b_3_5 + b_2_2·b_2_33·b_3_4 + b_2_23·b_5_9 + b_2_23·b_5_8+ b_2_23·b_2_3·b_3_5 + a_2_0·b_2_33·b_3_5 + a_2_0·b_2_23·b_3_5 + a_2_0·c_8_17·a_1_1
 b_6_72 + b_2_22·b_2_34 + b_2_24·b_2_32 + b_2_25·b_2_3 + a_2_0·b_2_22·b_6_7
   b_6_122 + b_2_36 + b_2_22·b_2_34 + b_2_23·b_2_33 + b_2_26+ a_2_0·b_2_22·b_6_12 + a_2_0·b_2_25
 b_6_7·b_6_12 + b_2_33·b_6_7 + b_2_2·b_2_32·b_6_12 + b_2_2·b_2_32·b_6_7+ b_2_2·b_2_35 + b_2_22·b_2_34 + b_2_23·b_3_4·b_3_5 + b_2_23·b_6_12
 + b_2_23·b_2_33 + b_2_24·b_2_32 + a_2_0·b_2_22·b_6_12 + a_2_0·b_2_22·b_6_7
 + a_2_0·b_2_24·b_2_3 + a_2_0·b_2_25
 
 
 
  Data used for Benson′s test
   
     Benson′s completion test succeeded in degree 12.
     The completion test was perfect: It applied in the last degree in which a generator or relation was found.
     The following is a filter regular homogeneous system of parameters:
    
      c_8_17, a Duflot regular element of degree 8
      b_2_32 + b_2_2·b_2_3 + b_2_22, an element of degree 4
      b_2_3, an element of degree 2
       The Raw Filter Degree Type of that HSOP is [-1, 3, 9, 11].
     The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
     
 
 
  Restriction maps
    Restriction map to the greatest central el. ab. subgp., which is of rank 1
  
       a_1_0 → 0, an element of degree 1
       a_1_1 → 0, an element of degree 1
       a_2_0 → 0, an element of degree 2
       a_2_1 → 0, an element of degree 2
       b_2_2 → 0, an element of degree 2
       b_2_3 → 0, an element of degree 2
       b_3_4 → 0, an element of degree 3
       b_3_5 → 0, an element of degree 3
       b_5_8 → 0, an element of degree 5
       b_5_9 → 0, an element of degree 5
       b_6_7 → 0, an element of degree 6
       b_6_12 → 0, an element of degree 6
       c_8_17 → c_1_08, an element of degree 8
       
    Restriction map to a maximal el. ab. subgp. of rank 3
  
       a_1_0 → 0, an element of degree 1
       a_1_1 → 0, an element of degree 1
       a_2_0 → 0, an element of degree 2
       a_2_1 → 0, an element of degree 2
       b_2_2 → c_1_12, an element of degree 2
       b_2_3 → c_1_22 + c_1_12, an element of degree 2
       b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_13, an element of degree 3
       b_3_5 → c_1_23 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
       b_5_8 → c_1_1·c_1_24 + c_1_15, an element of degree 5
       b_5_9 → c_1_25 + c_1_15, an element of degree 5
       b_6_7 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_15·c_1_2 + c_1_16, an element of degree 6
       b_6_12 → c_1_26 + c_1_13·c_1_23 + c_1_15·c_1_2, an element of degree 6
       c_8_17 → c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_15·c_1_23 + c_1_18+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
 
 
 
 
               
 
 |