Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 4 of order 64
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t2 − t + 1 |
| (t + 1) · (t − 1)4 · (t2 + 1) |
- The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- c_2_3, a Duflot regular element of degree 2
- a_3_5, a nilpotent element of degree 3
- b_3_4, an element of degree 3
- b_3_6, an element of degree 3
- b_4_9, an element of degree 4
- c_4_10, a Duflot regular element of degree 4
- b_5_17, an element of degree 5
Ring relations
There are 33 minimal relations of maximal degree 10:
- a_1_02
- a_1_0·b_1_1
- a_2_1·a_1_0
- a_2_1·b_1_1
- b_2_2·a_1_0
- a_2_12
- a_1_0·a_3_5
- b_1_1·a_3_5
- a_1_0·b_3_4
- a_1_0·b_3_6
- a_2_1·a_3_5
- a_2_1·b_3_4
- b_2_2·a_3_5 + a_2_1·b_3_6
- b_4_9·a_1_0
- b_4_9·b_1_1 + b_2_2·b_3_4 + b_2_2·a_3_5
- a_3_52
- a_3_5·b_3_4
- b_3_42 + c_2_3·b_1_14
- a_3_5·b_3_6 + a_2_1·b_2_22
- b_3_62 + b_2_2·b_1_1·b_3_6 + b_2_2·b_1_1·b_3_4 + b_2_23 + c_4_10·b_1_12
+ b_2_2·c_2_3·b_1_12
- a_2_1·b_4_9
- a_1_0·b_5_17
- b_3_4·b_3_6 + b_1_1·b_5_17 + b_2_2·b_1_1·b_3_6 + b_2_2·b_1_1·b_3_4 + a_2_1·b_2_22
+ c_2_3·b_1_1·b_3_4 + c_2_3·b_1_14
- b_4_9·a_3_5
- b_4_9·b_3_4 + b_2_2·c_2_3·b_1_13
- b_4_9·b_3_6 + b_2_2·b_5_17 + b_2_22·b_3_6 + b_2_22·b_3_4 + a_2_1·b_2_2·b_3_6
+ b_2_2·c_2_3·b_3_4 + b_2_2·c_2_3·b_1_13 + a_2_1·c_2_3·b_3_6
- a_2_1·b_5_17 + a_2_1·b_2_2·b_3_6
- b_4_92 + b_2_22·c_2_3·b_1_12
- a_3_5·b_5_17 + a_2_1·b_2_23
- b_3_4·b_5_17 + b_2_2·b_1_1·b_5_17 + b_2_22·b_1_1·b_3_6 + b_2_22·b_1_1·b_3_4
+ a_2_1·b_2_23 + c_2_3·b_1_13·b_3_6 + c_2_3·b_1_13·b_3_4 + b_2_2·c_2_3·b_1_1·b_3_4 + c_2_32·b_1_14
- b_3_6·b_5_17 + b_2_22·b_1_1·b_3_6 + b_2_22·b_1_1·b_3_4 + b_2_22·b_4_9 + b_2_24
+ c_4_10·b_1_1·b_3_4 + c_2_3·b_1_1·b_5_17 + c_2_3·b_1_13·b_3_6 + b_2_2·c_4_10·b_1_12 + b_2_2·c_2_3·b_1_1·b_3_6 + b_2_2·c_2_3·b_1_14 + b_2_22·c_2_3·b_1_12 + c_2_32·b_1_1·b_3_4 + c_2_32·b_1_14
- b_4_9·b_5_17 + b_2_22·b_5_17 + b_2_23·b_3_6 + b_2_23·b_3_4 + a_2_1·b_2_22·b_3_6
+ b_2_2·c_2_3·b_1_12·b_3_6 + b_2_2·c_2_3·b_1_12·b_3_4 + b_2_22·c_2_3·b_3_4 + a_2_1·b_2_2·c_2_3·b_3_6 + b_2_2·c_2_32·b_1_13
- b_5_172 + b_2_23·b_1_1·b_3_6 + b_2_23·b_1_1·b_3_4 + b_2_25
+ b_2_2·c_2_3·b_1_13·b_3_6 + b_2_2·c_2_3·b_1_13·b_3_4 + b_2_22·c_4_10·b_1_12 + b_2_22·c_2_3·b_1_14 + c_2_3·c_4_10·b_1_14 + c_2_32·b_1_16 + b_2_2·c_2_32·b_1_14 + c_2_33·b_1_14
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_4_10, a Duflot regular element of degree 4
- b_1_12 + b_2_2, an element of degree 2
- b_1_1, an element of degree 1
- The Raw Filter Degree Type of that HSOP is [-1, -1, 1, 4, 5].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- c_2_3 → c_1_12, an element of degree 2
- a_3_5 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- c_4_10 → c_1_04, an element of degree 4
- b_5_17 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- c_2_3 → c_1_12, an element of degree 2
- a_3_5 → 0, an element of degree 3
- b_3_4 → c_1_1·c_1_22, an element of degree 3
- b_3_6 → c_1_33 + c_1_22·c_1_3 + c_1_1·c_1_22 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_9 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3, an element of degree 4
- c_4_10 → c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32
+ c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- b_5_17 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_2·c_1_33
+ c_1_1·c_1_23·c_1_3 + c_1_13·c_1_22 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_1·c_1_23 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_1·c_1_22, an element of degree 5
|