Cohomology of group number 24 of order 64

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64


General information on the group

  • The group has 2 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
     − 1

    (t  +  1) · (t  −  1)3
  • The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Ring generators

The cohomology ring has 10 minimal generators of maximal degree 4:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_0, a nilpotent element of degree 2
  4. a_2_1, a nilpotent element of degree 2
  5. b_2_2, an element of degree 2
  6. c_2_3, a Duflot regular element of degree 2
  7. a_3_4, a nilpotent element of degree 3
  8. b_3_5, an element of degree 3
  9. a_4_4, a nilpotent element of degree 4
  10. c_4_8, a Duflot regular element of degree 4

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Ring relations

There are 27 minimal relations of maximal degree 8:

  1. a_1_02
  2. a_1_12
  3. a_1_0·a_1_1
  4. a_2_0·a_1_0
  5. a_2_1·a_1_1
  6. a_2_1·a_1_0 + a_2_0·a_1_1
  7. b_2_2·a_1_0
  8. a_2_02
  9. a_2_0·a_2_1
  10. a_2_12
  11. a_2_0·b_2_2 + a_1_1·a_3_4
  12. a_1_0·a_3_4
  13. a_1_1·b_3_5 + a_2_1·b_2_2 + a_2_0·b_2_2
  14. a_1_0·b_3_5
  15. a_2_0·a_3_4
  16. a_2_0·b_3_5 + a_2_1·a_3_4
  17. b_2_22·a_1_1 + a_2_1·b_3_5 + a_2_1·a_3_4
  18. a_4_4·a_1_1 + a_2_1·a_3_4
  19. a_4_4·a_1_0
  20. a_3_42 + b_2_2·a_1_1·a_3_4
  21. b_3_52 + b_2_23 + a_2_1·b_2_22 + b_2_2·a_1_1·a_3_4
  22. a_3_4·b_3_5 + b_2_2·a_4_4 + b_2_2·a_1_1·a_3_4
  23. a_2_0·a_4_4
  24. b_2_2·a_1_1·a_3_4 + a_2_1·a_4_4
  25. a_4_4·a_3_4 + a_2_1·b_2_2·a_3_4
  26. a_4_4·b_3_5 + b_2_22·a_3_4 + a_2_0·c_4_8·a_1_1
  27. a_4_42 + a_2_1·b_2_2·a_4_4


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 8.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_2_3, a Duflot regular element of degree 2
    2. c_4_8, a Duflot regular element of degree 4
    3. b_2_2, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 5].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. a_2_10, an element of degree 2
  5. b_2_20, an element of degree 2
  6. c_2_3c_1_02, an element of degree 2
  7. a_3_40, an element of degree 3
  8. b_3_50, an element of degree 3
  9. a_4_40, an element of degree 4
  10. c_4_8c_1_14, an element of degree 4

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. a_2_10, an element of degree 2
  5. b_2_2c_1_22, an element of degree 2
  6. c_2_3c_1_02, an element of degree 2
  7. a_3_40, an element of degree 3
  8. b_3_5c_1_23, an element of degree 3
  9. a_4_40, an element of degree 4
  10. c_4_8c_1_12·c_1_22 + c_1_14, an element of degree 4


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009