| Simon King       
     
 
        David J. Green
     
     
 
      Cohomology
      →Theory
 →Implementation
 
     
 
      Jena:
     
           
      Faculty
     
     
 
      External links:
     
        
    Singular
     
    Gap
     
 | 
         
 
 
  Cohomology of group number 219 of order 64
 
 
  General information on the group
  The group has 4 minimal generators and exponent 4.
   It is non-abelian.
   It has p-Rank 4.
   Its center has rank 2.
   It has 3 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3 and 4, respectively.
   
 
  Structure of the cohomology ring
  General information
   The cohomology ring is of dimension 4 and depth 2.
   The depth coincides with the Duflot bound.
   The Poincaré series is    | ( − 1) · (t5  −  t4  −  t  −  1) |  | 
 |  | (t  +  1) · (t  −  1)4 · (t2  +  1)2 | 
 The a-invariants are -∞,-∞,-5,-4,-4.  They were obtained using the filter regular HSOP of the Benson test.
   
 
  Ring generators
The cohomology ring has 10 minimal generators of maximal degree 6:
 
   b_1_0, an element of degree 1
   b_1_1, an element of degree 1
   b_1_2, an element of degree 1
   b_1_3, an element of degree 1
   b_3_10, an element of degree 3
   b_3_11, an element of degree 3
   b_4_16, an element of degree 4
   c_4_17, a Duflot regular element of degree 4
   c_4_18, a Duflot regular element of degree 4
   b_6_41, an element of degree 6
   
 
  Ring relations
There are 21 minimal relations of maximal degree 12:
 
   b_1_12 + b_1_0·b_1_2
   b_1_1·b_1_2 + b_1_0·b_1_3 + b_1_0·b_1_1
   b_1_0·b_1_32 + b_1_0·b_1_2·b_1_3
   b_1_0·b_1_1·b_1_3
   b_1_1·b_3_10 + b_1_0·b_3_11 + b_1_0·b_3_10 + b_1_03·b_1_3 + b_1_03·b_1_1
   b_1_3·b_3_10 + b_1_2·b_3_11 + b_1_1·b_3_11 + b_1_03·b_1_3 + b_1_03·b_1_2 + b_1_03·b_1_1
   b_1_0·b_1_3·b_3_11 + b_1_0·b_1_2·b_3_11 + b_1_0·b_1_1·b_3_11 + b_1_04·b_1_3+ b_1_04·b_1_2 + b_1_04·b_1_1
 b_1_0·b_1_2·b_3_11 + b_1_02·b_3_11 + b_1_02·b_3_10 + b_1_04·b_1_1 + b_4_16·b_1_0
   b_1_1·b_1_3·b_3_11 + b_1_0·b_1_3·b_3_11 + b_1_02·b_3_11 + b_1_02·b_3_10+ b_1_04·b_1_3 + b_1_04·b_1_2 + b_1_04·b_1_1 + b_4_16·b_1_1
 b_3_112 + b_3_102 + b_1_2·b_1_32·b_3_11 + b_1_22·b_1_3·b_3_11 + b_1_23·b_3_11+ b_1_23·b_3_10 + b_1_05·b_1_3 + b_1_05·b_1_1 + c_4_18·b_1_32 + c_4_18·b_1_22
 + c_4_17·b_1_0·b_1_2
 b_3_102 + b_1_23·b_3_11 + b_1_23·b_3_10 + b_1_05·b_1_2 + b_1_05·b_1_1+ c_4_18·b_1_22 + c_4_18·b_1_0·b_1_2 + c_4_18·b_1_02 + c_4_17·b_1_02
 b_3_10·b_3_11 + b_3_102 + b_1_22·b_1_3·b_3_11 + b_1_23·b_3_10 + b_1_05·b_1_3+ b_1_05·b_1_2 + b_1_05·b_1_1 + b_4_16·b_1_0·b_1_1 + c_4_18·b_1_2·b_1_3
 + c_4_18·b_1_22 + c_4_18·b_1_1·b_1_3 + c_4_18·b_1_0·b_1_2 + c_4_18·b_1_0·b_1_1
 + c_4_17·b_1_0·b_1_1
 b_1_2·b_1_33·b_3_11 + b_1_22·b_1_32·b_3_11 + b_1_23·b_1_3·b_3_11 + b_1_24·b_3_11+ b_1_06·b_1_2 + b_1_06·b_1_1 + b_6_41·b_1_2 + b_4_16·b_3_10 + b_4_16·b_1_22·b_1_3
 + b_4_16·b_1_02·b_1_2 + b_4_16·b_1_03 + c_4_18·b_1_23 + c_4_18·b_1_1·b_1_32
 + c_4_18·b_1_0·b_1_2·b_1_3 + c_4_18·b_1_02·b_1_1 + c_4_17·b_1_2·b_1_32
 + c_4_17·b_1_02·b_1_3 + c_4_17·b_1_02·b_1_2
 b_1_34·b_3_11 + b_1_2·b_1_33·b_3_11 + b_1_22·b_1_32·b_3_11 + b_1_23·b_1_3·b_3_11+ b_1_06·b_1_3 + b_1_06·b_1_2 + b_1_06·b_1_1 + b_6_41·b_1_3 + b_4_16·b_3_11
 + b_4_16·b_1_2·b_1_32 + b_4_16·b_1_02·b_1_1 + c_4_18·b_1_22·b_1_3
 + c_4_18·b_1_1·b_1_32 + c_4_18·b_1_0·b_1_2·b_1_3 + c_4_18·b_1_02·b_1_3
 + c_4_18·b_1_02·b_1_2 + c_4_18·b_1_02·b_1_1 + c_4_17·b_1_33 + c_4_17·b_1_1·b_1_32
 + c_4_17·b_1_02·b_1_2 + c_4_17·b_1_02·b_1_1
 b_1_04·b_3_10 + b_1_06·b_1_3 + b_1_06·b_1_2 + b_6_41·b_1_0 + b_4_16·b_1_02·b_1_1+ c_4_18·b_1_0·b_1_2·b_1_3 + c_4_18·b_1_02·b_1_2 + c_4_18·b_1_02·b_1_1
 + c_4_18·b_1_03 + c_4_17·b_1_0·b_1_2·b_1_3 + c_4_17·b_1_02·b_1_3
 b_1_06·b_1_2 + b_1_06·b_1_1 + b_6_41·b_1_1 + b_4_16·b_1_1·b_1_32+ b_4_16·b_1_02·b_1_1 + b_4_16·b_1_03 + c_4_18·b_1_1·b_1_32
 + c_4_18·b_1_0·b_1_2·b_1_3 + c_4_18·b_1_02·b_1_3 + c_4_18·b_1_02·b_1_2
 + c_4_17·b_1_1·b_1_32 + c_4_17·b_1_0·b_1_2·b_1_3
 b_1_24·b_1_3·b_3_11 + b_1_25·b_3_11 + b_1_25·b_3_10 + b_6_41·b_1_2·b_1_3+ b_4_16·b_1_2·b_3_11 + b_4_16·b_1_23·b_1_3 + b_4_16·b_1_24 + b_4_16·b_1_1·b_3_11
 + b_4_16·b_1_0·b_3_11 + b_4_16·b_1_0·b_3_10 + b_4_162 + c_4_18·b_1_34
 + c_4_18·b_1_23·b_1_3 + c_4_18·b_1_24 + c_4_18·b_1_1·b_1_33 + c_4_18·b_1_03·b_1_3
 + c_4_18·b_1_03·b_1_1 + c_4_17·b_1_2·b_1_33 + c_4_17·b_1_24 + c_4_17·b_1_03·b_1_3
 + c_4_17·b_1_03·b_1_1
 b_6_41·b_3_10 + b_6_41·b_1_22·b_1_3 + b_6_41·b_1_23 + b_4_16·b_1_22·b_3_11+ b_4_16·b_1_23·b_1_32 + b_4_16·b_1_24·b_1_3 + b_4_16·b_1_04·b_1_2
 + b_4_16·b_1_04·b_1_1 + b_4_16·b_1_05 + c_4_18·b_1_2·b_1_34
 + c_4_18·b_1_22·b_3_10 + c_4_18·b_1_22·b_1_33 + c_4_18·b_1_23·b_1_32
 + c_4_18·b_1_25 + c_4_18·b_1_1·b_1_34 + c_4_18·b_1_02·b_3_10
 + c_4_18·b_1_04·b_1_2 + c_4_18·b_1_04·b_1_1 + c_4_18·b_1_05
 + c_4_17·b_1_2·b_1_3·b_3_11 + c_4_17·b_1_22·b_1_33 + c_4_17·b_1_23·b_1_32
 + c_4_17·b_1_02·b_3_11 + c_4_17·b_1_02·b_3_10 + c_4_17·b_1_04·b_1_3
 + c_4_17·b_1_04·b_1_1 + c_4_17·b_1_05 + b_4_16·c_4_18·b_1_2 + b_4_16·c_4_18·b_1_1
 + b_4_16·c_4_18·b_1_0 + b_4_16·c_4_17·b_1_1
 b_6_41·b_3_11 + b_6_41·b_1_2·b_1_32 + b_6_41·b_1_22·b_1_3+ b_4_16·b_1_2·b_1_3·b_3_11 + b_4_16·b_1_22·b_1_33 + b_4_16·b_1_23·b_1_32
 + b_4_16·b_1_04·b_1_2 + b_4_16·b_1_05 + b_4_162·b_1_1 + b_4_162·b_1_0
 + c_4_18·b_1_35 + c_4_18·b_1_2·b_1_34 + c_4_18·b_1_22·b_3_11
 + c_4_18·b_1_22·b_1_33 + c_4_18·b_1_24·b_1_3 + c_4_18·b_1_1·b_1_34
 + c_4_18·b_1_02·b_3_11 + c_4_18·b_1_05 + c_4_17·b_1_32·b_3_11
 + c_4_17·b_1_2·b_1_34 + c_4_17·b_1_22·b_1_33 + c_4_17·b_1_02·b_3_11
 + c_4_17·b_1_02·b_3_10 + c_4_17·b_1_04·b_1_3 + c_4_17·b_1_04·b_1_2 + c_4_17·b_1_05
 + b_4_16·c_4_18·b_1_3 + b_4_16·c_4_18·b_1_1 + b_4_16·c_4_18·b_1_0 + b_4_16·c_4_17·b_1_1
 b_4_16·b_1_33·b_3_11 + b_4_16·b_1_2·b_1_32·b_3_11 + b_4_16·b_1_23·b_3_10+ b_4_16·b_1_23·b_1_33 + b_4_16·b_1_26 + b_4_16·b_1_03·b_3_10
 + b_4_16·b_1_05·b_1_1 + b_4_16·b_6_41 + b_4_162·b_1_22 + b_4_162·b_1_0·b_1_1
 + c_4_18·b_1_33·b_3_11 + c_4_18·b_1_23·b_3_10 + c_4_18·b_1_23·b_1_33
 + c_4_18·b_1_05·b_1_3 + c_4_18·b_1_05·b_1_1 + c_4_17·b_1_23·b_3_10
 + c_4_17·b_1_25·b_1_3 + c_4_17·b_1_26 + c_4_17·b_1_05·b_1_3 + c_4_17·b_1_05·b_1_2
 + c_4_17·b_1_05·b_1_1 + b_4_16·c_4_18·b_1_22 + b_4_16·c_4_18·b_1_1·b_1_3
 + b_4_16·c_4_18·b_1_0·b_1_2 + b_4_16·c_4_18·b_1_0·b_1_1 + b_4_16·c_4_18·b_1_02
 + b_4_16·c_4_17·b_1_32 + b_4_16·c_4_17·b_1_1·b_1_3 + b_4_16·c_4_17·b_1_0·b_1_2
 b_6_41·b_1_22·b_1_34 + b_6_41·b_1_23·b_1_33 + b_6_41·b_1_26 + b_6_412+ b_4_16·b_1_22·b_1_36 + b_4_16·b_1_25·b_3_11 + b_4_16·b_1_26·b_1_32
 + b_4_16·b_1_28 + b_4_16·b_1_08 + b_4_16·b_6_41·b_1_02 + b_4_162·b_1_3·b_3_11
 + b_4_162·b_1_34 + b_4_162·b_1_2·b_3_11 + b_4_162·b_1_22·b_1_32
 + b_4_162·b_1_24 + b_4_162·b_1_0·b_3_10 + c_4_18·b_1_2·b_1_37
 + c_4_18·b_1_23·b_1_32·b_3_11 + c_4_18·b_1_24·b_1_34 + c_4_18·b_1_25·b_1_33
 + c_4_18·b_1_27·b_1_3 + c_4_18·b_1_28 + c_4_18·b_1_08 + c_4_18·b_6_41·b_1_32
 + c_4_18·b_6_41·b_1_22 + c_4_17·b_1_22·b_1_36 + c_4_17·b_1_23·b_1_35
 + c_4_17·b_1_24·b_1_34 + c_4_17·b_1_25·b_3_11 + c_4_17·b_1_26·b_1_32
 + c_4_17·b_1_28 + c_4_17·b_1_08 + c_4_17·b_6_41·b_1_2·b_1_3
 + b_4_16·c_4_18·b_1_3·b_3_11 + b_4_16·c_4_18·b_1_2·b_3_10
 + b_4_16·c_4_18·b_1_2·b_1_33 + b_4_16·c_4_18·b_1_22·b_1_32
 + b_4_16·c_4_18·b_1_24 + b_4_16·c_4_18·b_1_0·b_3_11 + b_4_16·c_4_17·b_1_2·b_3_11
 + b_4_16·c_4_17·b_1_23·b_1_3 + b_4_16·c_4_17·b_1_24 + b_4_16·c_4_17·b_1_1·b_3_11
 + b_4_16·c_4_17·b_1_0·b_3_11 + b_4_16·c_4_17·b_1_03·b_1_1 + b_4_16·c_4_17·b_1_04
 + b_4_162·c_4_17 + c_4_182·b_1_34 + c_4_182·b_1_22·b_1_32 + c_4_182·b_1_24
 + c_4_182·b_1_1·b_1_33 + c_4_182·b_1_03·b_1_3 + c_4_182·b_1_03·b_1_2
 + c_4_182·b_1_04 + c_4_17·c_4_18·b_1_22·b_1_32 + c_4_17·c_4_18·b_1_23·b_1_3
 + c_4_172·b_1_34 + c_4_172·b_1_2·b_1_33 + c_4_172·b_1_24
 + c_4_172·b_1_03·b_1_2 + c_4_172·b_1_03·b_1_1
 
 
 
  Data used for Benson′s test
   
     Benson′s completion test succeeded in degree 12.
     The completion test was perfect: It applied in the last degree in which a generator or relation was found.
     The following is a filter regular homogeneous system of parameters:
    
      c_4_17, a Duflot regular element of degree 4
      c_4_18, a Duflot regular element of degree 4
      b_1_32 + b_1_2·b_1_3 + b_1_22 + b_1_0·b_1_3 + b_1_0·b_1_1 + b_1_02, an element of degree 2
      b_1_3, an element of degree 1
       The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 6, 7].
     The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
     
 
 
  Restriction maps
    Restriction map to the greatest central el. ab. subgp., which is of rank 2
  
       b_1_0 → 0, an element of degree 1
       b_1_1 → 0, an element of degree 1
       b_1_2 → 0, an element of degree 1
       b_1_3 → 0, an element of degree 1
       b_3_10 → 0, an element of degree 3
       b_3_11 → 0, an element of degree 3
       b_4_16 → 0, an element of degree 4
       c_4_17 → c_1_14 + c_1_04, an element of degree 4
       c_4_18 → c_1_14, an element of degree 4
       b_6_41 → 0, an element of degree 6
       
    Restriction map to a maximal el. ab. subgp. of rank 3
  
       b_1_0 → c_1_2, an element of degree 1
       b_1_1 → 0, an element of degree 1
       b_1_2 → 0, an element of degree 1
       b_1_3 → 0, an element of degree 1
       b_3_10 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
       b_3_11 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
       b_4_16 → 0, an element of degree 4
       c_4_17 → c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_23 + c_1_04, an element of degree 4
       c_4_18 → c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
       b_6_41 → c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
       
    Restriction map to a maximal el. ab. subgp. of rank 3
  
       b_1_0 → c_1_2, an element of degree 1
       b_1_1 → c_1_2, an element of degree 1
       b_1_2 → c_1_2, an element of degree 1
       b_1_3 → 0, an element of degree 1
       b_3_10 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
       b_3_11 → c_1_23, an element of degree 3
       b_4_16 → c_1_24 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
       c_4_17 → c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_23 + c_1_04, an element of degree 4
       c_4_18 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
       b_6_41 → c_1_26 + c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
       
    Restriction map to a maximal el. ab. subgp. of rank 4
  
       b_1_0 → 0, an element of degree 1
       b_1_1 → 0, an element of degree 1
       b_1_2 → c_1_2, an element of degree 1
       b_1_3 → c_1_3, an element of degree 1
       b_3_10 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
       b_3_11 → c_1_1·c_1_2·c_1_3 + c_1_12·c_1_3, an element of degree 3
       b_4_16 → c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
       c_4_17 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_22 + c_1_14+ c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_32
 + c_1_02·c_1_2·c_1_3 + c_1_04, an element of degree 4
 c_4_18 → c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3 + c_1_14, an element of degree 4
       b_6_41 → c_1_1·c_1_25 + c_1_12·c_1_34 + c_1_12·c_1_23·c_1_3 + c_1_13·c_1_2·c_1_32+ c_1_13·c_1_22·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_2·c_1_34
 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3
 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_34
 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_1·c_1_23
 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_32, an element of degree 6
 
 
 
 
               
 
 |