Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 37 of order 64
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t5 + t2 + 1 |
| (t − 1)2 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-2,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- a_2_2, a nilpotent element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- b_4_3, an element of degree 4
- a_5_2, a nilpotent element of degree 5
- a_5_4, a nilpotent element of degree 5
- b_6_5, an element of degree 6
- a_7_5, a nilpotent element of degree 7
- c_8_6, a Duflot regular element of degree 8
Ring relations
There are 47 minimal relations of maximal degree 14:
- a_1_02
- a_1_0·a_1_1
- a_2_1·a_1_0
- a_2_2·a_1_1
- a_2_2·a_1_0 + a_2_1·a_1_1
- a_1_14
- a_2_22 + a_2_1·a_2_2 + a_2_12
- a_1_0·a_3_2
- a_1_1·a_3_3 + a_2_22
- a_1_0·a_3_3 + a_2_12
- a_2_2·a_3_2
- a_2_1·a_3_2
- a_2_1·a_3_3 + a_1_12·a_3_2
- b_4_3·a_1_0
- a_3_2·a_3_3
- a_2_1·b_4_3 + a_3_32 + a_1_13·a_3_2
- a_3_22 + b_4_3·a_1_12 + a_1_13·a_3_2
- a_3_22 + a_1_1·a_5_2
- a_1_0·a_5_2
- a_1_0·a_5_4 + a_1_13·a_3_2
- a_2_1·a_5_2 + b_4_3·a_1_13
- a_2_2·a_5_4 + b_4_3·a_1_13
- a_2_2·a_5_2 + a_2_1·a_5_4 + b_4_3·a_1_13
- b_6_5·a_1_1 + b_4_3·a_3_2 + a_2_2·a_5_2 + b_4_3·a_1_13
- b_6_5·a_1_0
- a_3_2·a_5_2 + b_4_3·a_1_1·a_3_2 + a_2_2·a_3_32
- a_2_2·a_3_32 + a_1_13·a_5_4
- a_2_2·b_6_5 + a_3_3·a_5_4 + a_3_3·a_5_2
- a_2_1·b_6_5 + a_3_3·a_5_2
- a_3_2·a_5_4 + a_1_1·a_7_5 + b_4_3·a_1_1·a_3_2 + a_2_2·a_3_32
- a_1_0·a_7_5
- b_6_5·a_3_2 + b_4_32·a_1_1 + a_2_2·b_4_3·a_3_3 + b_4_3·a_1_12·a_3_2
- a_2_2·a_7_5 + a_2_2·b_4_3·a_3_3 + b_4_3·a_1_12·a_3_2
- a_2_2·b_4_3·a_3_3 + a_2_1·a_7_5
- b_6_5·a_3_3 + b_4_3·a_5_2 + b_4_32·a_1_1 + a_2_2·b_4_3·a_3_3 + a_1_12·a_7_5
+ b_4_3·a_1_12·a_3_2
- a_5_22 + b_4_3·a_3_32 + b_4_32·a_1_12
- a_2_2·b_4_32 + a_5_2·a_5_4 + b_4_3·a_3_32 + b_4_3·a_1_1·a_5_4
- a_2_2·b_4_32 + a_3_3·a_7_5 + a_1_13·a_7_5
- a_3_2·a_7_5 + b_4_3·a_1_1·a_5_4 + b_4_32·a_1_12
- a_2_2·b_4_32 + a_5_42 + b_4_3·a_1_1·a_5_4 + b_4_32·a_1_12 + a_1_13·a_7_5
+ c_8_6·a_1_12
- b_6_5·a_5_2 + b_4_32·a_3_3 + b_4_32·a_3_2 + b_4_3·a_1_12·a_5_4
- b_6_5·a_5_4 + b_4_3·a_7_5 + b_4_32·a_3_3 + b_4_32·a_3_2 + b_4_3·a_1_12·a_5_4
+ b_4_32·a_1_13 + a_2_1·c_8_6·a_1_1
- a_5_2·a_7_5 + b_4_3·a_3_3·a_5_4 + b_4_3·a_3_3·a_5_2 + b_4_3·a_1_1·a_7_5
- a_5_4·a_7_5 + b_4_3·a_3_3·a_5_2 + b_4_32·a_1_1·a_3_2 + c_8_6·a_1_1·a_3_2
- b_6_52 + b_4_33 + b_4_3·a_3_3·a_5_2 + b_4_3·a_1_13·a_5_4 + a_2_12·c_8_6
- b_6_5·a_7_5 + b_4_32·a_5_4 + b_4_32·a_5_2 + a_3_32·a_7_5 + b_4_32·a_1_12·a_3_2
- a_7_52 + b_4_3·a_3_3·a_7_5 + b_4_32·a_3_32 + b_4_32·a_1_1·a_5_4
+ b_4_3·a_1_13·a_7_5 + b_4_3·c_8_6·a_1_12 + c_8_6·a_1_13·a_3_2
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_6, a Duflot regular element of degree 8
- b_4_3, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, 6, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- b_4_3 → 0, an element of degree 4
- a_5_2 → 0, an element of degree 5
- a_5_4 → 0, an element of degree 5
- b_6_5 → 0, an element of degree 6
- a_7_5 → 0, an element of degree 7
- c_8_6 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- b_4_3 → c_1_14, an element of degree 4
- a_5_2 → 0, an element of degree 5
- a_5_4 → 0, an element of degree 5
- b_6_5 → c_1_16, an element of degree 6
- a_7_5 → 0, an element of degree 7
- c_8_6 → c_1_04·c_1_14 + c_1_08, an element of degree 8
|