Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 36 of order 64
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t5 − t4 + t2 − t + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- a_2_2, a nilpotent element of degree 2
- a_3_3, a nilpotent element of degree 3
- b_3_2, an element of degree 3
- b_3_4, an element of degree 3
- b_4_5, an element of degree 4
- a_5_2, a nilpotent element of degree 5
- b_5_5, an element of degree 5
- b_6_8, an element of degree 6
- b_7_9, an element of degree 7
- c_8_13, a Duflot regular element of degree 8
Ring relations
There are 51 minimal relations of maximal degree 14:
- a_1_02
- a_1_0·b_1_1
- a_2_1·a_1_0
- a_2_1·b_1_1 + a_2_2·a_1_0
- a_2_2·b_1_1 + a_2_1·b_1_1
- a_2_22 + a_2_1·a_2_2 + a_2_12
- a_1_0·a_3_3 + a_2_12
- b_1_1·a_3_3 + a_2_22 + a_2_12
- a_1_0·b_3_2
- a_1_0·b_3_4 + a_2_22
- a_2_1·a_3_3
- a_2_2·b_3_2
- a_2_1·b_3_2
- a_2_2·b_3_4
- a_2_1·b_3_4 + a_2_2·a_3_3
- b_4_5·a_1_0
- a_3_3·b_3_2
- a_3_3·b_3_4 + a_2_2·b_4_5 + a_3_32
- a_2_1·b_4_5 + a_3_32
- b_3_22 + b_1_13·b_3_4 + b_1_13·b_3_2 + b_4_5·b_1_12
- a_1_0·a_5_2
- b_1_1·a_5_2
- a_1_0·b_5_5
- b_3_42 + b_1_1·b_5_5 + a_3_3·b_3_4 + a_3_32
- a_2_1·a_5_2
- a_2_2·b_5_5
- a_2_1·b_5_5 + a_2_2·a_5_2
- b_6_8·a_1_0
- b_1_1·b_3_2·b_3_4 + b_1_12·b_5_5 + b_1_14·b_3_4 + b_1_14·b_3_2 + b_6_8·b_1_1
+ b_4_5·b_3_2 + b_4_5·b_1_13 + a_2_2·a_5_2
- b_3_2·a_5_2
- b_3_4·a_5_2 + a_3_3·b_5_5
- b_3_4·a_5_2 + a_2_2·b_6_8 + a_3_3·a_5_2
- a_2_1·b_6_8 + a_3_3·a_5_2
- a_1_0·b_7_9
- b_3_2·b_5_5 + b_1_1·b_7_9 + b_1_15·b_3_4 + b_6_8·b_1_12 + b_4_5·b_1_1·b_3_2
+ b_4_5·b_1_14
- b_6_8·a_3_3 + b_4_5·a_5_2 + a_2_2·b_4_5·a_3_3
- a_2_2·b_7_9 + a_2_2·b_4_5·a_3_3
- a_2_1·b_7_9 + a_2_2·b_4_5·a_3_3
- b_1_12·b_7_9 + b_1_14·b_5_5 + b_1_16·b_3_2 + b_6_8·b_3_2 + b_6_8·b_1_13
+ b_4_5·b_1_12·b_3_2 + b_4_52·b_1_1 + a_2_2·b_4_5·a_3_3
- a_5_22 + b_4_5·a_3_32
- a_5_2·b_5_5 + a_2_2·b_4_52 + b_4_5·a_3_32
- a_3_3·b_7_9 + a_2_2·b_4_52
- b_3_2·b_7_9 + b_1_15·b_5_5 + b_6_8·b_1_1·b_3_4 + b_6_8·b_1_1·b_3_2 + b_4_5·b_3_2·b_3_4
+ b_4_5·b_1_1·b_5_5 + b_4_52·b_1_12
- b_5_52 + b_1_15·b_5_5 + b_1_17·b_3_4 + b_1_17·b_3_2 + b_6_8·b_1_1·b_3_2
+ b_6_8·b_1_14 + b_4_5·b_1_1·b_5_5 + b_4_5·b_1_13·b_3_4 + b_4_5·b_1_13·b_3_2 + b_4_52·b_1_12 + a_2_2·b_4_52 + c_8_13·b_1_12
- b_6_8·a_5_2 + b_4_52·a_3_3 + a_2_2·b_4_5·a_5_2
- b_1_1·b_3_4·b_7_9 + b_6_8·b_5_5 + b_6_8·b_1_12·b_3_2 + b_4_5·b_7_9 + b_4_5·b_1_17
+ b_4_5·b_6_8·b_1_1 + b_4_52·b_3_2 + b_4_52·a_3_3 + c_8_13·b_1_13 + a_2_2·c_8_13·a_1_0
- a_5_2·b_7_9 + a_2_2·b_4_5·b_6_8
- b_5_5·b_7_9 + b_1_17·b_5_5 + b_6_8·b_3_2·b_3_4 + b_4_5·b_1_1·b_7_9
+ b_4_5·b_1_13·b_5_5 + b_4_5·b_1_15·b_3_4 + b_4_5·b_1_15·b_3_2 + b_4_5·b_1_18 + b_4_52·b_1_1·b_3_4 + b_4_5·a_3_3·a_5_2 + c_8_13·b_1_1·b_3_2 + c_8_13·b_1_14
- b_6_8·b_3_2·b_3_4 + b_6_8·b_1_1·b_5_5 + b_6_8·b_1_13·b_3_4 + b_6_8·b_1_13·b_3_2
+ b_6_82 + b_4_5·b_1_1·b_7_9 + b_4_5·b_1_13·b_5_5 + b_4_5·b_1_15·b_3_2 + b_4_52·b_1_1·b_3_2 + b_4_53 + b_4_5·a_3_3·a_5_2 + a_2_12·c_8_13
- b_1_18·b_5_5 + b_6_8·b_7_9 + b_6_8·b_1_14·b_3_2 + b_6_8·b_1_17 + b_4_5·b_1_16·b_3_4
+ b_4_5·b_6_8·b_1_13 + b_4_52·b_5_5 + b_4_52·b_1_12·b_3_4 + b_4_52·b_1_12·b_3_2 + b_4_52·b_1_15 + b_4_52·a_5_2 + a_2_2·b_4_52·a_3_3 + c_8_13·b_1_12·b_3_2
- b_7_92 + b_6_8·b_1_13·b_5_5 + b_6_8·b_1_15·b_3_2 + b_6_8·b_1_18
+ b_4_5·b_1_15·b_5_5 + b_4_5·b_1_17·b_3_4 + b_4_5·b_1_17·b_3_2 + b_4_5·b_6_8·b_1_1·b_3_4 + b_4_5·b_6_8·b_1_14 + b_4_52·b_3_2·b_3_4 + b_4_52·b_1_1·b_5_5 + b_4_52·b_1_13·b_3_2 + a_2_2·b_4_53 + b_4_52·a_3_32 + c_8_13·b_1_13·b_3_4 + c_8_13·b_1_13·b_3_2 + b_4_5·c_8_13·b_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_13, a Duflot regular element of degree 8
- b_1_1·b_3_4 + b_1_1·b_3_2 + b_1_14 + b_4_5, an element of degree 4
- b_3_2, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_4_5 → 0, an element of degree 4
- a_5_2 → 0, an element of degree 5
- b_5_5 → 0, an element of degree 5
- b_6_8 → 0, an element of degree 6
- b_7_9 → 0, an element of degree 7
- c_8_13 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_4 → c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- b_4_5 → c_1_24 + c_1_13·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_12, an element of degree 4
- a_5_2 → 0, an element of degree 5
- b_5_5 → c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_8 → c_1_26 + c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23 + c_1_02·c_1_14
+ c_1_04·c_1_12, an element of degree 6
- b_7_9 → c_1_15·c_1_22 + c_1_16·c_1_2 + c_1_0·c_1_14·c_1_22 + c_1_0·c_1_15·c_1_2
+ c_1_02·c_1_15 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_04·c_1_13, an element of degree 7
- c_8_13 → c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22
+ c_1_0·c_1_17 + c_1_02·c_1_16 + c_1_03·c_1_15 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_05·c_1_13 + c_1_06·c_1_12 + c_1_08, an element of degree 8
|