Cohomology of group number 36 of order 64

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64


General information on the group

  • The group has 2 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 1.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 1.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t5  −  t4  +  t2  −  t  +  1)

    (t  −  1)3 · (t2  +  1) · (t4  +  1)
  • The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Ring generators

The cohomology ring has 13 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. b_1_1, an element of degree 1
  3. a_2_1, a nilpotent element of degree 2
  4. a_2_2, a nilpotent element of degree 2
  5. a_3_3, a nilpotent element of degree 3
  6. b_3_2, an element of degree 3
  7. b_3_4, an element of degree 3
  8. b_4_5, an element of degree 4
  9. a_5_2, a nilpotent element of degree 5
  10. b_5_5, an element of degree 5
  11. b_6_8, an element of degree 6
  12. b_7_9, an element of degree 7
  13. c_8_13, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Ring relations

There are 51 minimal relations of maximal degree 14:

  1. a_1_02
  2. a_1_0·b_1_1
  3. a_2_1·a_1_0
  4. a_2_1·b_1_1 + a_2_2·a_1_0
  5. a_2_2·b_1_1 + a_2_1·b_1_1
  6. a_2_22 + a_2_1·a_2_2 + a_2_12
  7. a_1_0·a_3_3 + a_2_12
  8. b_1_1·a_3_3 + a_2_22 + a_2_12
  9. a_1_0·b_3_2
  10. a_1_0·b_3_4 + a_2_22
  11. a_2_1·a_3_3
  12. a_2_2·b_3_2
  13. a_2_1·b_3_2
  14. a_2_2·b_3_4
  15. a_2_1·b_3_4 + a_2_2·a_3_3
  16. b_4_5·a_1_0
  17. a_3_3·b_3_2
  18. a_3_3·b_3_4 + a_2_2·b_4_5 + a_3_32
  19. a_2_1·b_4_5 + a_3_32
  20. b_3_22 + b_1_13·b_3_4 + b_1_13·b_3_2 + b_4_5·b_1_12
  21. a_1_0·a_5_2
  22. b_1_1·a_5_2
  23. a_1_0·b_5_5
  24. b_3_42 + b_1_1·b_5_5 + a_3_3·b_3_4 + a_3_32
  25. a_2_1·a_5_2
  26. a_2_2·b_5_5
  27. a_2_1·b_5_5 + a_2_2·a_5_2
  28. b_6_8·a_1_0
  29. b_1_1·b_3_2·b_3_4 + b_1_12·b_5_5 + b_1_14·b_3_4 + b_1_14·b_3_2 + b_6_8·b_1_1
       + b_4_5·b_3_2 + b_4_5·b_1_13 + a_2_2·a_5_2
  30. b_3_2·a_5_2
  31. b_3_4·a_5_2 + a_3_3·b_5_5
  32. b_3_4·a_5_2 + a_2_2·b_6_8 + a_3_3·a_5_2
  33. a_2_1·b_6_8 + a_3_3·a_5_2
  34. a_1_0·b_7_9
  35. b_3_2·b_5_5 + b_1_1·b_7_9 + b_1_15·b_3_4 + b_6_8·b_1_12 + b_4_5·b_1_1·b_3_2
       + b_4_5·b_1_14
  36. b_6_8·a_3_3 + b_4_5·a_5_2 + a_2_2·b_4_5·a_3_3
  37. a_2_2·b_7_9 + a_2_2·b_4_5·a_3_3
  38. a_2_1·b_7_9 + a_2_2·b_4_5·a_3_3
  39. b_1_12·b_7_9 + b_1_14·b_5_5 + b_1_16·b_3_2 + b_6_8·b_3_2 + b_6_8·b_1_13
       + b_4_5·b_1_12·b_3_2 + b_4_52·b_1_1 + a_2_2·b_4_5·a_3_3
  40. a_5_22 + b_4_5·a_3_32
  41. a_5_2·b_5_5 + a_2_2·b_4_52 + b_4_5·a_3_32
  42. a_3_3·b_7_9 + a_2_2·b_4_52
  43. b_3_2·b_7_9 + b_1_15·b_5_5 + b_6_8·b_1_1·b_3_4 + b_6_8·b_1_1·b_3_2 + b_4_5·b_3_2·b_3_4
       + b_4_5·b_1_1·b_5_5 + b_4_52·b_1_12
  44. b_5_52 + b_1_15·b_5_5 + b_1_17·b_3_4 + b_1_17·b_3_2 + b_6_8·b_1_1·b_3_2
       + b_6_8·b_1_14 + b_4_5·b_1_1·b_5_5 + b_4_5·b_1_13·b_3_4 + b_4_5·b_1_13·b_3_2
       + b_4_52·b_1_12 + a_2_2·b_4_52 + c_8_13·b_1_12
  45. b_6_8·a_5_2 + b_4_52·a_3_3 + a_2_2·b_4_5·a_5_2
  46. b_1_1·b_3_4·b_7_9 + b_6_8·b_5_5 + b_6_8·b_1_12·b_3_2 + b_4_5·b_7_9 + b_4_5·b_1_17
       + b_4_5·b_6_8·b_1_1 + b_4_52·b_3_2 + b_4_52·a_3_3 + c_8_13·b_1_13
       + a_2_2·c_8_13·a_1_0
  47. a_5_2·b_7_9 + a_2_2·b_4_5·b_6_8
  48. b_5_5·b_7_9 + b_1_17·b_5_5 + b_6_8·b_3_2·b_3_4 + b_4_5·b_1_1·b_7_9
       + b_4_5·b_1_13·b_5_5 + b_4_5·b_1_15·b_3_4 + b_4_5·b_1_15·b_3_2 + b_4_5·b_1_18
       + b_4_52·b_1_1·b_3_4 + b_4_5·a_3_3·a_5_2 + c_8_13·b_1_1·b_3_2 + c_8_13·b_1_14
  49. b_6_8·b_3_2·b_3_4 + b_6_8·b_1_1·b_5_5 + b_6_8·b_1_13·b_3_4 + b_6_8·b_1_13·b_3_2
       + b_6_82 + b_4_5·b_1_1·b_7_9 + b_4_5·b_1_13·b_5_5 + b_4_5·b_1_15·b_3_2
       + b_4_52·b_1_1·b_3_2 + b_4_53 + b_4_5·a_3_3·a_5_2 + a_2_12·c_8_13
  50. b_1_18·b_5_5 + b_6_8·b_7_9 + b_6_8·b_1_14·b_3_2 + b_6_8·b_1_17 + b_4_5·b_1_16·b_3_4
       + b_4_5·b_6_8·b_1_13 + b_4_52·b_5_5 + b_4_52·b_1_12·b_3_4 + b_4_52·b_1_12·b_3_2
       + b_4_52·b_1_15 + b_4_52·a_5_2 + a_2_2·b_4_52·a_3_3 + c_8_13·b_1_12·b_3_2
  51. b_7_92 + b_6_8·b_1_13·b_5_5 + b_6_8·b_1_15·b_3_2 + b_6_8·b_1_18
       + b_4_5·b_1_15·b_5_5 + b_4_5·b_1_17·b_3_4 + b_4_5·b_1_17·b_3_2
       + b_4_5·b_6_8·b_1_1·b_3_4 + b_4_5·b_6_8·b_1_14 + b_4_52·b_3_2·b_3_4
       + b_4_52·b_1_1·b_5_5 + b_4_52·b_1_13·b_3_2 + a_2_2·b_4_53 + b_4_52·a_3_32
       + c_8_13·b_1_13·b_3_4 + c_8_13·b_1_13·b_3_2 + b_4_5·c_8_13·b_1_12


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 14.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_13, a Duflot regular element of degree 8
    2. b_1_1·b_3_4 + b_1_1·b_3_2 + b_1_14 + b_4_5, an element of degree 4
    3. b_3_2, an element of degree 3
  • The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 12].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. a_2_20, an element of degree 2
  5. a_3_30, an element of degree 3
  6. b_3_20, an element of degree 3
  7. b_3_40, an element of degree 3
  8. b_4_50, an element of degree 4
  9. a_5_20, an element of degree 5
  10. b_5_50, an element of degree 5
  11. b_6_80, an element of degree 6
  12. b_7_90, an element of degree 7
  13. c_8_13c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. b_1_1c_1_1, an element of degree 1
  3. a_2_10, an element of degree 2
  4. a_2_20, an element of degree 2
  5. a_3_30, an element of degree 3
  6. b_3_2c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  7. b_3_4c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
  8. b_4_5c_1_24 + c_1_13·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_12, an element of degree 4
  9. a_5_20, an element of degree 5
  10. b_5_5c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  11. b_6_8c_1_26 + c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23 + c_1_02·c_1_14
       + c_1_04·c_1_12, an element of degree 6
  12. b_7_9c_1_15·c_1_22 + c_1_16·c_1_2 + c_1_0·c_1_14·c_1_22 + c_1_0·c_1_15·c_1_2
       + c_1_02·c_1_15 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_04·c_1_13, an element of degree 7
  13. c_8_13c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22
       + c_1_0·c_1_17 + c_1_02·c_1_16 + c_1_03·c_1_15 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_05·c_1_13 + c_1_06·c_1_12 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 64




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009