Show tools for a specific language:
- Show all
- .NET
- C#
- C/C++
- Delphi
- F#
- Fortran 77/90
- Fortran2003
- Fortran2008
- Fortran2018
- Fortran77
- Fortran95
- FortranCalculus
- Haskell
- Interpreted
- Java
- Julia
- Kotlin
- LLVM
- Language independent
- Lua
- MATLAB
- OpenCL
- Python
- R
Alphabetical List of Tools
- ADiJaC (Java)
ADiJaC uses source code transformation to generate derivative codes in both the forward and the reverse modes of automatic differentiation.
- COJAC (Java)
COJAC uses bytecode instrumentation to automatically enrich floats/doubles at runtime; the prototype offers both forward and reverse mode AD. The idea is presented in this short video: https://youtu.be/eAy71M34U_I?list=PLHLKWUtT0B7kNos1e48vKhFlGAXR1AAkF
- finmath-lib automatic differentiation extensions (Java)
Implementation of a stochastic automatic differentiation (AD / AAD for Monte-Carlo Simulations).