Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of AlternatingGroup(10), a group of order 1814400
General information on the group
- AlternatingGroup(10) is a group of order 1814400.
- The group order factors as 27 · 34 · 52 · 7.
- The group is defined by Group([(1,2,3,4,5,6,7,8,9),(8,9,10)]).
- It is non-abelian.
- It has 3-Rank 3.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
Structure of the cohomology ring
The computation was based on 5 stability conditions for H*(SmallGroup(162,19); GF(3)).
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·(1 − 2·t + 2·t2 − t3 + 2·t4 − 4·t5 + 3·t6 + 2·t8 − 4·t9 + 2·t10 − t11 + 2·t12 − 2·t13 + t14) |
| ( − 1 + t)3 · (1 + t + t2) · (1 + t2)2 · (1 − t2 + t4) · (1 + t4) |
- The a-invariants are -∞,-∞,-9,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 18:
- a_3_1, a nilpotent element of degree 3
- a_3_0, a nilpotent element of degree 3
- a_4_1, a nilpotent element of degree 4
- b_4_0, an element of degree 4
- a_7_1, a nilpotent element of degree 7
- a_7_0, a nilpotent element of degree 7
- a_8_3, a nilpotent element of degree 8
- b_8_1, an element of degree 8
- b_8_0, an element of degree 8
- a_9_0, a nilpotent element of degree 9
- a_11_0, a nilpotent element of degree 11
- a_12_3, a nilpotent element of degree 12
- c_12_0, a Duflot element of degree 12
- a_13_0, a nilpotent element of degree 13
- a_17_3, a nilpotent element of degree 17
- b_18_0, an element of degree 18
Ring relations
There are 8 "obvious" relations:
a_3_02, a_3_12, a_7_02, a_7_12, a_9_02, a_11_02, a_13_02, a_17_32
Apart from that, there are 80 minimal relations of maximal degree 36:
- a_3_0·a_3_1
- a_4_1·a_3_1
- b_4_0·a_3_1 − a_4_1·a_3_0
- a_4_12
- a_3_0·a_7_0
- a_3_1·a_7_1
- a_4_1·a_7_0
- a_8_3·a_3_0 − a_4_1·a_7_1 + a_4_1·b_4_0·a_3_0
- a_8_3·a_3_1
- b_4_0·a_7_0
- b_8_0·a_3_0
- b_8_1·a_3_1 − a_4_1·a_7_1
- a_4_1·a_8_3
- a_3_1·a_9_0
- a_4_1·b_8_0
- b_4_0·a_8_3 − a_4_1·b_8_1 + a_4_1·b_4_02 − a_3_0·a_9_0
- b_4_0·b_8_0
- a_4_1·a_9_0
- a_3_1·a_11_0
- a_7_0·a_7_1
- a_4_1·a_11_0
- a_8_3·a_7_0
- a_8_3·a_7_1
- a_12_3·a_3_0 + a_4_1·b_4_0·a_7_1 − a_4_1·b_4_02·a_3_0
- a_12_3·a_3_1
- b_8_0·a_7_1
- b_8_1·a_7_0
- a_4_1·a_12_3
- a_8_32
- a_3_1·a_13_0
- a_7_0·a_9_0
- b_4_0·a_12_3 + a_4_1·b_4_0·b_8_1 − a_4_1·b_4_03 − a_3_0·a_13_0
- a_8_3·b_8_0
- a_8_3·b_8_1 − a_7_1·a_9_0
- b_8_0·b_8_1
- a_4_1·a_13_0
- a_8_3·a_9_0
- b_8_0·a_9_0
- a_7_0·a_11_0
- a_8_3·a_11_0 − a_4_1·c_12_0·a_3_0
- a_12_3·a_7_0
- a_12_3·a_7_1 + a_3_0·a_7_1·a_9_0 − a_4_1·c_12_0·a_3_0
- b_8_0·a_11_0
- a_8_3·a_12_3
- a_3_1·a_17_3
- a_7_0·a_13_0
- a_7_1·a_13_0 − a_3_0·a_17_3 + b_8_1·a_3_0·a_9_0 − b_4_0·a_3_0·a_13_0
+ a_4_1·b_4_0·c_12_0
- a_9_0·a_11_0 − a_4_1·b_4_0·c_12_0
- b_8_0·a_12_3
- b_8_1·a_12_3 − a_3_0·a_17_3 + b_4_0·a_7_1·a_9_0 − b_4_0·a_3_0·a_13_0
- a_4_1·a_17_3 + a_3_0·a_7_1·a_11_0
- a_8_3·a_13_0 − a_3_0·a_7_1·a_11_0
- a_12_3·a_9_0 + a_3_0·a_7_1·a_11_0
- b_8_0·a_13_0
- b_18_0·a_3_0 + b_8_1·a_13_0 − b_4_0·a_17_3 + b_4_0·b_8_1·a_9_0 − b_4_02·a_13_0
- b_18_0·a_3_1 + a_3_0·a_7_1·a_11_0
- a_9_0·a_13_0 + b_8_1·a_3_0·a_11_0 − b_4_0·a_7_1·a_11_0
- a_4_1·b_18_0 − b_8_1·a_3_0·a_11_0 + b_4_0·a_7_1·a_11_0
- a_12_3·a_11_0 − a_4_1·c_12_0·a_7_1
- a_12_32
- a_7_0·a_17_3
- a_7_1·a_17_3 − b_8_1·a_7_1·a_9_0 + a_4_1·b_8_1·c_12_0 − a_4_1·b_4_02·c_12_0
+ c_12_0·a_3_0·a_9_0
- a_11_0·a_13_0 + a_4_1·b_8_1·c_12_0
- a_8_3·a_17_3
- a_12_3·a_13_0
- b_8_0·a_17_3
- b_18_0·a_7_0
- b_18_0·a_7_1 − b_8_1·a_17_3 + b_8_12·a_9_0 − b_4_0·c_12_0·a_9_0
- a_9_0·a_17_3 − b_8_1·a_7_1·a_11_0 + b_4_02·a_7_1·a_11_0 − b_4_0·c_12_0·a_3_0·a_7_1
- a_8_3·b_18_0 + b_8_1·a_7_1·a_11_0 − b_4_02·a_7_1·a_11_0 + b_4_0·c_12_0·a_3_0·a_7_1
- b_8_0·b_18_0
- b_18_0·a_9_0 + b_8_12·a_11_0 − b_4_02·b_8_1·a_11_0 − b_4_0·b_8_1·c_12_0·a_3_0
+ b_4_02·c_12_0·a_7_1
- a_11_0·a_17_3 + a_4_1·b_4_0·b_8_1·c_12_0 + c_12_0·a_7_1·a_9_0 − c_12_0·a_3_0·a_13_0
- a_12_3·a_17_3 + b_4_02·a_3_0·a_7_1·a_11_0
- b_18_0·a_11_0 − b_8_1·c_12_0·a_9_0 + b_4_0·c_12_0·a_13_0
- a_13_0·a_17_3 − b_8_12·a_3_0·a_11_0 + b_4_0·b_8_1·a_7_1·a_11_0
− b_8_1·c_12_0·a_3_0·a_7_1 + b_4_0·c_12_0·a_3_0·a_11_0
- a_12_3·b_18_0 + b_8_12·a_3_0·a_11_0 − b_4_0·b_8_1·a_7_1·a_11_0
− b_4_02·b_8_1·a_3_0·a_11_0 + b_4_03·a_7_1·a_11_0 + b_8_1·c_12_0·a_3_0·a_7_1 − b_4_0·c_12_0·a_3_0·a_11_0
- b_18_0·a_13_0 − b_8_12·c_12_0·a_3_0 + b_4_0·b_8_1·c_12_0·a_7_1
− b_4_02·c_12_0·a_11_0
- b_18_0·a_17_3 + b_8_13·a_11_0 − b_4_02·b_8_12·a_11_0 + b_8_12·c_12_0·a_7_1
− b_4_0·b_8_1·c_12_0·a_11_0 − b_4_0·b_8_12·c_12_0·a_3_0 + b_4_03·c_12_0·a_11_0 + b_4_02·c_12_02·a_3_0
- b_18_02 + b_8_13·c_12_0 − b_4_02·b_8_12·c_12_0 + b_4_03·c_12_02
Data used for the Hilbert-Poincaré test
- We proved completion in degree 36 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- b_4_03·b_8_13 + b_4_09 + b_8_13·c_12_0 + b_4_02·b_8_12·c_12_0
+ b_4_04·b_8_1·c_12_0 + c_12_03, an element of degree 36
- b_8_16 − b_8_06 − b_4_06·b_8_13 − b_4_0·b_8_14·c_12_0 + b_4_03·b_8_13·c_12_0
+ b_4_05·b_8_12·c_12_0 − b_4_07·b_8_1·c_12_0 + b_8_13·c_12_02 − b_4_02·b_8_12·c_12_02 − b_4_04·b_8_1·c_12_02 + b_4_06·c_12_02 + b_4_03·c_12_03, an element of degree 48
- b_8_1 − b_4_02, an element of degree 8
- A Duflot regular sequence is given by c_12_0.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 75, 89].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_4_03 + c_12_0, an element of degree 12
- b_8_0 + b_4_02, an element of degree 8
- b_8_1 − b_4_02, an element of degree 8
Restriction maps
- a_3_1 → a_3_1
- a_3_0 → a_3_2 + a_3_0
- a_4_1 → a_4_3
- b_4_0 → b_4_1 + b_4_0
- a_7_1 → a_7_9 + a_7_1 + b_4_0·a_3_0
- a_7_0 → a_7_10 + b_4_2·a_3_1
- a_8_3 → a_8_11 + a_3_0·a_5_1 − a_3_0·a_5_0
- b_8_1 → b_8_9 + b_4_02
- b_8_0 → b_8_10
- a_9_0 → a_9_6 + b_6_0·a_3_0 + b_4_0·a_5_1 − b_4_0·a_5_0
- a_11_0 → a_11_13
- a_12_3 → a_12_16 + a_3_0·a_9_6 − b_4_1·a_3_0·a_5_1 + b_4_0·a_3_2·a_5_1 − b_4_0·a_3_2·a_5_0
+ b_4_0·a_3_0·a_5_1
- c_12_0 → b_4_23 + c_12_20
- a_13_0 → a_13_10 + b_4_0·a_9_6
- a_17_3 → b_4_0·b_6_0·a_7_9 − b_4_0·b_4_1·a_9_6 − b_4_02·a_9_6 + b_4_02·b_6_0·a_3_0
+ b_4_03·a_5_1 − b_4_03·a_5_0 + c_12_20·a_5_1 − c_12_20·a_5_0
- b_18_0 → b_4_0·b_6_0·b_8_9 − b_6_0·c_12_20
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_1 → 0, an element of degree 3
- a_3_0 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_7_1 → 0, an element of degree 7
- a_7_0 → 0, an element of degree 7
- a_8_3 → 0, an element of degree 8
- b_8_1 → 0, an element of degree 8
- b_8_0 → 0, an element of degree 8
- a_9_0 → 0, an element of degree 9
- a_11_0 → 0, an element of degree 11
- a_12_3 → 0, an element of degree 12
- c_12_0 → c_2_06, an element of degree 12
- a_13_0 → 0, an element of degree 13
- a_17_3 → 0, an element of degree 17
- b_18_0 → 0, an element of degree 18
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_1 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_0 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_7_1 → 0, an element of degree 7
- a_7_0 → − c_2_23·a_1_0 + c_2_13·a_1_1, an element of degree 7
- a_8_3 → 0, an element of degree 8
- b_8_1 → 0, an element of degree 8
- b_8_0 → − c_2_1·c_2_23 + c_2_13·c_2_2, an element of degree 8
- a_9_0 → 0, an element of degree 9
- a_11_0 → 0, an element of degree 11
- a_12_3 → 0, an element of degree 12
- c_12_0 → c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_13_0 → 0, an element of degree 13
- a_17_3 → 0, an element of degree 17
- b_18_0 → 0, an element of degree 18
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- a_3_1 → − a_1_0·a_1_1·a_1_2, an element of degree 3
- a_3_0 → c_2_5·a_1_2 − c_2_5·a_1_1 + c_2_5·a_1_0 − c_2_4·a_1_2 − c_2_4·a_1_1 + c_2_3·a_1_2, an element of degree 3
- a_4_1 → − c_2_5·a_1_0·a_1_1 + c_2_4·a_1_0·a_1_2 − c_2_3·a_1_1·a_1_2, an element of degree 4
- b_4_0 → c_2_52 + c_2_4·c_2_5 − c_2_42 − c_2_3·c_2_5, an element of degree 4
- a_7_1 → − c_2_4·c_2_52·a_1_1 − c_2_4·c_2_52·a_1_0 − c_2_42·c_2_5·a_1_2 + c_2_42·c_2_5·a_1_0
+ c_2_43·a_1_2 + c_2_43·a_1_1 − c_2_3·c_2_52·a_1_1 + c_2_3·c_2_52·a_1_0 + c_2_3·c_2_4·c_2_5·a_1_2 − c_2_3·c_2_4·c_2_5·a_1_1 + c_2_3·c_2_42·a_1_2 + c_2_32·c_2_5·a_1_2 + c_2_33·a_1_2, an element of degree 7
- a_7_0 → 0, an element of degree 7
- a_8_3 → c_2_53·a_1_0·a_1_1 + c_2_4·c_2_52·a_1_0·a_1_2 − c_2_4·c_2_52·a_1_0·a_1_1
+ c_2_42·c_2_5·a_1_0·a_1_2 + c_2_42·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_52·a_1_1·a_1_2 + c_2_3·c_2_52·a_1_0·a_1_1 − c_2_3·c_2_4·c_2_5·a_1_1·a_1_2 − c_2_3·c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_42·a_1_1·a_1_2 + c_2_32·c_2_5·a_1_1·a_1_2 − c_2_33·a_1_1·a_1_2, an element of degree 8
- b_8_1 → c_2_42·c_2_52 + c_2_43·c_2_5 + c_2_44 − c_2_3·c_2_4·c_2_52 + c_2_3·c_2_42·c_2_5
− c_2_32·c_2_52 + c_2_33·c_2_5, an element of degree 8
- b_8_0 → 0, an element of degree 8
- a_9_0 → c_2_4·c_2_53·a_1_0 − c_2_43·c_2_5·a_1_0 − c_2_3·c_2_53·a_1_1 + c_2_3·c_2_43·a_1_2
+ c_2_33·c_2_5·a_1_1 − c_2_33·c_2_4·a_1_2, an element of degree 9
- a_11_0 → c_2_3·c_2_42·c_2_52·a_1_0 + c_2_3·c_2_43·c_2_5·a_1_0 + c_2_3·c_2_44·a_1_0
+ c_2_32·c_2_4·c_2_52·a_1_1 + c_2_32·c_2_42·c_2_5·a_1_2 − c_2_32·c_2_43·a_1_2 − c_2_32·c_2_43·a_1_1 + c_2_33·c_2_52·a_1_1 − c_2_33·c_2_52·a_1_0 − c_2_33·c_2_4·c_2_5·a_1_2 + c_2_33·c_2_4·c_2_5·a_1_1 + c_2_33·c_2_4·c_2_5·a_1_0 − c_2_33·c_2_42·a_1_2 − c_2_33·c_2_42·a_1_0 + c_2_34·c_2_5·a_1_2 + c_2_34·c_2_5·a_1_1 − c_2_34·c_2_5·a_1_0 + c_2_34·c_2_4·a_1_2 + c_2_34·c_2_4·a_1_1 + c_2_35·a_1_2, an element of degree 11
- a_12_3 → − c_2_55·a_1_0·a_1_1 + c_2_4·c_2_54·a_1_0·a_1_2 + c_2_4·c_2_54·a_1_0·a_1_1
− c_2_42·c_2_53·a_1_0·a_1_2 − c_2_42·c_2_53·a_1_0·a_1_1 + c_2_43·c_2_52·a_1_0·a_1_2 − c_2_3·c_2_54·a_1_1·a_1_2 − c_2_3·c_2_54·a_1_0·a_1_1 + c_2_3·c_2_4·c_2_53·a_1_1·a_1_2 + c_2_3·c_2_4·c_2_53·a_1_0·a_1_2 + c_2_3·c_2_4·c_2_53·a_1_0·a_1_1 + c_2_3·c_2_42·c_2_52·a_1_1·a_1_2 + c_2_3·c_2_42·c_2_52·a_1_0·a_1_2 + c_2_3·c_2_42·c_2_52·a_1_0·a_1_1 − c_2_3·c_2_43·c_2_5·a_1_1·a_1_2 − c_2_3·c_2_43·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_44·a_1_1·a_1_2 − c_2_3·c_2_44·a_1_0·a_1_2 − c_2_3·c_2_44·a_1_0·a_1_1 − c_2_32·c_2_53·a_1_1·a_1_2 + c_2_32·c_2_53·a_1_0·a_1_1 − c_2_32·c_2_4·c_2_52·a_1_1·a_1_2 + c_2_32·c_2_4·c_2_52·a_1_0·a_1_2 + c_2_32·c_2_42·c_2_5·a_1_1·a_1_2 + c_2_32·c_2_43·a_1_0·a_1_2 − c_2_33·c_2_52·a_1_0·a_1_1 + c_2_33·c_2_4·c_2_5·a_1_1·a_1_2 − c_2_33·c_2_4·c_2_5·a_1_0·a_1_1 − c_2_33·c_2_42·a_1_1·a_1_2 + c_2_33·c_2_42·a_1_0·a_1_2 + c_2_33·c_2_42·a_1_0·a_1_1 − c_2_34·c_2_5·a_1_1·a_1_2 + c_2_34·c_2_5·a_1_0·a_1_1 − c_2_34·c_2_4·a_1_0·a_1_2 − c_2_35·a_1_1·a_1_2, an element of degree 12
- c_12_0 → c_2_32·c_2_42·c_2_52 + c_2_32·c_2_43·c_2_5 + c_2_32·c_2_44
− c_2_33·c_2_4·c_2_52 + c_2_33·c_2_42·c_2_5 + c_2_34·c_2_52 − c_2_34·c_2_4·c_2_5 + c_2_34·c_2_42 − c_2_35·c_2_5 + c_2_36, an element of degree 12
- a_13_0 → c_2_3·c_2_42·c_2_53·a_1_1 + c_2_3·c_2_42·c_2_53·a_1_0
− c_2_3·c_2_43·c_2_52·a_1_2 + c_2_3·c_2_43·c_2_52·a_1_1 − c_2_3·c_2_43·c_2_52·a_1_0 − c_2_3·c_2_44·c_2_5·a_1_2 + c_2_3·c_2_44·c_2_5·a_1_1 − c_2_3·c_2_44·c_2_5·a_1_0 − c_2_3·c_2_45·a_1_2 + c_2_3·c_2_45·a_1_0 − c_2_32·c_2_4·c_2_53·a_1_1 + c_2_32·c_2_4·c_2_53·a_1_0 + c_2_32·c_2_43·c_2_5·a_1_2 − c_2_32·c_2_43·c_2_5·a_1_1 − c_2_32·c_2_43·c_2_5·a_1_0 − c_2_32·c_2_44·a_1_2 − c_2_32·c_2_44·a_1_1 + c_2_33·c_2_53·a_1_1 + c_2_33·c_2_4·c_2_52·a_1_2 − c_2_33·c_2_4·c_2_52·a_1_1 + c_2_33·c_2_4·c_2_52·a_1_0 + c_2_33·c_2_42·c_2_5·a_1_2 + c_2_33·c_2_42·c_2_5·a_1_1 − c_2_33·c_2_43·a_1_0 − c_2_34·c_2_4·c_2_5·a_1_2 − c_2_34·c_2_4·c_2_5·a_1_1 + c_2_34·c_2_42·a_1_2 + c_2_34·c_2_42·a_1_1 − c_2_35·c_2_5·a_1_1 + c_2_35·c_2_4·a_1_2, an element of degree 13
- a_17_3 → c_2_43·c_2_55·a_1_0 + c_2_44·c_2_54·a_1_0 − c_2_46·c_2_52·a_1_0
− c_2_47·c_2_5·a_1_0 + c_2_3·c_2_42·c_2_55·a_1_1 + c_2_3·c_2_42·c_2_55·a_1_0 − c_2_3·c_2_43·c_2_54·a_1_2 − c_2_3·c_2_43·c_2_54·a_1_1 − c_2_3·c_2_43·c_2_54·a_1_0 + c_2_3·c_2_44·c_2_53·a_1_2 + c_2_3·c_2_44·c_2_53·a_1_1 − c_2_3·c_2_44·c_2_53·a_1_0 − c_2_3·c_2_45·c_2_52·a_1_2 + c_2_3·c_2_45·c_2_52·a_1_0 − c_2_3·c_2_46·c_2_5·a_1_1 + c_2_3·c_2_47·a_1_2 − c_2_32·c_2_4·c_2_55·a_1_1 + c_2_32·c_2_4·c_2_55·a_1_0 + c_2_32·c_2_42·c_2_54·a_1_1 − c_2_32·c_2_43·c_2_53·a_1_2 − c_2_32·c_2_43·c_2_53·a_1_1 − c_2_32·c_2_43·c_2_53·a_1_0 + c_2_32·c_2_44·c_2_52·a_1_2 − c_2_32·c_2_45·c_2_5·a_1_2 + c_2_32·c_2_46·a_1_2 + c_2_32·c_2_46·a_1_1 + c_2_33·c_2_4·c_2_54·a_1_2 − c_2_33·c_2_42·c_2_53·a_1_2 + c_2_33·c_2_42·c_2_53·a_1_1 − c_2_33·c_2_43·c_2_52·a_1_2 + c_2_33·c_2_43·c_2_52·a_1_1 + c_2_33·c_2_44·c_2_5·a_1_1 + c_2_33·c_2_45·a_1_2 + c_2_34·c_2_4·c_2_53·a_1_2 − c_2_34·c_2_4·c_2_53·a_1_1 − c_2_34·c_2_42·c_2_52·a_1_2 − c_2_34·c_2_42·c_2_52·a_1_1 − c_2_34·c_2_43·c_2_5·a_1_2 + c_2_34·c_2_43·c_2_5·a_1_1 + c_2_34·c_2_44·a_1_2 + c_2_34·c_2_44·a_1_1 − c_2_35·c_2_53·a_1_1 − c_2_35·c_2_4·c_2_52·a_1_2 − c_2_35·c_2_43·a_1_2 − c_2_36·c_2_4·c_2_5·a_1_2 − c_2_36·c_2_4·c_2_5·a_1_1 + c_2_36·c_2_42·a_1_2 + c_2_36·c_2_42·a_1_1 + c_2_37·c_2_5·a_1_1 − c_2_37·c_2_4·a_1_2, an element of degree 17
- b_18_0 → c_2_3·c_2_43·c_2_55 + c_2_3·c_2_44·c_2_54 − c_2_3·c_2_46·c_2_52
− c_2_3·c_2_47·c_2_5 − c_2_32·c_2_43·c_2_54 − c_2_32·c_2_44·c_2_53 + c_2_32·c_2_46·c_2_5 + c_2_32·c_2_47 − c_2_33·c_2_4·c_2_55 − c_2_33·c_2_42·c_2_54 − c_2_33·c_2_43·c_2_53 + c_2_33·c_2_44·c_2_52 − c_2_33·c_2_45·c_2_5 + c_2_34·c_2_4·c_2_54 + c_2_34·c_2_42·c_2_53 + c_2_34·c_2_43·c_2_52 − c_2_34·c_2_44·c_2_5 + c_2_34·c_2_45 + c_2_35·c_2_4·c_2_53 − c_2_35·c_2_43·c_2_5 − c_2_36·c_2_4·c_2_52 + c_2_36·c_2_43, an element of degree 18
|