Mod-3-Cohomology of J3, a group of order 50232960

About the group Ring generators Ring relations Completion information Restriction maps


General information on the group

  • J3, the third Janko group, is a group of order 50232960.
  • The group order factors as 27 · 35 · 5 · 17 · 19.
  • The group is defined by Group([(1,2787)(2,2486)(3,3616)(4,3977)(5,2766)(6,3954)(7,1919)(8,2905)(9,4774)(10,1830)(11,5026)(12,1616)(13,4348)(14,4786)(15,4610)(16,264)(17,446)(18,2767)(19,5058)(20,1813)(21,4395)(22,3190)(23,5027)(24,1220)(25,3195)(26,2542)(27,3740)(28,2103)(29,5666)(30,2838)(31,1152)(32,3891)(33,4962)(34,540)(35,1446)(36,1008)(37,3401)(38,3148)(39,5773)(40,5904)(41,2264)(42,2265)(43,1718)(44,3370)(45,263)(46,2562)(47,3198)(48,1890)(49,937)(50,2543)(51,2934)(52,2935)(53,1057)(54,5994)(55,1140)(56,2839)(57,3903)(58,435)(59,732)(60,605)(61,995)(62,3204)(63,894)(64,1219)(65,1447)(66,2143)(67,1256)(68,597)(69,1848)(70,3250)(71,950)(72,1529)(73,1053)(74,1339)(75,4674)(76,2697)(77,3875)(78,1777)(79,1719)(80,703)(81,1829)(82,3890)(83,1821)(84,2774)(85,4028)(86,4029)(87,4405)(88,2299)(89,3402)(90,938)(91,3682)(92,613)(93,3938)(94,4975)(95,4125)(96,1058)(97,2112)(98,4919)(99,4956)(100,2967)(101,1823)(102,2682)(103,3961)(104,5864)(105,6138)(106,3678)(107,3398)(108,1199)(109,2932)(110,2364)(111,1600)(112,1726)(113,576)(114,1451)(115,1666)(116,3132)(117,1685)(118,2257)(119,2365)(120,1940)(121,967)(122,3910)(123,2857)(124,598)(125,1007)(126,2760)(127,828)(128,1350)(129,3805)(130,2895)(131,1990)(132,1143)(133,1144)(134,640)(135,4675)(136,696)(137,5512)(138,3953)(139,872)(140,2721)(141,2636)(142,434)(143,6043)(144,5909)(145,899)(146,604)(147,2494)(148,1629)(149,911)(150,912)(151,3960)(152,2799)(153,3991)(154,5132)(155,4861)(156,955)(157,3285)(158,4482)(159,4584)(160,1512)(161,1372)(162,2566)(163,1592)(164,3637)(165,4797)(166,3483)(167,3484)(168,4724)(169,5204)(170,2185)(171,1690)(172,575)(173,3670)(174,4829)(175,3753)(176,1074)(177,1108)(178,4211)(179,2564)(180,895)(181,1394)(182,1763)(183,4411)(184,4746)(185,5979)(186,2876)(187,2877)(188,1845)(189,1889)(190,418)(191,3551)(192,3552)(193,1508)(194,3413)(195,1727)(196,1092)(197,1739)(198,2262)(199,3278)(200,4525)(201,5219)(202,5220)(203,821)(204,1535)(205,1478)(206,1269)(207,1750)(208,858)(209,968)(210,5543)(211,5540)(212,2100)(213,804)(214,363)(215,472)(216,2752)(217,4108)(218,2393)(219,2447)(220,2448)(221,2110)(222,5458)(223,4940)(224,1526)(225,2992)(226,1351)(227,4709)(228,4780)(229,293)(230,3807)(231,5605)(232,1970)(233,1804)(234,1805)(235,1550)(236,2398)(237,2370)(238,873)(239,2674)(240,3846)(241,3799)(242,3677)(243,4380)(244,2668)(245,1169)(246,1852)(247,5829)(248,417)(249,1939)(250,1365)(251,653)(252,1630)(253,2345)(254,2346)(255,3784)(256,1217)(257,1134)(258,1802)(259,5103)(260,1039)(261,4862)(262,3767)(265,3895)(266,3509)(267,3407)(268,5547)(269,2348)(270,1245)(271,893)(272,1450)(273,2567)(274,3909)(275,1290)(276,2020)(277,2171)(278,3232)(279,5227)(280,6098)(281,5606)(282,2459)(283,4725)(284,1809)(285,5330)(286,827)(287,5853)(288,5987)(289,2593)(290,2641)(291,2074)(292,2039)(294,386)(295,5624)(296,2111)(297,2263)(298,5705)(299,6103)(300,1109)(301,3867)(302,3742)(303,1324)(304,896)(305,517)(306,669)(307,751)(308,345)(309,5193)(310,5194)(311,5166)(312,1781)(313,3985)(314,3986)(315,4069)(316,908)(317,936)(318,2865)(319,5659)(320,648)(321,595)(322,1301)(323,2037)(324,4720)(325,730)(326,2493)(327,5351)(328,3702)(329,2648)(330,1532)(331,5907)(332,4682)(333,2667)(334,2342)(335,2798)(336,2178)(337,3244)(338,4526)(339,3513)(340,4696)(341,378)(342,578)(343,745)(344,2210)(346,521)(347,6114)(348,5390)(349,5128)(350,5129)(351,397)(352,1558)(353,1025)(354,4582)(355,4583)(356,3992)(357,2101)(358,1591)(359,1311)(360,3636)(361,3745)(362,2106)(364,5173)(365,2726)(366,1424)(367,5025)(368,2394)(369,2172)(370,3233)(371,3574)(372,3094)(373,1400)(374,4181)(375,4182)(376,4941)(377,1527)(379,4191)(380,3349)(381,5964)(382,5307)(383,1456)(384,700)(385,3024)(387,1073)(388,5379)(389,5984)(390,5428)(391,4518)(392,4658)(393,5147)(394,2737)(395,3877)(396,2755)(398,591)(399,1212)(400,1106)(401,1331)(402,3203)(403,4863)(404,4864)(405,4984)(406,2720)(407,4171)(408,845)(409,660)(410,2349)(411,1200)(412,1388)(413,3809)(414,3810)(415,2819)(416,4528)(419,5229)(420,5949)(421,4806)(422,534)(423,884)(424,654)(425,1142)(426,2308)(427,4110)(428,4953)(429,3319)(430,2127)(431,666)(432,2985)(433,1950)(436,2750)(437,5848)(438,2205)(441,4200)(442,4697)(443,3862)(444,5082)(445,5083)(447,3748)(448,4458)(449,3510)(450,1853)(451,913)(452,5541)(453,2460)(454,2289)(455,1194)(456,4994)(457,4995)(458,1596)(459,1597)(460,2261)(461,2968)(462,4831)(463,1052)(464,1684)(465,4046)(466,4021)(467,3031)(468,3710)(469,4281)(470,4434)(471,5228)(473,3084)(474,3085)(475,1268)(476,2579)(477,3858)(478,820)(479,1335)(480,5697)(481,4176)(482,3696)(483,2651)(484,3524)(485,1941)(486,6149)(487,3100)(488,4451)(489,1621)(490,2495)(491,5693)(492,5929)(493,1021)(494,4730)(495,2969)(496,651)(497,5371)(498,829)(499,1061)(500,4708)(501,2104)(502,2105)(503,1999)(504,3001)(505,5990)(506,1766)(507,2643)(508,4132)(509,4695)(510,3743)(511,1107)(512,1255)(513,779)(514,3331)(515,3023)(516,4218)(518,964)(519,4130)(520,2409)(522,848)(523,900)(524,5906)(525,3474)(526,2673)(527,2303)(528,2430)(529,3970)(530,2669)(531,3251)(532,4113)(533,3927)(535,4379)(536,2431)(537,1736)(538,1911)(539,714)(541,1832)(542,2791)(543,596)(544,2884)(545,2655)(546,3055)(547,5230)(548,1236)(549,731)(550,1765)(551,1932)(552,963)(553,5899)(554,6034)(555,3703)(556,3412)(557,4062)(558,4063)(559,3221)(560,1035)(561,1660)(562,3838)(563,3837)(564,935)(565,1195)(566,693)(569,2151)(570,2152)(571,4239)(572,5509)(573,672)(574,3766)(577,3014)(579,2714)(580,4744)(581,4987)(582,1812)(583,2764)(584,863)(585,2184)(586,1100)(587,3761)(588,3188)(589,4394)(590,5862)(592,761)(593,2406)(594,892)(599,3945)(600,2285)(601,3399)(602,2272)(603,791)(606,2053)(607,2170)(608,5886)(609,5887)(610,3365)(611,4548)(612,2107)(614,5686)(615,5823)(616,6132)(617,686)(618,2988)(619,1595)(620,3508)(621,1808)(622,6077)(623,6078)(624,4435)(625,4739)(626,1693)(627,4301)(628,5709)(629,1293)(630,2026)(631,4173)(632,3128)(633,2926)(634,5232)(635,1906)(636,1567)(637,2287)(638,1981)(639,987)(641,1866)(642,1867)(643,2734)(644,3917)(645,5308)(646,4044)(647,4045)(649,3025)(650,2758)(652,5704)(655,5778)(656,4409)(657,6111)(658,3806)(659,2691)(661,690)(662,5325)(663,5283)(664,5870)(665,930)(667,2722)(668,3941)(670,1912)(671,972)(673,1547)(674,983)(675,1582)(676,864)(677,4684)(678,2282)(679,3381)(680,4413)(681,5435)(682,4099)(683,1120)(684,1419)(685,3211)(687,1015)(688,2428)(689,2429)(691,4119)(692,5198)(694,1378)(695,1888)(697,4960)(698,4779)(699,4529)(701,3844)(702,3845)(704,1300)(705,4436)(706,5865)(707,5788)(708,3044)(709,3170)(710,1706)(711,1434)(712,1075)(713,3946)(715,5378)(716,5298)(717,3641)(718,4449)(719,2684)(720,3197)(721,1797)(722,1531)(723,2128)(724,6083)(725,4731)(726,5632)(727,4475)(728,2710)(729,971)(733,3936)(734,3481)(735,5727)(736,2177)(737,4521)(738,4993)(739,4897)(740,5559)(742,5683)(743,4243)(744,5840)(746,6007)(747,5333)(748,4459)(749,1418)(750,914)(752,3045)(753,6086)(754,3974)(755,4722)(756,1160)(757,5648)(758,5032)(759,4001)(760,1247)(762,5794)(763,2930)(764,2683)(765,2458)(766,3354)(767,1024)(768,1581)(769,3119)(770,4319)(771,5322)(772,5925)(773,2586)(774,1019)(775,1634)(776,2309)(777,4226)(778,2209)(780,852)(781,5287)(782,5447)(783,3730)(784,5920)(785,4979)(786,4043)(787,5009)(788,5452)(789,3850)(790,4292)(792,4051)(793,5661)(794,5662)(795,3859)(796,5024)(797,5346)(798,5974)(799,2092)(800,4266)(801,1391)(802,5112)(803,5113)(805,2652)(806,4664)(807,2909)(808,1942)(809,5713)(810,861)(811,1665)(812,5028)(813,3107)(814,4163)(815,823)(816,3624)(817,2440)(818,3562)(819,4754)(822,2970)(824,3348)(825,5372)(826,5963)(830,2782)(831,4854)(832,4240)(833,3772)(834,4922)(835,3139)(836,5233)(837,3932)(838,5689)(839,2136)(840,2702)(841,4344)(842,4740)(843,2981)(844,881)(846,2941)(847,3333)(849,4657)(850,4625)(851,5568)(853,1793)(854,1176)(855,2679)(856,3853)(857,5278)(859,5464)(860,5465)(862,1238)(865,2960)(866,4156)(867,901)(868,5678)(869,2149)(870,1908)(871,4566)(874,1542)(875,4201)(876,4655)(877,2670)(878,1755)(879,4939)(880,4114)(882,1491)(883,2207)(885,4066)(886,2625)(887,3185)(888,5275)(889,3617)(890,1737)(891,2993)(897,3230)(898,981)(902,2656)(903,4254)(904,5231)(905,6025)(906,1403)(907,1198)(909,4810)(910,3183)(915,1226)(916,5037)(917,2410)(918,1487)(919,1860)(920,4109)(921,5477)(922,5866)(923,2598)(924,2599)(925,3222)(926,3006)(927,3007)(928,2553)(929,3839)(931,4978)(932,1983)(933,1125)(934,1786)(939,1779)(940,2718)(942,5245)(943,4166)(944,3208)(945,2989)(946,1413)(947,4131)(948,4846)(949,4847)(951,5869)(952,2575)(953,2576)(954,4212)(956,2597)(957,1810)(958,1811)(959,4988)(960,4970)(961,4971)(962,3951)(965,3762)(966,2290)(969,5420)(970,5406)(973,4492)(974,4619)(975,5565)(976,3523)(977,2813)(978,2094)(979,2095)(980,4819)(982,1404)(984,2323)(985,4830)(986,1157)(988,2943)(989,4135)(990,3367)(991,2852)(992,1420)(993,6008)(994,6124)(996,3074)(997,3709)(998,1258)(999,1975)(1000,4499)(1001,4412)(1002,4736)(1003,3016)(1004,4082)(1005,4763)(1006,2826)(1009,4142)(1010,1229)(1011,1930)(1012,5772)(1013,6084)(1014,6109)(1016,1679)(1017,5183)(1018,3494)(1020,3229)(1022,6081)(1023,6082)(1026,6144)(1027,5448)(1028,3563)(1029,3695)(1030,5646)(1031,6091)(1032,5347)(1033,5205)(1034,1186)(1036,5126)(1037,5127)(1038,3039)(1040,3129)(1041,2927)(1042,3249)(1043,1620)(1044,4557)(1045,2788)(1046,1568)(1047,5156)(1048,4341)(1049,5377)(1050,3477)(1051,2008)(1054,5635)(1055,5168)(1056,2840)(1059,5039)(1060,5468)(1062,4431)(1063,4357)(1064,4100)(1065,4662)(1066,4220)(1067,3741)(1070,1998)(1071,2479)(1072,3610)(1076,2509)(1077,2510)(1078,2644)(1079,6097)(1080,1724)(1081,2145)(1082,4702)(1083,4703)(1084,1129)(1085,2573)(1086,3718)(1087,3625)(1088,5599)(1089,1254)(1090,5383)(1091,3754)(1093,4699)(1094,5054)(1095,2014)(1096,2438)(1097,2439)(1098,2765)(1099,1565)(1101,5613)(1102,6122)(1103,5569)(1104,2305)(1105,1346)(1110,2583)(1111,3126)(1112,4322)(1113,5991)(1114,5992)(1115,4471)(1116,2385)(1117,1481)(1118,5018)(1119,5019)(1121,3614)(1122,1953)(1123,2950)(1124,3694)(1126,4338)(1127,2594)(1128,3553)(1130,3926)(1131,3843)(1132,3504)(1133,5154)(1135,5760)(1136,1379)(1137,1575)(1138,2391)(1139,1227)(1141,5389)(1145,4184)(1146,1831)(1147,1513)(1148,1514)(1149,1580)(1150,2436)(1151,4983)(1153,2883)(1154,2815)(1155,4004)(1156,3580)(1158,1587)(1159,4432)(1161,5033)(1162,5034)(1163,1707)(1164,2234)(1165,3266)(1166,1716)(1167,1875)(1168,2164)(1170,5182)(1171,2108)(1172,3142)(1173,5895)(1174,5896)(1175,3642)(1177,1389)(1178,1506)(1179,1722)(1180,4493)(1181,1798)(1182,4061)(1183,4551)(1184,2784)(1185,2622)(1187,1756)(1188,5442)(1189,5546)(1190,4927)(1191,3870)(1192,4643)(1193,2711)(1196,4578)(1197,2809)(1201,5050)(1203,5381)(1204,4317)(1205,2584)(1206,2880)(1207,2881)(1208,2574)(1209,1330)(1210,3555)(1215,4244)(1216,5988)(1218,2165)(1221,5334)(1222,3795)(1223,1776)(1224,6061)(1225,5159)(1228,2017)(1230,4242)(1231,4914)(1232,4508)(1233,2779)(1234,2780)(1235,2959)(1237,2139)(1239,1401)(1240,2925)(1241,1971)(1242,4002)(1243,3906)(1244,2216)(1246,5980)(1248,5264)(1249,3606)(1250,1395)(1251,3043)(1252,1816)(1253,2685)(1257,1997)(1259,4880)(1260,4656)(1261,5589)(1262,6088)(1263,3731)(1264,2295)(1265,4421)(1266,5440)(1267,2516)(1270,5682)(1271,6009)(1272,3374)(1273,1386)(1274,4519)(1275,3842)(1276,5315)(1277,3070)(1278,4275)(1279,5877)(1280,3364)(1281,3076)(1282,2230)(1283,1412)(1284,1946)(1285,1537)(1286,1538)(1287,2174)(1288,5340)(1289,4814)(1291,5081)(1292,1320)(1294,1864)(1295,2834)(1296,5881)(1297,3355)(1298,4750)(1299,5425)(1302,5317)(1303,3125)(1304,2044)(1305,2527)(1306,1842)(1307,1843)(1308,2762)(1309,3949)(1310,4691)(1312,2701)(1313,3145)(1314,6029)(1315,5845)(1316,2910)(1317,2936)(1318,4844)(1319,4751)(1321,4456)(1322,5463)(1323,4172)(1325,5109)(1326,3391)(1327,3106)(1328,1340)(1329,4781)(1332,4729)(1333,2996)(1334,2286)(1336,3579)(1337,4646)(1338,5012)(1341,3426)(1342,3257)(1343,3840)(1344,5745)(1345,1790)(1347,1762)(1348,4942)(1349,3933)(1352,3849)(1353,2258)(1354,2259)(1355,4241)(1356,5091)(1357,5092)(1358,5751)(1359,2757)(1360,1872)(1361,3911)(1362,3764)(1363,5312)(1364,5690)(1366,4126)(1367,2407)(1368,3261)(1369,5950)(1370,1374)(1371,1375)(1373,1589)(1376,1771)(1377,2690)(1380,5225)(1381,1425)(1382,1426)(1383,3093)(1384,1661)(1385,5939)(1387,1879)(1390,1644)(1392,4989)(1393,4560)(1396,1962)(1397,1966)(1398,2355)(1399,5851)(1402,2921)(1405,5786)(1406,4855)(1407,1461)(1408,3521)(1409,5679)(1410,2281)(1411,2483)(1414,5071)(1415,5831)(1416,2995)(1417,1601)(1421,1598)(1422,3841)(1423,3210)(1427,4083)(1428,4153)(1429,4067)(1430,4068)(1431,5118)(1432,5391)(1433,3282)(1435,2929)(1436,2319)(1437,3430)(1438,3771)(1439,3458)(1440,3186)(1441,2125)(1442,3169)(1443,2011)(1444,2664)(1445,1749)(1448,4990)(1449,3801)(1452,4778)(1455,3231)(1457,4189)(1458,1686)(1459,2045)(1460,1675)(1462,3827)(1463,2519)(1464,4497)(1465,4120)(1466,5133)(1467,5867)(1468,5806)(1469,2190)(1470,1539)(1471,1887)(1472,2863)(1473,4087)(1474,4088)(1475,3184)(1476,6139)(1477,5868)(1479,6142)(1480,6155)(1482,5038)(1483,4342)(1484,2191)(1485,5658)(1486,5548)(1488,4536)(1489,5453)(1490,1794)(1492,6030)(1493,4776)(1494,3751)(1495,4427)(1496,3075)(1497,4204)(1498,5983)(1499,3173)(1500,3567)(1501,4154)(1502,3978)(1503,5476)(1504,6042)(1505,5337)(1507,2727)(1509,3796)(1510,4893)(1511,5201)(1515,3899)(1516,2377)(1517,4165)(1518,4572)(1519,3388)(1520,4415)(1521,3856)(1522,2990)(1523,3335)(1524,4524)(1525,4103)(1528,5711)(1530,5854)(1533,4164)(1534,2879)(1536,5770)(1540,2763)(1541,5793)(1543,2421)(1544,3322)(1545,5784)(1546,5065)(1548,2071)(1549,2072)(1551,6085)(1552,4913)(1553,3973)(1554,5063)(1555,3342)(1556,1773)(1557,2712)(1559,6004)(1560,5558)(1561,5407)(1562,4408)(1563,5995)(1564,5945)(1566,2425)(1569,5860)(1570,5167)(1571,4443)(1572,4686)(1573,1938)(1574,2250)(1576,3675)(1577,4438)(1578,4115)(1579,4116)(1583,2324)(1584,3118)(1585,5139)(1586,5140)(1588,5321)(1590,2144)(1593,4787)(1594,4549)(1599,5723)(1602,2088)(1603,3120)(1604,5914)(1605,5514)(1606,2973)(1607,4796)(1608,5093)(1609,4737)(1610,3729)(1611,5639)(1612,4263)(1613,4404)(1614,3571)(1615,2846)(1617,5095)(1618,2362)(1619,2116)(1622,2920)(1623,5835)(1624,5825)(1625,5226)(1626,5369)(1627,3836)(1628,5608)(1631,1964)(1632,2961)(1633,1922)(1635,1740)(1636,4300)(1637,3479)(1638,3480)(1639,3952)(1640,2253)(1641,5595)(1642,2696)(1643,5902)(1645,5817)(1646,5304)(1647,5996)(1648,4920)(1649,6110)(1650,5756)(1651,3255)(1652,3937)(1653,5707)(1654,5710)(1655,4591)(1656,3350)(1657,4533)(1658,4081)(1659,2367)(1662,2159)(1663,5555)(1664,4235)(1667,4092)(1668,4118)(1669,2080)(1670,3242)(1671,3243)(1672,5919)(1673,5373)(1674,5982)(1676,4883)(1677,4884)(1678,1818)(1680,4716)(1681,1769)(1682,2357)(1683,2009)(1687,4035)(1688,2611)(1689,2382)(1691,5288)(1692,5466)(1694,5833)(1695,5834)(1696,4907)(1697,3283)(1698,4358)(1699,5186)(1700,4229)(1701,4791)(1702,3134)(1703,3500)(1704,2754)(1705,3534)(1709,3329)(1710,1803)(1711,3017)(1712,2314)(1713,4770)(1714,2997)(1715,2413)(1717,3791)(1720,4343)(1721,4771)(1723,1865)(1725,1792)(1728,5618)(1729,3332)(1730,4876)(1731,5892)(1732,5074)(1733,4531)(1734,3271)(1735,1767)(1738,3755)(1741,2518)(1742,5645)(1743,2678)(1744,5651)(1745,4356)(1746,4811)(1747,4812)(1748,3561)(1751,1884)(1752,5115)(1753,3683)(1754,4835)(1757,3864)(1758,4833)(1759,4053)(1760,5614)(1761,5557)(1764,2663)(1768,2661)(1770,4323)(1772,2933)(1774,4472)(1775,3384)(1778,1894)(1780,3434)(1782,3005)(1783,2231)(1784,4145)(1785,4853)(1787,5492)(1788,1856)(1789,1857)(1791,4721)(1795,4185)(1796,2454)(1799,3505)(1800,4535)(1801,4792)(1806,2153)(1807,5408)(1814,1992)(1815,3760)(1817,2029)(1819,4374)(1820,4375)(1822,2452)(1824,4899)(1825,5445)(1826,2352)(1827,3256)(1828,5718)(1833,2336)(1834,2337)(1835,4504)(1836,4448)(1837,3871)(1838,3872)(1839,2446)(1840,5363)(1841,5364)(1844,2620)(1846,3318)(1847,3649)(1849,2631)(1850,6014)(1851,6015)(1854,3102)(1855,4308)(1858,3773)(1859,4010)(1861,5698)(1862,4270)(1863,2168)(1868,2744)(1869,3527)(1870,1943)(1871,3018)(1873,6064)(1874,5748)(1876,4653)(1877,5585)(1878,4868)(1880,5137)(1881,5630)(1882,5582)(1883,2843)(1885,1969)(1886,2966)(1891,3525)(1892,4689)(1893,5747)(1895,2915)(1896,4102)(1897,5382)(1898,5758)(1899,5158)(1900,3541)(1901,5324)(1902,5603)(1903,4072)(1904,4465)(1905,5469)(1907,3556)(1910,3892)(1913,4315)(1915,5305)(1916,5989)(1917,4673)(1918,3224)(1920,5010)(1921,2596)(1923,2514)(1924,5805)(1925,6107)(1926,3457)(1927,6127)(1928,5966)(1929,2728)(1931,5302)(1933,5954)(1934,5878)(1935,2746)(1936,3648)(1937,2814)(1944,2845)(1945,2186)(1947,2010)(1948,1972)(1949,3969)(1951,5837)(1952,4546)(1954,4491)(1955,5981)(1956,3435)(1957,5120)(1958,5857)(1959,2496)(1960,3626)(1961,3607)(1963,4581)(1965,2626)(1967,3658)(1968,2013)(1973,4353)(1974,4208)(1976,4881)(1977,5633)(1978,2482)(1979,5634)(1980,5248)(1982,4889)(1984,5553)(1985,4362)(1986,6016)(1987,2851)(1988,3389)(1989,4569)(1991,3351)(1993,5905)(1994,2162)(1995,3777)(1996,4520)(2000,5316)(2001,4609)(2002,3931)(2003,5047)(2004,2688)(2005,4638)(2006,3015)(2007,5119)(2012,2249)(2015,4141)(2016,3707)(2018,4049)(2019,4050)(2021,4955)(2022,4991)(2023,5482)(2024,5529)(2025,3980)(2027,4026)(2028,5882)(2030,5374)(2031,5936)(2032,4783)(2033,4894)(2034,5733)(2035,6154)(2036,6071)(2038,5318)(2040,4326)(2041,5873)(2042,5725)(2043,4809)(2046,2275)(2047,2807)(2048,3207)(2049,3127)(2050,5062)(2051,2937)(2052,2441)(2054,5300)(2055,3878)(2056,4755)(2057,3576)(2058,4047)(2059,2824)(2060,2825)(2061,5846)(2062,4098)(2063,5594)(2064,2326)(2065,4821)(2066,3922)(2067,3811)(2068,5574)(2069,4948)(2070,5454)(2073,4677)(2075,2759)(2076,2528)(2077,4074)(2078,4219)(2079,2869)(2081,2499)(2082,5169)(2083,5236)(2084,2274)(2085,3368)(2086,4752)(2087,4065)(2089,3141)(2090,2855)(2091,2856)(2093,2368)(2096,4607)(2097,4428)(2098,5587)(2099,4867)(2102,4360)(2109,3934)(2113,3444)(2114,2769)(2115,3957)(2117,2492)(2118,5301)(2119,3492)(2120,5479)(2121,5480)(2122,5843)(2123,5341)(2124,4715)(2129,2221)(2130,2660)(2131,3765)(2132,2478)(2133,3432)(2134,3433)(2135,5955)(2137,5762)(2138,6005)(2140,3262)(2141,3750)(2142,2148)(2146,4287)(2147,5336)(2150,5912)(2154,6018)(2155,6056)(2156,2223)(2157,2255)(2158,2256)(2160,5940)(2161,2437)(2163,6113)(2166,2619)(2167,3780)(2169,4486)(2173,5141)(2175,2792)(2176,4009)(2179,4576)(2180,5545)(2181,2823)(2182,4788)(2183,6049)(2187,5767)(2188,4022)(2189,2490)(2192,2733)(2193,6128)(2194,6044)(2195,4856)(2196,2278)(2197,6065)(2198,5164)(2199,5470)(2200,2582)(2201,2484)(2202,2485)(2203,4335)(2204,4336)(2206,5498)(2208,4455)(2211,4803)(2212,5354)(2213,5976)(2214,2292)(2215,2293)(2217,5044)(2218,4036)(2219,3421)(2220,4018)(2222,3175)(2224,4084)(2225,4530)(2226,4268)(2227,4269)(2228,3091)(2229,4297)(2232,5392)(2233,4478)(2235,4012)(2236,3944)(2237,2246)(2238,4031)(2239,4032)(2240,4614)(2241,4908)(2242,3150)(2243,3459)(2244,4391)(2245,5426)(2247,3323)(2248,4373)(2251,2867)(2252,4106)(2254,2525)(2260,2873)(2266,5003)(2267,4815)(2269,4433)(2270,2945)(2271,4138)(2273,3591)(2276,2334)(2277,3440)(2279,3038)(2280,4634)(2283,4885)(2284,2400)(2288,3258)(2291,4667)(2294,4059)(2296,5171)(2297,4390)(2298,5444)(2300,5898)(2301,5841)(2302,6057)(2304,4850)(2306,5195)(2307,4005)(2310,3666)(2311,3667)(2312,3628)(2313,3629)(2315,2627)(2316,5266)(2317,3298)(2318,2747)(2320,4903)(2321,3490)(2322,5629)(2325,3546)(2327,4351)(2328,5386)(2329,3174)(2330,4424)(2331,3487)(2332,4659)(2333,4155)(2335,2693)(2338,3466)(2339,3467)(2340,3687)(2341,3746)(2343,4355)(2344,3155)(2347,5254)(2350,5802)(2351,5674)(2353,5023)(2356,4573)(2358,3287)(2359,2886)(2360,6130)(2361,6121)(2363,2451)(2366,2388)(2369,6106)(2372,5839)(2373,5144)(2374,5918)(2375,2796)(2376,2797)(2378,3793)(2379,3794)(2380,2889)(2381,4075)(2383,2592)(2384,3950)(2386,6045)(2387,6105)(2389,3473)(2390,5768)(2392,5395)(2395,3851)(2396,3852)(2397,2803)(2399,4992)(2401,5744)(2402,3000)(2403,3343)(2404,2457)(2405,3584)(2408,5814)(2411,4944)(2412,2924)(2414,2630)(2415,2919)(2416,4107)(2417,4798)(2418,4314)(2419,3416)(2420,3417)(2422,3216)(2423,3975)(2424,4711)(2426,4149)(2427,5263)(2434,2675)(2435,5780)(2442,3595)(2443,5819)(2444,4505)(2445,4396)(2449,3768)(2450,4916)(2453,2775)(2455,3213)(2456,4122)(2461,4808)(2462,5861)(2463,4629)(2464,5481)(2465,3897)(2466,3452)(2467,5002)(2468,5797)(2469,5515)(2470,5446)(2471,4553)(2472,3901)(2473,5518)(2474,5636)(2475,2917)(2476,2972)(2477,3286)(2480,4264)(2481,5427)(2487,2908)(2491,2561)(2497,3653)(2498,3302)(2500,4517)(2501,3549)(2502,3967)(2503,3728)(2504,2559)(2505,2638)(2506,3802)(2507,5152)(2508,5875)(2511,5293)(2512,5943)(2513,4157)(2515,4982)(2517,4909)(2520,5223)(2521,3543)(2522,3857)(2523,3415)(2524,4598)(2526,4095)(2529,3012)(2530,4950)(2531,2831)(2532,4307)(2533,4579)(2534,6126)(2535,2761)(2536,4726)(2537,2962)(2538,5930)(2539,4921)(2540,3215)(2541,4376)(2544,3248)(2545,5708)(2546,3689)(2547,4289)(2548,5483)(2549,5791)(2550,5792)(2551,4858)(2552,5513)(2554,4843)(2555,3300)(2556,3301)(2557,3217)(2558,4023)(2560,5294)(2563,4093)(2565,5196)(2568,4296)(2569,4447)(2570,2951)(2571,2952)(2572,6150)(2577,5415)(2578,5292)(2580,4717)(2581,3993)(2585,5251)(2587,4645)(2588,5847)(2589,5921)(2590,4034)(2591,5136)(2595,5252)(2600,5924)(2601,4494)(2602,5489)(2603,3284)(2604,2633)(2605,2677)(2606,5901)(2607,3133)(2608,5145)(2609,4178)(2610,3034)(2612,5903)(2613,4735)(2614,3410)(2615,4078)(2616,5041)(2617,3535)(2618,2676)(2623,5497)(2624,5329)(2628,5655)(2629,4147)(2632,5609)(2634,3759)(2635,5206)(2637,4236)(2639,5538)(2640,5539)(2642,2836)(2645,3004)(2646,5681)(2647,5855)(2649,6080)(2650,4453)(2653,5722)(2654,4150)(2657,5075)(2658,5131)(2659,5863)(2662,3265)(2665,2829)(2666,3373)(2671,6090)(2672,3069)(2680,4532)(2681,4728)(2686,5280)(2687,5703)(2689,3009)(2692,5647)(2694,5352)(2695,5353)(2698,5785)(2699,3396)(2700,3655)(2703,3472)(2704,2942)(2705,4133)(2706,3159)(2707,3984)(2708,4651)(2709,4213)(2713,3959)(2715,3962)(2716,5719)(2717,5649)(2719,3088)(2723,3315)(2724,5222)(2725,4430)(2729,4633)(2730,5575)(2731,4670)(2732,5601)(2735,5200)(2736,5239)(2738,4011)(2739,3528)(2740,4693)(2741,4597)(2742,3453)(2743,3454)(2745,3603)(2748,4825)(2749,4826)(2751,5399)(2753,3166)(2756,3209)(2768,4943)(2770,3854)(2771,6019)(2772,6074)(2773,4479)(2777,2949)(2778,4143)(2781,3456)(2783,4188)(2785,5290)(2786,5668)(2789,3630)(2790,4789)(2793,3238)(2794,4216)(2795,4253)(2800,5004)(2801,3570)(2802,4030)(2804,5237)(2805,5691)(2806,4259)(2808,3781)(2810,4064)(2811,3779)(2812,5586)(2816,5891)(2817,4765)(2818,5653)(2820,5915)(2821,5499)(2822,3930)(2830,3834)(2832,3228)(2833,5070)(2835,4615)(2837,3317)(2841,3929)(2842,4775)(2844,2860)(2847,3672)(2848,3378)(2849,5749)(2850,5375)(2853,3101)(2854,3566)(2858,6035)(2859,5475)(2861,5874)(2864,3393)(2866,3736)(2868,3341)(2870,3105)(2871,3722)(2872,5871)(2874,3010)(2875,4209)(2878,5189)(2882,3542)(2885,5604)(2887,4359)(2888,3449)(2890,3334)(2891,4370)(2892,3026)(2893,3027)(2896,3886)(2897,5016)(2898,4316)(2900,6055)(2901,5531)(2902,5457)(2903,3310)(2906,4949)(2907,5011)(2911,3646)(2912,4966)(2913,5413)(2914,6156)(2916,4206)(2918,4832)(2922,5494)(2923,3705)(2928,5879)(2931,4079)(2938,3072)(2939,4041)(2940,3252)(2944,3200)(2946,5398)(2947,5335)(2948,5968)(2953,3424)(2954,3090)(2955,6073)(2956,4600)(2957,4121)(2958,3152)(2963,4000)(2964,4437)(2965,3491)(2971,4734)(2974,4879)(2975,5810)(2976,3295)(2977,3112)(2978,5638)(2979,4817)(2980,5249)(2982,6038)(2983,5059)(2984,4898)(2986,4363)(2987,5490)(2991,5105)(2994,4747)(2998,4516)(2999,5913)(3002,5956)(3003,4795)(3008,4139)(3011,4741)(3013,3668)(3019,5210)(3020,5211)(3021,3338)(3022,3983)(3028,4574)(3029,4575)(3030,4767)(3032,5644)(3033,5800)(3035,3769)(3036,5917)(3037,5813)(3040,3835)(3041,5313)(3042,5621)(3046,3064)(3047,4265)(3048,4784)(3049,5339)(3050,5970)(3051,5998)(3052,3659)(3053,3660)(3054,6072)(3056,4039)(3057,4635)(3058,5370)(3059,5443)(3060,6020)(3061,5214)(3062,3321)(3063,4506)(3065,4460)(3066,3706)(3067,3369)(3068,3996)(3071,5303)(3073,3671)(3077,5008)(3078,3254)(3079,5830)(3080,5926)(3081,5432)(3082,3808)(3083,4048)(3086,4014)(3087,3408)(3089,3375)(3092,3812)(3095,3940)(3096,5053)(3097,4169)(3098,5242)(3099,5486)(3103,5663)(3104,5652)(3108,5975)(3109,5161)(3110,5170)(3111,4329)(3113,4174)(3114,4476)(3115,4477)(3116,4753)(3117,4915)(3121,4640)(3122,3382)(3123,4564)(3124,3979)(3130,4429)(3131,5888)(3135,3883)(3136,5013)(3137,4381)(3138,5414)(3140,3725)(3143,4604)(3144,5048)(3146,3865)(3147,3866)(3149,3757)(3151,3328)(3153,4152)(3154,4060)(3156,3622)(3157,5948)(3158,4228)(3160,6101)(3161,5615)(3162,5549)(3163,6104)(3164,3499)(3165,3690)(3167,5712)(3168,5790)(3171,6125)(3172,6053)(3176,5052)(3177,3274)(3178,4470)(3179,4224)(3180,5284)(3181,5673)(3182,6096)(3187,4946)(3189,3569)(3191,4392)(3192,5260)(3193,3202)(3194,3669)(3196,3611)(3199,4701)(3201,5640)(3205,5394)(3206,5993)(3212,6002)(3214,5257)(3218,3347)(3219,5959)(3220,5533)(3223,4350)(3225,4761)(3226,4762)(3227,4926)(3234,4442)(3235,4679)(3236,3442)(3237,4626)(3239,4637)(3240,3848)(3241,4985)(3245,5567)(3246,3383)(3247,5279)(3253,3863)(3259,4694)(3260,3916)(3263,5365)(3264,3311)(3267,5400)(3268,5401)(3269,3469)(3270,3879)(3272,4386)(3273,4802)(3275,4340)(3276,4969)(3277,3612)(3279,4685)(3280,5729)(3281,5724)(3288,3462)(3289,5285)(3290,3627)(3291,6115)(3292,4250)(3293,4251)(3294,4328)(3296,4273)(3297,4274)(3299,4019)(3303,4498)(3304,5036)(3305,3409)(3306,4681)(3307,5535)(3308,6135)(3309,5556)(3312,4462)(3313,4488)(3314,4723)(3316,5931)(3320,4403)(3324,3908)(3325,5564)(3326,3485)(3327,3486)(3330,5417)(3336,3596)(3337,4422)(3339,3824)(3340,3825)(3344,3520)(3345,3884)(3346,3885)(3352,5631)(3353,6048)(3356,5753)(3357,4452)(3358,5459)(3359,4369)(3360,5402)(3361,4816)(3363,3651)(3366,5217)(3371,4924)(3372,5560)(3376,4295)(3377,3723)(3379,3665)(3380,4827)(3385,4252)(3386,5358)(3387,5359)(3390,4648)(3392,4632)(3394,5116)(3395,5117)(3397,5153)(3400,3881)(3403,6022)(3404,5799)(3405,4552)(3406,5150)(3411,4006)(3414,5821)(3418,4828)(3419,5750)(3420,4901)(3422,6119)(3423,6120)(3425,3601)(3427,5720)(3428,4310)(3429,5328)(3431,4605)(3436,4352)(3437,3482)(3438,5592)(3439,5234)(3441,4986)(3443,3758)(3445,3688)(3446,3747)(3447,5314)(3448,5387)(3450,4680)(3451,3582)(3455,5694)(3460,5542)(3461,5757)(3463,5323)(3464,5268)(3465,3604)(3468,5826)(3470,3578)(3471,4466)(3475,4620)(3476,4621)(3478,5610)(3488,3502)(3489,4042)(3493,5064)(3495,5202)(3496,3997)(3497,5096)(3498,5804)(3501,5177)(3503,5769)(3506,4496)(3507,5554)(3511,4194)(3512,3994)(3514,5953)(3515,6094)(3516,5752)(3517,5255)(3518,5544)(3519,5969)(3522,4749)(3526,4958)(3529,5671)(3530,4234)(3531,4945)(3532,5078)(3533,5675)(3536,3790)(3537,6093)(3538,5289)(3539,5191)(3540,4799)(3544,4834)(3545,4712)(3547,4522)(3548,3778)(3550,3632)(3554,4318)(3558,4416)(3559,4177)(3560,5221)(3564,5396)(3565,5001)(3568,4202)(3572,5187)(3573,5571)(3575,3686)(3577,5511)(3581,6148)(3583,4683)(3585,4398)(3586,5422)(3587,5844)(3588,4123)(3589,5527)(3590,4630)(3592,5165)(3593,3684)(3594,5977)(3597,5455)(3598,3855)(3599,3902)(3600,5519)(3602,4402)(3605,4642)(3608,5941)(3609,5942)(3613,4555)(3615,6036)(3618,4608)(3620,4450)(3621,5456)(3623,4347)(3631,4954)(3633,3928)(3634,3661)(3635,4882)(3638,4965)(3639,4848)(3640,5680)(3643,5883)(3644,3831)(3645,4748)(3647,6076)(3650,3739)(3652,4547)(3654,6131)(3656,5100)(3657,5199)(3662,4793)(3663,5099)(3664,5836)(3673,4279)(3674,3785)(3676,6117)(3679,4377)(3680,5742)(3681,6037)(3685,5893)(3691,3966)(3692,5107)(3693,4661)(3697,6100)(3698,6059)(3699,4495)(3700,5573)(3701,4947)(3704,5944)(3708,4073)(3711,3995)(3712,5108)(3713,4928)(3714,4623)(3715,4146)(3716,6151)(3717,4162)(3719,5732)(3720,5419)(3721,3786)(3724,4559)(3726,5625)(3727,4207)(3732,4606)(3733,6123)(3734,6152)(3735,4446)(3737,4727)(3738,5590)(3744,5066)(3749,3800)(3752,4929)(3756,6031)(3763,5588)(3770,5000)(3774,4097)(3775,5089)(3776,5042)(3787,4195)(3788,6092)(3789,5142)(3792,4934)(3797,4910)(3798,5908)(3803,5496)(3804,5500)(3813,4192)(3814,5259)(3815,5856)(3816,5999)(3817,6032)(3818,4542)(3819,4668)(3820,4298)(3821,5138)(3822,6023)(3823,6017)(3826,5952)(3828,5779)(3829,4058)(3830,6137)(3832,4805)(3833,6147)(3847,4818)(3860,4090)(3861,5174)(3868,4193)(3869,5766)(3873,3918)(3874,4523)(3876,5272)(3880,4467)(3882,4507)(3887,4666)(3888,5911)(3889,4957)(3893,5967)(3894,4837)(3896,5798)(3898,5650)(3900,4305)(3904,3998)(3905,4502)(3907,5916)(3912,5162)(3913,4866)(3914,5433)(3915,5434)(3919,5736)(3920,5660)(3921,5240)(3923,4111)(3924,4951)(3925,5612)(3935,4337)(3939,4020)(3942,5056)(3943,4417)(3947,5384)(3948,4249)(3955,5157)(3956,4890)(3958,5685)(3963,6024)(3964,4996)(3965,4997)(3968,5246)(3971,6129)(3972,6108)(3976,4231)(3981,5737)(3982,5738)(3987,4444)(3988,4445)(3989,5759)(3990,5838)(3999,6116)(4003,4678)(4007,6010)(4008,5181)(4013,4096)(4015,4706)(4016,4707)(4024,4418)(4025,4419)(4027,5286)(4033,4334)(4037,4509)(4038,4820)(4040,4128)(4052,5849)(4054,4071)(4055,4738)(4056,5637)(4057,5130)(4076,5424)(4077,4371)(4080,4223)(4085,5362)(4089,4540)(4091,4565)(4101,5244)(4104,4719)(4105,5628)(4112,4217)(4117,5552)(4124,5439)(4127,4650)(4129,4278)(4134,4599)(4136,4365)(4137,5397)(4140,4205)(4144,5654)(4148,5620)(4151,5734)(4161,4304)(4167,4527)(4168,5261)(4170,4303)(4175,5273)(4179,4616)(4180,4617)(4183,4772)(4186,4886)(4187,5491)(4190,5106)(4196,5262)(4197,5532)(4198,4225)(4199,4905)(4203,4732)(4210,5423)(4214,4692)(4215,5510)(4221,4594)(4222,5357)(4227,5410)(4230,4918)(4232,5088)(4233,4489)(4237,5505)(4238,5178)(4245,6112)(4246,5938)(4247,5572)(4248,6052)(4255,5947)(4256,4801)(4257,4636)(4258,5299)(4262,5215)(4267,4977)(4271,5110)(4272,4306)(4276,4872)(4277,4669)(4280,5619)(4282,5827)(4283,6134)(4284,5775)(4285,4290)(4286,4291)(4288,5146)(4293,4592)(4294,5282)(4299,4900)(4302,5824)(4309,4891)(4311,5238)(4312,4937)(4313,4938)(4320,5350)(4321,5579)(4324,5536)(4325,4611)(4327,5030)(4330,5281)(4331,5098)(4332,6026)(4333,6012)(4339,5017)(4345,5822)(4346,5706)(4349,5522)(4354,4534)(4361,5735)(4364,4562)(4366,4705)(4367,5923)(4368,5073)(4372,5876)(4378,5910)(4382,4474)(4383,5474)(4384,5937)(4385,5014)(4387,5593)(4388,4511)(4389,4512)(4393,5777)(4397,4758)(4399,5462)(4400,6000)(4401,6070)(4406,5049)(4407,5761)(4410,4760)(4414,5932)(4420,5367)(4423,5031)(4425,5450)(4426,4824)(4439,4973)(4440,4974)(4441,5269)(4454,4561)(4457,4641)(4461,4733)(4463,5203)(4464,5180)(4468,5642)(4469,6089)(4473,5781)(4480,5006)(4481,5007)(4483,4571)(4484,4998)(4485,4999)(4487,5731)(4490,5291)(4500,4823)(4501,5692)(4503,5484)(4510,5114)(4513,6051)(4514,5962)(4515,6003)(4537,5741)(4538,5934)(4539,5717)(4541,5172)(4543,5687)(4550,5643)(4554,5274)(4556,5561)(4558,5344)(4563,5695)(4567,5069)(4568,5338)(4570,5809)(4577,5015)(4580,5755)(4585,4764)(4586,5900)(4587,5151)(4588,5267)(4589,4963)(4590,4964)(4593,4923)(4596,5393)(4601,5696)(4602,6039)(4603,5327)(4612,5368)(4613,5965)(4618,4665)(4622,4840)(4624,5051)(4627,4845)(4631,5388)(4639,5076)(4644,5057)(4647,4782)(4649,5566)(4652,4912)(4654,6068)(4660,4700)(4663,5828)(4671,5247)(4672,5811)(4676,5097)(4687,4888)(4688,4768)(4690,4959)(4698,5676)(4704,5702)(4710,6033)(4713,4972)(4714,5256)(4718,4790)(4745,5803)(4756,5927)(4757,5928)(4759,5526)(4766,5581)(4769,5607)(4773,5250)(4785,5104)(4794,5224)(4800,4849)(4804,5884)(4807,5121)(4813,5029)(4822,5667)(4836,5502)(4838,5020)(4839,5656)(4841,5361)(4842,5774)(4851,5730)(4852,6063)(4857,6060)(4859,5591)(4860,6028)(4865,4932)(4869,5684)(4870,4877)(4871,4892)(4873,5850)(4874,6050)(4875,5763)(4878,5207)(4887,4961)(4895,5421)(4896,5801)(4902,6102)(4904,4930)(4906,5832)(4911,5978)(4917,5451)(4925,5504)(4933,5418)(4935,5449)(4936,5672)(4952,5501)(4967,5355)(4968,5460)(4976,5102)(4980,5812)(4981,5623)(5005,5507)(5021,5212)(5022,5669)(5035,5880)(5040,6145)(5043,5523)(5045,5885)(5046,5124)(5055,5243)(5060,5209)(5061,5493)(5067,5922)(5068,6143)(5072,5765)(5077,5578)(5079,6046)(5080,5320)(5084,5754)(5085,5617)(5086,5960)(5087,5360)(5090,5580)(5094,5715)(5101,5135)(5111,5155)(5122,5577)(5125,5160)(5134,5626)(5143,5563)(5148,5746)(5149,6062)(5163,5216)(5175,5795)(5179,5297)(5184,5471)(5185,5472)(5188,6001)(5190,5946)(5192,5816)(5197,5985)(5208,5726)(5213,5345)(5218,6141)(5253,5616)(5258,5714)(5265,5740)(5270,5570)(5271,5467)(5276,5306)(5277,5597)(5295,5796)(5296,5664)(5309,5815)(5310,5503)(5311,5521)(5326,5852)(5331,5356)(5332,5776)(5342,5520)(5343,5935)(5348,6133)(5349,6006)(5366,5600)(5376,5699)(5380,6047)(5385,5602)(5404,5807)(5405,5461)(5409,5506)(5411,5437)(5416,5598)(5431,6095)(5436,5933)(5441,5951)(5473,6153)(5478,5957)(5485,5495)(5487,6066)(5488,5627)(5508,6021)(5516,5890)(5517,6099)(5524,5961)(5525,5657)(5528,5973)(5530,5665)(5534,5551)(5550,5596)(5562,5716)(5583,6054)(5584,5743)(5611,5622)(5670,5808)(5677,6079)(5688,5897)(5700,5958)(5701,5986)(5721,5764)(5728,5859)(5739,5783)(5771,6069)(5782,6027)(5787,6058)(5789,5820)(5818,6146)(5842,6075)(5858,6040)(5872,6140)(5889,6067)(6041,6136),(1,133,179)(2,153,202)(3,187,246)(4,211,278)(5,223,294)(6,89,123)(7,254,332)(8,77,107)(9,302,395)(10,310,404)(11,339,445)(12,350,459)(13,370,485)(14,33,49)(15,414,542)(16,423,554)(17,28,42)(18,469,611)(19,495,644)(20,504,656)(22,52,74)(23,561,728)(24,57,740)(25,586,32)(26,61,86)(27,619,798)(29,666,856)(30,681,873)(31,692,889)(34,743,319)(35,764,831)(36,775,994)(37,807,1037)(38,818,1051)(39,197,428)(40,94,130)(41,861,1105)(43,896,1150)(44,915,1174)(45,177,384)(46,943,1209)(47,110,150)(48,961,548)(50,1004,1284)(51,1013,1295)(53,1058,1349)(54,1077,1372)(55,1086,1384)(56,105,236)(58,1127,1432)(59,138,184)(60,1158,451)(62,1192,1294)(63,660,1527)(64,262,347)(65,148,323)(66,1244,1570)(67,1261,1592)(68,158,208)(69,1301,1640)(70,461,1652)(71,503,1674)(72,167,220)(73,1357,1707)(75,1391,1747)(76,261,443)(78,1417,1779)(79,1442,1811)(80,1218,1820)(81,574,1234)(82,1477,1851)(83,1485,1871)(84,192,251)(85,1514,572)(87,1144,913)(88,419,1925)(90,1579,1969)(91,1019,1992)(92,1608,2003)(93,479,1018)(95,1662,2072)(96,1682,2097)(97,1686,2101)(98,719,924)(99,1715,2138)(100,439,1092)(101,228,299)(102,1761,491)(103,398,520)(104,1768,2204)(106,724,2222)(108,1149,2274)(109,1553,140)(111,1859,1181)(112,647,834)(113,1877,907)(114,1905,2365)(115,866,1111)(117,258,139)(118,1841,2396)(119,1937,2403)(120,1947,2416)(121,266,348)(122,1974,2445)(124,2009,711)(125,1194,2510)(126,366,789)(127,2049,1348)(128,281,364)(129,2078,2238)(131,2051,2330)(132,353,2609)(134,800,2641)(135,2158,1998)(136,1989,2670)(137,2182,2686)(141,2231,1984)(142,2242,2754)(143,2259,2772)(144,314,411)(145,1549,2803)(146,448,583)(147,2295,2815)(149,2315,2839)(151,2181,2488)(152,2346,2870)(154,2368,2897)(155,1232,1053)(156,2376,2904)(157,936,2910)(159,545,707)(160,2423,1613)(161,2433,765)(162,2453,1397)(163,1741,1899)(164,2468,2160)(165,355,466)(166,2494,3029)(168,2524,3063)(169,2543,3082)(170,2135,2629)(171,2571,3115)(172,2511,3123)(173,326,822)(174,375,492)(175,2619,3174)(176,2094,3182)(178,2647,3127)(180,2679,3243)(181,442,264)(182,2691,3257)(183,2701,3268)(185,2717,3290)(186,1005,3297)(188,2762,3346)(189,2773,3358)(190,2780,3365)(191,2793,3380)(193,2818,2379)(194,2825,916)(195,1476,2530)(196,2220,2665)(198,260,1578)(199,2884,3467)(200,435,570)(201,413,1398)(203,424,3298)(204,2913,3502)(205,2919,3507)(206,2927,3517)(207,2938,3530)(209,1921,3560)(210,2422,1031)(212,1887,2549)(213,3007,3607)(214,560,3295)(215,1632,2034)(216,3037,3639)(217,3050,1990)(218,474,616)(219,2099,3672)(221,3099,1759)(222,3102,309)(224,3129,3736)(225,2334,499)(226,3141,3747)(227,2888,496)(229,3186,3796)(230,841,2873)(231,513,3821)(232,751,3463)(233,3226,2652)(234,509,663)(235,2344,3859)(237,1677,960)(238,3276,1240)(239,1179,964)(240,523,440)(241,3301,2986)(242,3312,1205)(243,2080,2850)(244,530,689)(245,3349,1918)(247,3285,3975)(248,528,1114)(249,556,426)(250,3395,3709)(252,558,4016)(253,3420,917)(255,422,4050)(256,3444,4056)(257,1235,4061)(259,3472,4079)(263,3484,551)(265,3160,1254)(267,3510,4116)(268,3519,579)(269,3538,4142)(270,1236,3931)(271,1854,2162)(272,589,761)(273,1718,1257)(274,3576,4182)(275,1164,3643)(276,598,772)(277,2661,2407)(279,325,3048)(280,3621,4219)(282,3642,697)(283,1286,1621)(284,3660,811)(285,3515,4026)(286,3678,4272)(287,1481,2846)(288,623,804)(289,3712,2928)(290,951,388)(291,3720,4318)(292,632,815)(293,1934,755)(295,2068,4141)(296,3767,3220)(297,3775,4372)(298,2219,3018)(300,1523,2074)(301,1379,734)(303,3832,3769)(304,3840,1622)(305,3848,4440)(306,1668,2020)(307,3864,713)(308,670,441)(311,2797,1225)(312,521,1522)(313,2448,4173)(315,3647,4002)(316,3940,2789)(317,2493,3523)(318,2816,617)(320,1603,872)(321,696,342)(322,3941,3289)(324,1664,4573)(327,1574,1732)(328,710,912)(329,4034,4612)(330,3279,4617)(331,4045,3937)(333,4058,1233)(334,2804,4636)(335,3569,3162)(336,1268,2813)(337,731,940)(338,4084,1812)(340,712,642)(341,2372,1991)(343,4097,2993)(344,3988,453)(345,4105,3232)(346,747,903)(349,3339,1995)(351,784,4714)(354,4165,601)(356,3861,2417)(357,1128,3811)(358,3480,4753)(359,1089,2746)(360,1415,2711)(361,2300,3548)(362,780,1001)(363,4224,4786)(365,4229,1654)(367,4244,3559)(368,4264,3095)(369,3803,1723)(371,4286,4844)(372,4031,4854)(373,4265,4864)(374,2145,620)(376,4316,1435)(377,4323,4887)(378,1071,1141)(380,1666,3922)(381,2851,3336)(382,585,1055)(383,4208,4912)(385,4380,1708)(386,4386,881)(387,2198,2153)(389,836,1074)(390,4382,4965)(391,1083,2147)(392,4419,4969)(393,845,947)(394,4429,4057)(396,3957,4804)(397,1449,540)(399,2965,3137)(400,715,2487)(401,3875,5011)(402,1519,4339)(403,1278,2472)(405,3230,5027)(406,4492,4608)(407,1709,4001)(408,4412,4729)(409,876,1124)(410,2951,2470)(412,4529,5069)(415,3529,1116)(416,3853,3015)(417,824,5086)(418,3492,3823)(420,3563,1323)(421,901,580)(427,4599,5129)(429,1306,2038)(430,1387,1801)(431,2303,4178)(432,1186,1824)(433,927,1189)(434,4630,3495)(436,4162,1711)(437,3460,4835)(438,4404,3610)(444,1917,5170)(446,1784,4534)(447,3350,3142)(449,4672,977)(450,2426,3841)(452,3838,525)(454,3960,674)(455,3331,5216)(456,4709,2393)(457,968,1241)(458,4719,5233)(460,2268,3711)(462,3882,5240)(463,4737,5246)(464,983,1258)(465,4748,5257)(467,4242,3318)(468,1148,2267)(470,4767,1201)(471,4490,2218)(472,1767,2130)(473,1195,5277)(475,4799,1919)(476,1733,3203)(477,1213,1271)(478,4818,5312)(480,4831,3828)(481,1595,4985)(482,622,2970)(483,1025,1309)(484,1601,3474)(486,862,1876)(487,1109,2194)(488,3397,1970)(489,1712,654)(490,1039,1326)(493,4892,4984)(497,3300,4268)(498,4874,5382)(500,1516,1566)(501,2914,4587)(502,1063,766)(505,4945,3292)(506,4948,5424)(507,3077,5426)(508,4190,529)(510,4410,4464)(511,4971,3779)(512,4974,5130)(514,605,1266)(515,4750,4332)(516,1091,603)(517,4993,793)(518,594,1706)(519,2076,814)(522,3313,1979)(524,3533,5213)(526,1085,1834)(527,988,894)(531,1594,3656)(532,2201,3586)(533,5042,4582)(534,5049,2382)(535,4884,5443)(536,5058,698)(537,1132,1439)(538,954,3551)(539,700,820)(541,5080,3405)(543,2657,5527)(544,3211,1382)(546,1773,2207)(547,1486,2826)(549,3167,4868)(550,2357,2990)(552,1162,1474)(553,4368,4434)(555,5121,5552)(557,3499,1935)(559,1177,1491)(562,5147,5137)(563,5151,3542)(564,3217,1630)(565,2905,3518)(566,4632,946)(567,4042,1002)(568,1197,1511)(569,5162,2885)(571,2760,3087)(573,2952,588)(575,640,1183)(576,3466,1900)(577,1214,1517)(578,2662,2188)(581,1220,1539)(582,2363,2606)(584,3846,1256)(587,1923,2179)(590,3752,5085)(591,2236,3207)(592,2763,4649)(593,1090,3904)(595,1959,5178)(596,1249,1577)(597,1137,4904)(599,3565,4738)(600,5249,5640)(602,2029,1009)(604,4246,4813)(606,5206,1562)(607,932,2252)(608,2926,5172)(609,1146,1605)(610,5055,2492)(612,1633,5043)(613,3468,3739)(614,4585,5662)(615,5287,2044)(618,5300,5681)(621,2159,4972)(624,2312,926)(625,5330,1431)(626,4073,5705)(627,1495,4751)(628,638,1377)(629,1499,4334)(630,1315,1659)(631,1758,675)(633,1550,5491)(634,1371,2635)(635,5359,2071)(636,3219,4880)(637,4514,5393)(639,864,1679)(641,3670,4458)(643,1355,2972)(645,4267,2611)(646,5385,3341)(648,5001,3863)(649,2810,3019)(650,5410,5758)(651,2137,4763)(652,1956,3457)(653,5176,5448)(655,3291,2973)(657,1839,5348)(658,2355,949)(659,2307,5779)(661,1375,1727)(662,4555,2333)(664,2119,4192)(665,1890,5562)(667,790,3754)(668,4619,5252)(669,5454,3319)(671,1012,5795)(672,745,4006)(673,5462,2751)(676,4307,2006)(677,1367,1658)(678,5472,1418)(679,1406,1365)(680,5340,1304)(682,737,1928)(683,5485,1409)(684,4086,5634)(685,5488,2083)(686,726,1281)(687,1421,1783)(688,3908,1769)(690,4494,1596)(691,5497,5820)(693,5505,4771)(694,1941,5509)(695,5471,2132)(699,2715,4481)(701,1687,1459)(702,1454,1825)(703,2170,5842)(704,1464,1819)(705,1555,2342)(706,1763,3649)(708,4730,3723)(709,5540,5683)(714,850,3089)(716,882,3651)(717,1480,1857)(718,1161,5536)(720,4557,3090)(721,4129,2874)(722,4008,4852)(723,2692,802)(725,3147,4860)(727,3953,4206)(729,1462,4538)(730,3384,4388)(732,5576,2501)(733,1702,5837)(735,4879,3885)(736,2359,5882)(738,1518,1902)(739,3200,3812)(741,890,3441)(742,3760,2976)(744,3448,1509)(746,3490,1538)(748,1600,4775)(749,2713,5401)(750,1742,2474)(752,1544,1381)(753,1647,2728)(754,2282,3982)(756,2943,4319)(757,1182,5829)(758,5047,5898)(759,1557,1944)(760,4794,3509)(762,5623,4337)(763,5624,5292)(767,2515,1963)(768,1983,3580)(769,2210,2688)(770,1305,1650)(771,1123,2215)(773,1242,5775)(774,3813,4497)(776,5344,1531)(777,4361,2309)(778,2644,5185)(779,4111,2112)(781,4359,3378)(782,3891,4477)(783,4891,4053)(785,1807,1310)(786,1490,2129)(787,1612,1185)(788,5466,2232)(791,806,5402)(792,1901,5626)(794,1624,2025)(795,2077,4583)(796,3923,3149)(797,4278,5695)(799,3414,5964)(801,1446,4716)(803,982,2046)(805,4613,5654)(808,4255,1729)(809,5101,1560)(810,4194,2869)(812,4220,5247)(813,1802,3249)(816,3932,4696)(817,1119,1272)(819,4917,5316)(821,5419,1408)(823,5690,2284)(825,1806,5864)(826,2446,3315)(827,4103,2081)(828,1689,2107)(829,3956,5549)(830,4447,5366)(832,1697,2117)(833,5749,3475)(837,1988,4501)(838,1084,5468)(839,5646,5373)(840,1166,4656)(842,2249,1972)(843,1719,1370)(844,2902,5508)(846,3899,4379)(847,4357,4119)(848,3744,1938)(849,974,5604)(851,1152,1546)(852,3822,3299)(853,2400,2127)(854,1737,2167)(855,5790,4204)(857,3043,1180)(858,1289,2886)(859,5031,1849)(860,1447,2180)(863,3925,4027)(865,4581,5104)(867,5706,3269)(868,5548,1427)(869,2008,3536)(870,3598,4200)(871,4014,5460)(874,4554,5767)(875,3574,3653)(877,3306,1814)(878,4958,1880)(879,1327,6033)(880,2969,1636)(883,1789,2229)(884,5095,2607)(885,2632,5849)(886,2326,1100)(887,1798,2239)(888,4918,5067)(891,5830,2864)(892,2531,3425)(893,1396,2256)(895,5835,5530)(897,2709,1740)(898,4745,5336)(899,2756,3553)(900,1190,3427)(902,3122,2185)(904,1302,4955)(905,3073,3890)(906,1838,1178)(908,5311,2538)(909,2726,2781)(910,1843,2293)(911,4449,1751)(914,1607,1581)(918,2724,5140)(919,5262,4424)(920,2829,5376)(921,2065,2725)(922,1862,2313)(923,5866,4869)(925,1021,1343)(928,2350,4287)(929,5777,5048)(930,2992,4575)(931,2452,5839)(933,3944,2261)(934,1881,2339)(935,4091,2463)(937,1131,5808)(938,1534,957)(939,4400,5769)(941,1336,1047)(942,4658,3732)(944,3079,5223)(945,2005,4284)(948,1283,4677)(950,5281,4467)(952,5893,2045)(953,1913,1672)(955,1692,1014)(956,5222,5098)(958,1219,2383)(959,2960,2331)(962,2168,3805)(963,2627,2896)(965,4500,1500)(966,5665,1730)(967,1438,4576)(969,2192,3872)(970,4295,3111)(971,4760,3406)(972,5194,3550)(973,1912,3476)(975,1952,1910)(976,5418,5502)(978,2962,4565)(979,1960,2430)(980,3252,4611)(981,5727,1041)(984,5232,3120)(985,2630,4639)(986,4504,1106)(987,2011,5923)(989,1121,2450)(990,5386,2673)(991,1410,3876)(992,1985,2296)(993,2512,3047)(995,1797,4000)(996,3360,3967)(997,1330,4517)(998,3390,1611)(999,1776,2465)(1000,5375,5575)(1003,5933,5404)(1006,4934,4941)(1007,1433,4003)(1008,5152,4570)(1010,1450,4803)(1011,2012,2491)(1015,1726,5518)(1016,3027,1808)(1017,5512,2014)(1020,3695,4682)(1022,5958,4635)(1023,2036,1341)(1024,3146,1290)(1026,2157,5806)(1027,3235,1788)(1028,3750,1695)(1029,4675,2954)(1030,1669,5056)(1032,5726,4692)(1033,2659,4273)(1034,3696,4036)(1035,2060,2551)(1036,1868,5986)(1038,4621,4896)(1040,3262,2722)(1042,4392,2749)(1043,4761,1598)(1044,3277,2164)(1045,1710,1915)(1046,2695,1482)(1048,3857,3045)(1049,1117,2576)(1052,3234,1700)(1054,3354,4618)(1056,4358,4508)(1057,5255,2480)(1059,3259,6097)(1060,5132,3540)(1061,2332,3100)(1062,5989,1416)(1064,1191,3972)(1065,4528,3728)(1066,2821,4415)(1067,5165,5261)(1068,5998,5658)(1069,2121,2616)(1070,2151,1614)(1072,1369,2624)(1073,1335,2066)(1075,2542,2140)(1076,1405,2139)(1078,5333,4101)(1079,4519,2042)(1080,1909,5003)(1081,1587,3293)(1082,2226,5016)(1087,3452,2425)(1088,3418,4826)(1093,4341,5427)(1094,4667,4022)(1095,3839,4054)(1096,4040,4580)(1097,2171,2676)(1098,2508,1886)(1099,4375,3214)(1101,1334,1835)(1102,2594,3159)(1103,2039,2689)(1104,3066,2633)(1107,1756,2802)(1108,4814,2819)(1110,1673,3800)(1112,5437,3531)(1113,2409,4443)(1115,5608,5235)(1118,5455,3740)(1120,2459,2651)(1122,1874,3337)(1125,3854,3726)(1126,1298,1265)(1129,4177,1616)(1130,4746,2457)(1133,2120,3193)(1134,3831,4546)(1135,2466,3628)(1136,2265,1936)(1138,4684,4694)(1139,2247,2528)(1140,5351,5992)(1142,2767,1750)(1143,6041,2834)(1145,1852,3106)(1147,5451,1777)(1151,4594,2720)(1153,3436,6023)(1154,5793,5345)(1155,2277,2790)(1156,4048,1170)(1157,6048,1637)(1159,1691,1793)(1160,3238,4364)(1163,5785,1649)(1165,3317,2758)(1167,2197,1452)(1168,2298,1339)(1169,2672,5714)(1171,3409,2387)(1172,2301,2823)(1173,1260,5173)(1175,5078,4964)(1176,2069,4916)(1184,2319,2844)(1187,2324,2336)(1188,2831,6138)(1193,4707,2420)(1196,3486,2881)(1198,2496,1506)(1199,2893,4646)(1200,2618,4733)(1202,2923,5880)(1203,2351,2877)(1204,1520,5936)(1206,4422,5783)(1207,1216,1792)(1208,1968,6094)(1210,5493,4317)(1211,1942,3521)(1212,2225,3928)(1215,3088,1817)(1217,6072,5607)(1221,2669,5884)(1222,3245,3028)(1223,5685,3134)(1224,5874,6140)(1226,1353,3256)(1227,3250,2849)(1228,5697,5772)(1229,1331,2917)(1230,1263,3919)(1231,4739,4563)(1237,4280,4678)(1238,4850,5189)(1239,2405,2935)(1243,5873,3164)(1245,3176,2126)(1246,2894,2918)(1247,5009,4523)(1248,4893,4110)(1250,4741,4297)(1251,1754,1264)(1252,3556,3169)(1253,6063,3622)(1255,2435,1701)(1259,2978,5106)(1262,4841,5560)(1267,3025,4779)(1269,3481,1532)(1270,5574,5313)(1273,4137,5024)(1274,2953,5613)(1275,4513,5006)(1276,3483,4913)(1277,2424,1545)(1279,1287,2102)(1280,2759,5265)(1282,2479,3014)(1285,4099,5015)(1288,5907,5499)(1291,4052,1512)(1292,5657,5675)(1293,2499,3035)(1296,3247,4533)(1297,5818,1655)(1299,5899,3348)(1300,2694,6112)(1303,3215,5912)(1307,2529,2640)(1308,1755,4755)(1311,2306,2699)(1312,5688,4371)(1313,4742,4932)(1314,4308,6124)(1316,6107,5999)(1317,3819,3544)(1318,2584,3184)(1319,5970,2471)(1320,4427,4531)(1321,5449,4276)(1322,2556,3096)(1324,3699,3280)(1325,3708,3498)(1328,1585,4397)(1329,3847,5161)(1332,3722,6012)(1333,5703,4383)(1337,3669,5335)(1338,2583,2131)(1340,3143,1916)(1342,1738,1785)(1344,1583,3674)(1345,5813,4124)(1346,5225,5641)(1347,2591,3138)(1350,1356,4511)(1351,1810,5610)(1352,5887,4524)(1354,2602,3153)(1358,2981,4004)(1359,5615,5798)(1360,4510,2410)(1361,3969,6122)(1362,5879,4650)(1363,3326,3150)(1364,3844,1895)(1366,6120,4154)(1368,1584,5408)(1373,3701,5950)(1374,3909,5908)(1376,4542,4131)(1378,2663,2327)(1380,3727,5036)(1383,1563,4553)(1385,2573,2997)(1386,6127,3806)(1388,3237,4305)(1389,5987,5871)(1390,2517,5131)(1392,4790,5691)(1393,1889,4483)(1394,3856,3323)(1395,1536,2867)(1399,5417,2412)(1400,5117,3261)(1401,2183,1645)(1402,1826,4109)(1403,2264,1663)(1404,5120,4592)(1407,2553,4389)(1411,5965,2322)(1412,2705,2882)(1413,3667,5322)(1414,4607,3694)(1419,3534,4089)(1420,4240,2982)(1422,3704,5656)(1423,4855,4039)(1424,2184,4699)(1425,3617,2959)(1426,2328,3175)(1428,3835,3098)(1429,3991,5742)(1430,2732,3309)(1434,5487,5283)(1436,2968,4015)(1437,2743,2574)(1440,3012,3202)(1441,4157,5234)(1443,3949,4648)(1444,4113,4712)(1445,3139,3329)(1448,3700,4336)(1451,4214,2539)(1453,3497,5224)(1455,1818,3353)(1456,3602,1846)(1457,3442,3224)(1458,2302,4299)(1460,2776,2860)(1461,4935,6148)(1463,6129,6035)(1465,2033,3392)(1466,3993,5621)(1467,2830,3417)(1468,2799,3389)(1469,4373,3454)(1470,5870,3526)(1471,3886,4622)(1472,2806,2856)(1473,2224,2729)(1475,3016,3270)(1478,4167,2580)(1479,4473,2196)(1483,3774,3874)(1484,3842,5572)(1487,3987,5869)(1488,5534,4600)(1489,5927,2262)(1492,2837,5647)(1493,5442,5969)(1494,5577,3650)(1496,2617,2297)(1497,2537,2390)(1498,2753,2082)(1501,2852,3383)(1502,4886,5784)(1503,5867,5074)(1504,3155,2787)(1505,2100,2325)(1507,5515,2248)(1508,3658,2177)(1510,3274,3424)(1513,3753,3379)(1515,5571,4711)(1521,4121,1749)(1524,4331,4123)(1525,2889,1722)(1526,4830,3603)(1528,4792,4239)(1529,3731,5326)(1530,4258,5350)(1533,2385,5434)(1535,2865,1865)(1537,5747,3458)(1540,3911,3132)(1541,5997,4369)(1542,3396,5389)(1543,3284,1982)(1547,3131,5948)(1548,1743,4866)(1551,3557,2958)(1552,5093,4196)(1554,4074,1898)(1556,4108,4186)(1558,2577,5803)(1559,5840,4527)(1561,4663,3907)(1564,1771,3535)(1565,3283,5177)(1567,2891,2750)(1568,2340,1967)(1569,1993,2294)(1571,2593,4096)(1572,4863,6040)(1573,4153,2929)(1575,2956,3552)(1576,1704,4606)(1580,4723,3222)(1582,2269,1821)(1586,1977,3567)(1588,5516,2286)(1589,5409,4408)(1590,2977,3573)(1591,3850,2253)(1593,6039,5524)(1597,2233,2536)(1599,4620,3393)(1602,2103,5107)(1604,6061,5044)(1606,5844,4441)(1609,6056,3768)(1610,4911,5689)(1615,2364,5833)(1617,2666,6058)(1618,1932,5127)(1619,3020,2341)(1620,6004,5669)(1623,3910,4213)(1625,3773,4981)(1626,4151,6064)(1627,2124,5594)(1628,5464,3218)(1629,4290,5738)(1631,2348,5843)(1634,2714,6043)(1635,4263,4021)(1638,3053,3657)(1639,4293,5452)(1641,5800,4674)(1642,5827,2028)(1643,4898,4223)(1644,2737,4687)(1646,4107,4335)(1648,3070,2987)(1651,4352,4403)(1653,4209,5875)(1656,1926,2283)(1657,3085,2994)(1660,1765,4518)(1661,5096,2017)(1665,3469,3366)(1667,3577,3820)(1670,4552,3746)(1671,3104,3710)(1675,4704,4710)(1676,6139,4163)(1678,4558,1975)(1680,5712,4261)(1681,5293,3213)(1683,2271,2859)(1684,3880,2193)(1685,4525,6078)(1688,4197,4845)(1690,4605,4975)(1693,2016,4936)(1694,2070,3698)(1696,4597,2710)(1698,5020,5810)(1699,3725,6092)(1703,5711,3471)(1705,3161,3772)(1713,4564,2522)(1714,4505,4493)(1716,3733,6008)(1717,1904,2166)(1720,2875,2240)(1721,2603,5971)(1724,4354,4243)(1725,3091,2755)(1728,5636,5804)(1731,3465,3125)(1734,3400,4881)(1735,3216,2507)(1736,1848,4872)(1739,4539,4416)(1744,2588,3304)(1745,3231,3845)(1746,3010,5746)(1748,3428,5135)(1752,4725,4159)(1753,2437,4871)(1757,4479,5630)(1760,4973,6049)(1762,3959,5323)(1764,2148,3680)(1770,1948,3834)(1772,2149,3275)(1774,5797,4588)(1775,4117,3072)(1778,4521,2786)(1780,5996,4731)(1781,2035,2541)(1782,4407,3588)(1786,6141,5035)(1787,3892,3342)(1790,4256,3303)(1791,5416,5050)(1794,3225,1997)(1795,2814,5304)(1796,3314,3443)(1799,5394,2681)(1800,5921,4376)(1803,2091,3724)(1804,5990,2246)(1805,3327,2089)(1809,3335,2323)(1813,4633,3040)(1815,1866,2516)(1816,5083,5066)(1822,4801,6134)(1823,6151,4070)(1827,3686,3635)(1828,1961,3936)(1829,4140,5617)(1830,3503,6047)(1831,5959,4785)(1832,3372,2155)(1833,5362,3359)(1836,4120,3579)(1837,4088,4661)(1840,5353,5719)(1842,2608,5963)(1844,2399,3947)(1845,4227,3561)(1847,5903,2087)(1850,4857,4087)(1853,4356,1949)(1855,3404,4011)(1856,5865,3592)(1858,4470,5371)(1860,6154,5941)(1861,3896,3627)(1863,2658,2041)(1864,5868,6013)(1867,3423,3894)(1869,3281,4018)(1870,3429,2828)(1872,5072,5910)(1873,6055,4670)(1875,2545,5672)(1878,3324,5982)(1879,3003,3759)(1882,6000,5934)(1883,1999,3593)(1884,4848,4705)(1885,5494,4385)(1888,2163,5354)(1891,5855,5004)(1892,3450,3221)(1893,6017,4732)(1894,2418,5514)(1896,3455,4068)(1897,3119,3630)(1903,5750,3612)(1906,2544,4949)(1907,5649,4977)(1908,2251,2941)(1911,2223,2090)(1914,2704,5169)(1920,5846,3986)(1922,2276,5947)(1924,5890,4963)(1927,4853,4727)(1929,3076,3590)(1930,2144,6075)(1931,4885,2843)(1933,4743,5925)(1939,2807,1943)(1940,4640,2482)(1945,4815,4343)(1950,4847,2109)(1951,3316,3950)(1953,4717,2429)(1954,2946,4451)(1955,2656,2394)(1957,3609,2564)(1958,2053,3179)(1962,5142,3676)(1964,5250,4720)(1965,4148,2578)(1966,3373,5500)(1971,5851,5302)(1973,5105,2562)(1976,3787,3459)(1978,4659,5377)(1980,5023,3942)(1981,4681,5619)(1986,4112,5037)(1987,4302,2316)(1994,5937,5666)(1996,4076,4326)(2000,4063,4795)(2001,4507,3101)(2002,5367,3399)(2004,5306,4143)(2007,3002,2822)(2010,5764,3794)(2013,2999,3364)(2015,4366,2419)(2018,5517,4902)(2019,3338,4222)(2021,5166,2626)(2023,3629,3719)(2024,4638,6057)(2026,4344,5720)(2027,4559,4591)(2030,5984,4465)(2031,4778,3718)(2032,2088,4241)(2037,5935,3352)(2040,4823,5259)(2043,3662,3830)(2047,5565,6135)(2048,2587,2317)(2050,2741,5817)(2052,6153,4756)(2054,4274,5699)(2055,3334,2575)(2056,3992,2136)(2057,6044,5358)(2058,3681,4283)(2059,2454,2111)(2061,5447,2731)(2062,4825,2945)(2063,3878,2708)(2064,4768,2092)(2067,5692,4846)(2073,5263,3743)(2075,3074,4457)(2079,5538,5357)(2084,5457,3646)(2085,3714,3906)(2086,2260,3180)(2093,3781,3017)(2095,3730,2649)(2096,3410,5922)(2098,4363,4164)(2104,4598,2110)(2105,3738,2610)(2106,6100,3520)(2108,6111,4780)(2113,3664,6028)(2114,2352,3439)(2115,3755,4351)(2116,4395,5753)(2118,5981,3008)(2122,2650,5315)(2123,4942,4195)(2125,4215,4653)(2128,2963,4377)(2133,5478,4819)(2134,2879,3545)(2141,5008,5872)(2142,2386,5881)(2143,2712,5310)(2146,4185,5944)(2150,3361,5507)(2152,3814,4017)(2154,5276,2857)(2156,5203,6083)(2161,5450,2186)(2165,2966,3451)(2169,2931,2402)(2172,2310,2440)(2173,4556,3188)(2174,5596,3994)(2175,4933,3970)(2176,3310,4651)(2178,3852,4445)(2187,3376,2245)(2189,3866,3374)(2190,3763,5826)(2191,4128,2320)(2195,3401,4471)(2199,5586,4170)(2200,5780,6113)(2202,2484,4469)(2203,5484,2449)(2205,5143,3511)(2206,3041,5062)(2208,2628,5256)(2209,4381,2299)(2211,3691,5438)(2212,4248,3504)(2213,2273,4485)(2214,5425,4281)(2216,4664,3976)(2217,6021,2942)(2221,4303,3107)(2227,3915,4062)(2228,4782,4037)(2230,4816,5952)(2234,2868,2369)(2235,3786,4106)(2237,3927,4202)(2241,6089,3368)(2243,5579,6110)(2244,5659,5589)(2250,2955,5214)(2254,3948,3595)(2255,2585,3242)(2257,5812,5392)(2258,4992,3426)(2263,4520,3253)(2266,5171,5411)(2270,4083,5700)(2275,3191,3905)(2278,5360,5412)(2279,4787,3902)(2280,4482,4822)(2281,3543,5550)(2285,3721,4671)(2287,3990,3263)(2288,3867,3849)(2289,3258,5542)(2290,2311,4019)(2291,5832,6156)(2292,3042,5938)(2304,2613,5480)(2305,4486,4740)(2308,3158,4081)(2314,3715,5057)(2318,3524,3860)(2321,5459,5528)(2329,5559,3968)(2335,5285,2871)(2337,4051,4625)(2338,4922,4516)(2343,4230,4824)(2345,4615,3913)(2347,5495,5201)(2349,4535,6060)(2353,4641,5260)(2354,6117,5379)(2356,5902,4708)(2358,6125,5918)(2360,4304,5687)(2361,3636,3464)(2362,5995,5422)(2366,5631,5590)(2367,4669,3362)(2370,5511,4897)(2371,5920,3572)(2373,2805,4652)(2374,5811,2719)(2375,5901,3606)(2377,4125,5470)(2378,5204,4843)(2380,5051,3246)(2384,3623,5406)(2388,4235,5957)(2389,4100,4478)(2391,5342,3897)(2392,4405,5733)(2395,4387,3756)(2397,3766,3391)(2398,2794,5236)(2401,4430,3851)(2404,3924,4654)(2406,2949,5674)(2408,3501,4637)(2411,4472,3614)(2413,3333,4428)(2414,4132,4697)(2415,6131,4537)(2421,4930,5146)(2427,5441,5303)(2428,4873,2559)(2431,2554,5679)(2432,3958,2784)(2434,3581,4995)(2436,2872,5179)(2438,5122,5052)(2439,3870,3103)(2441,4396,4390)(2442,5892,6046)(2443,4313,4345)(2444,3388,3898)(2447,3196,3173)(2451,4370,3229)(2455,4647,2932)(2456,4098,5556)(2458,4540,3512)(2460,5005,4629)(2461,4093,5591)(2462,4502,5116)(2464,4724,3596)(2467,3470,3194)(2469,5781,6128)(2473,3154,4484)(2475,5751,3506)(2476,5650,3741)(2477,4203,4765)(2478,3112,5716)(2481,3599,5087)(2483,5403,3223)(2485,3888,2836)(2486,4584,5238)(2489,4179,2696)(2490,5523,2498)(2495,4764,3067)(2497,5397,5319)(2500,2947,2798)(2502,3751,4476)(2503,4544,5531)(2504,3126,5730)(2505,4161,6059)(2506,4232,3462)(2509,4043,4832)(2513,4294,3677)(2514,3307,5038)(2518,6038,5159)(2519,2811,4311)(2520,4991,4398)(2521,4251,2809)(2523,4766,5978)(2525,5757,5809)(2526,3690,2646)(2527,4954,3703)(2532,4568,3930)(2533,4269,2766)(2534,2998,3320)(2535,4439,3363)(2540,2866,2742)(2546,5383,5814)(2547,5771,5773)(2548,5209,6045)(2550,4291,4849)(2552,4929,4474)(2555,4257,2796)(2557,2820,5789)(2558,2765,2682)(2560,4330,2667)(2561,3717,4571)(2563,4411,5972)(2565,4950,4627)(2566,6025,4774)(2567,3648,3328)(2568,5891,3116)(2569,2730,4342)(2570,5477,3999)(2572,5943,2734)(2579,2625,5421)(2581,4877,5732)(2582,4875,3594)(2586,3685,4770)(2589,4328,4104)(2590,2863,4914)(2592,5819,4324)(2595,4183,2921)(2596,5184,3912)(2597,4340,4174)(2598,3575,3271)(2599,2847,4578)(2600,3789,5148)(2601,3996,5973)(2604,2761,5682)(2605,4489,5168)(2612,3748,4145)(2614,2907,4921)(2615,3493,5595)(2620,5082,5014)(2621,3097,4007)(2622,5413,5761)(2623,3900,4218)(2631,4495,4990)(2634,3177,3933)(2636,3780,2900)(2637,2974,4254)(2639,5028,3798)(2642,5625,3583)(2643,4689,2980)(2645,4136,5473)(2648,5063,4603)(2653,3478,3251)(2654,5317,4693)(2655,4947,6005)(2660,2684,4924)(2664,5905,5299)(2668,4060,4783)(2671,3419,4024)(2674,3375,4589)(2675,5932,4759)(2677,5533,3001)(2678,3446,5091)(2680,6108,4749)(2683,3212,5825)(2685,5369,4349)(2687,5215,3322)(2690,5295,6095)(2693,5445,3030)(2697,3192,2876)(2698,4041,3980)(2700,3267,5007)(2702,5756,4035)(2703,4800,3644)(2706,6030,4923)(2707,6015,4899)(2716,3624,5956)(2718,5064,6118)(2721,3513,4827)(2723,5592,4289)(2727,4551,4169)(2733,5275,3824)(2735,5928,3737)(2736,4353,5314)(2738,5710,5541)(2739,3943,5967)(2740,4462,5040)(2744,4829,3735)(2745,5361,5645)(2747,5329,5968)(2748,5911,3357)(2752,4512,3869)(2757,3255,4999)(2764,5823,3555)(2768,2770,4536)(2769,5183,3136)(2771,4698,5724)(2774,3130,3190)(2775,3547,5614)(2777,6142,6080)(2778,4541,5077)(2779,5384,5065)(2782,3197,3615)(2785,4908,5701)(2788,4090,4758)(2791,5707,3568)(2792,4596,5857)(2795,3825,3918)(2800,5853,5498)(2801,5581,3608)(2808,2854,4180)(2812,6042,5145)(2817,3140,4927)(2824,5915,3640)(2827,4986,4487)(2833,4374,5966)(2835,3815,3431)(2838,4861,6034)(2840,4275,3006)(2841,5111,5339)(2842,3009,6133)(2845,4610,4665)(2848,5841,4988)(2853,5125,4726)(2855,4668,4808)(2858,4421,5415)(2861,5081,4309)(2862,4322,4865)(2878,5885,4082)(2880,4252,6091)(2883,4569,5338)(2887,5664,4360)(2890,6115,4314)(2892,4688,4715)(2895,3228,4312)(2898,3671,6136)(2899,3702,3065)(2901,3693,4417)(2903,3734,5372)(2906,5229,5034)(2908,5296,4706)(2909,5088,4994)(2911,3157,2924)(2912,4989,5792)(2915,4409,3758)(2916,6109,4127)(2920,4806,6076)(2922,5155,5745)(2925,4480,4384)(2930,4642,5717)(2933,4919,5070)(2934,5791,5119)(2936,6104,4047)(2937,3195,5774)(2939,4468,4420)(2940,5227,4152)(2944,5637,5217)(2948,4703,5220)(2950,3117,5000)(2957,5158,5743)(2961,5458,4979)(2964,5391,4455)(2967,4199,5128)(2971,3962,3782)(2975,3584,6074)(2979,4962,5847)(2983,4577,3616)(2984,5068,4362)(2985,4549,5526)(2988,3485,4446)(2989,3121,4064)(2991,6068,4735)(2996,5977,5980)(3000,3776,4442)(3004,5475,3108)(3005,4757,5264)(3011,5270,4092)(3013,4769,5272)(3021,4680,4522)(3022,5602,5297)(3023,5861,4025)(3024,4810,5076)(3026,3961,5856)(3031,3817,3178)(3032,5053,5244)(3033,4788,4997)(3034,3951,5532)(3038,5164,4071)(3039,4094,5301)(3044,3209,5677)(3046,4685,4624)(3049,4838,5728)(3051,5279,4450)(3052,5398,4586)(3054,3437,3311)(3055,5108,3587)(3056,6147,3788)(3057,5237,4509)(3058,4561,3983)(3059,4059,6090)(3060,5786,4237)(3061,3124,5318)(3062,5639,4488)(3064,5653,3075)(3068,3296,4828)(3069,4188,5961)(3071,5193,3604)(3078,4279,4236)(3080,3903,3105)(3081,5949,3826)(3083,4628,3133)(3084,3421,4966)(3086,5288,5568)(3092,4784,5585)(3093,5017,3152)(3094,4856,3430)(3109,4728,3934)(3110,3273,5012)(3113,3394,4701)(3114,3199,5341)(3118,4530,4448)(3128,3156,5271)(3135,4752,5395)(3144,5704,3887)(3145,3208,5759)(3148,5435,5381)(3151,4905,4249)(3163,3881,5824)(3165,4160,4426)(3166,5601,6007)(3168,3408,5405)(3170,3873,6031)(3171,4393,6036)(3172,4634,5407)(3181,4461,5365)(3183,5633,5748)(3185,3566,4078)(3187,4951,5202)(3189,3554,3264)(3198,4077,3477)(3201,5545,5428)(3204,4987,5444)(3205,4310,5962)(3206,4961,3917)(3210,3920,5134)(3227,5739,4175)(3233,4114,4144)(3236,3239,5018)(3240,4882,4391)(3241,3619,5453)(3244,5039,4247)(3248,4937,4691)(3254,6027,5566)(3260,5686,5876)(3265,5635,5924)(3266,3771,6002)(3272,5432,5529)(3278,5114,3514)(3282,3539,5266)(3286,5097,4315)(3287,3571,4211)(3288,5021,5483)(3294,4198,5661)(3305,5778,4560)(3308,3833,4532)(3321,3926,3855)(3325,3836,4515)(3330,3973,4402)(3332,5985,3964)(3340,4772,3631)(3343,5609,5805)(3344,5061,5254)(3345,5828,4547)(3347,4679,3916)(3351,5230,4155)(3355,4722,5253)(3356,4288,5765)(3367,3981,4212)(3369,6079,6093)(3370,5396,4134)(3371,3716,5991)(3377,5834,5286)(3381,3661,3985)(3382,5788,4550)(3385,4623,5535)(3386,3403,3797)(3387,5102,5539)(3398,4870,4736)(3402,5632,5073)(3407,4259,3527)(3411,5150,5521)(3412,3946,5737)(3413,5940,5544)(3415,4028,3666)(3416,5094,5988)(3422,4133,3792)(3432,4498,3843)(3433,5141,5211)(3434,4009,4773)(3435,5356,3500)(3438,4890,4146)(3440,6121,4548)(3445,5744,4590)(3447,5555,3984)(3449,3705,5274)(3453,5693,6014)(3456,5618,5886)(3473,4695,5863)(3479,3762,5388)(3482,4221,5245)(3487,5736,4394)(3488,3683,4171)(3489,5136,5325)(3491,5673,3777)(3494,4210,3871)(3496,5181,5598)(3505,4329,4833)(3508,5182,3654)(3516,6062,4713)(3522,4616,4943)(3525,5180,4491)(3528,5208,5611)(3532,5118,4867)(3537,5845,4700)(3541,4796,5942)(3546,5241,4020)(3549,5993,4432)(3558,5103,4118)(3562,3645,6145)(3564,4012,3974)(3570,3745,4915)(3578,4139,4762)(3582,5676,4413)(3585,3883,6103)(3589,4156,6077)(3591,4225,3663)(3597,5752,4425)(3600,5115,5584)(3601,5588,5567)(3605,3929,4147)(3611,5355,5346)(3613,4944,5953)(3618,3778,5033)(3620,5888,5075)(3625,5916,6098)(3626,5974,5309)(3632,4066,4499)(3633,5929,3770)(3634,6155,4662)(3637,5290,5670)(3638,4660,5883)(3641,4938,4777)(3652,4836,5157)(3655,5308,4456)(3665,4789,4931)(3668,3682,5364)(3673,5547,4976)(3675,4982,3692)(3679,5167,4574)(3684,5387,5740)(3687,3829,3921)(3688,5334,5525)(3689,4365,4566)(3697,4602,4579)(3706,5109,5138)(3707,4260,3749)(3713,6099,4858)(3729,4072,4095)(3742,5506,3858)(3757,5174,4435)(3761,4900,5231)(3765,3837,4643)(3783,5200,4820)(3784,4702,6116)(3785,4032,5561)(3790,5110,4812)(3791,5787,5343)(3793,4840,4069)(3795,5755,5374)(3799,4626,4321)(3801,6006,4075)(3802,5282,5307)(3804,5858,6088)(3807,4798,6101)(3808,5071,5059)(3809,6070,5854)(3810,5430,5489)(3816,3827,5734)(3818,5564,5242)(3862,3939,5251)(3865,5060,5467)(3868,4967,4754)(3877,6144,5766)(3879,5708,4399)(3884,4781,5850)(3889,5476,5298)(3895,4423,4909)(3901,4013,5090)(3914,6102,4811)(3935,5100,5291)(3938,5729,4940)(3945,5273,4776)(3952,4346,6069)(3954,4631,5347)(3955,4957,6016)(3963,4655,5112)(3965,5278,5186)(3966,6032,4253)(3971,6053,5616)(3977,4666,4686)(3978,4883,5054)(3979,5030,4543)(3989,5975,6086)(3997,5684,6084)(3998,5651,4910)(4005,4601,6019)(4010,5520,5160)(4023,4065,6022)(4029,5558,4460)(4030,5496,4135)(4033,4184,4791)(4038,4201,5638)(4044,4238,6146)(4046,5909,5002)(4049,5979,5482)(4055,5897,6081)(4067,6024,5492)(4080,5848,5144)(4085,5760,5219)(4102,5439,5644)(4115,4939,5976)(4122,4333,5267)(4130,4744,5124)(4138,6130,5627)(4149,5622,4207)(4150,4960,5192)(4158,4593,5089)(4166,4306,4952)(4168,5587,5889)(4172,5551,5945)(4176,6001,5960)(4187,6050,5420)(4189,5605,4277)(4191,5554,4998)(4193,5501,5207)(4205,4747,4834)(4216,4645,4978)(4217,4807,4859)(4226,5210,5794)(4228,4475,4968)(4231,5831,5490)(4233,4809,4562)(4234,4347,5628)(4245,5896,6143)(4250,5702,5258)(4262,5722,5126)(4266,4463,5906)(4270,5768,5228)(4271,5652,5390)(4282,5731,5762)(4292,4406,5041)(4296,5084,5046)(4298,5537,4817)(4300,5563,5481)(4301,4433,6052)(4320,5930,5013)(4325,4928,6003)(4327,5919,5663)(4338,5363,5522)(4348,4851,5332)(4350,4983,5205)(4355,5243,4718)(4367,5723,5191)(4378,5713,4903)(4401,4526,4673)(4414,5446,5926)(4418,4797,5878)(4431,5519,5331)(4436,4889,5900)(4437,4721,5754)(4438,5904,4506)(4444,5226,6152)(4452,5414,5894)(4453,5838,6029)(4454,5190,5807)(4459,5799,5546)(4466,5440,5946)(4496,5557,5010)(4503,6149,4821)(4545,5218,5668)(4567,5643,6054)(4572,5862,5474)(4595,5099,5248)(4604,5877,5709)(4609,5597,5328)(4614,5504,5955)(4644,4802,6037)(4657,5822,4878)(4676,5188,5696)(4690,4876,5400)(4734,5433,6114)(4793,5221,5836)(4805,4837,5154)(4839,6018,5815)(4842,5770,6105)(4862,5324,5860)(4894,6126,5655)(4895,5026,5045)(4901,5951,5802)(4906,5680,5648)(4907,5629,5939)(4920,5352,6123)(4925,5423,5469)(4926,5032,5859)(4946,5660,6096)(4953,5954,5465)(4956,5725,5461)(4959,6010,5642)(4970,5212,5513)(4980,5025,5092)(4996,5763,5503)(5019,5196,5139)(5022,6011,5479)(5029,5198,5436)(5079,5378,6020)(5113,5327,5337)(5123,5284,5580)(5133,5239,6119)(5149,5349,5994)(5153,5197,5694)(5156,5796,5380)(5163,5698,5917)(5175,6026,5578)(5195,6082,6085)(5268,6106,5776)(5269,5821,5429)(5280,5370,6073)(5289,5620,5600)(5294,5671,5801)(5305,5741,6150)(5320,5914,5431)(5321,5913,5593)(5368,5612,5583)(5399,5735,5606)(5456,5895,5603)(5463,5721,5718)(5486,6067,5931)(5510,5715,5573)(5543,6066,5983)(5553,6071,5852)(5569,6065,6009)(5667,5782,6087)(5816,6051,6137)]).
  • It is non-abelian.
  • It has 3-Rank 3.
  • The centre of a Sylow 3-subgroup has rank 2.
  • Its Sylow 3-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

This cohomology ring is isomorphic to the cohomology ring of a subgroup, namely H*(SmallGroup(1944,803); GF(3)).

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1)·(1  −  3·t  +  6·t2  −  8·t3  +  9·t4  −  11·t5  +  14·t6  −  13·t7  +  11·t8  −  13·t9  +  17·t10  −  17·t11  +  16·t12  −  18·t13  +  19·t14  −  16·t15  +  14·t16  −  15·t17  +  15·t18  −  15·t19  +  16·t20  −  17·t21  +  17·t22  −  17·t23  +  18·t24  −  18·t25  +  19·t26  −  20·t27  +  20·t28  −  19·t29  +  19·t30  −  19·t31  +  18·t32  −  17·t33  +  17·t34  −  17·t35  +  16·t36  −  14·t37  +  15·t38  −  16·t39  +  14·t40  −  13·t41  +  17·t42  −  19·t43  +  16·t44  −  15·t45  +  17·t46  −  15·t47  +  11·t48  −  11·t49  +  13·t50  −  12·t51  +  9·t52  −  8·t53  +  7·t54  −  4·t55  +  t56)

    ( − 1  +  t)3 · (1  −  t  +  t2)2 · (1  +  t2)2 · (1  +  t  +  t2)2 · (1  +  t4) · (1  −  t2  +  t4)2 · (1  −  t4  +  t8) · (1  +  t8) · (1  −  t8  +  t16)
  • The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Symonds test.
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].

About the group Ring generators Ring relations Completion information Restriction maps

Ring generators

The cohomology ring has 68 minimal generators of maximal degree 48:

  1. a_2_0, a nilpotent element of degree 2
  2. a_3_0, a nilpotent element of degree 3
  3. a_3_1, a nilpotent element of degree 3
  4. b_4_0, an element of degree 4
  5. a_7_0, a nilpotent element of degree 7
  6. a_7_1, a nilpotent element of degree 7
  7. a_7_3, a nilpotent element of degree 7
  8. a_7_4, a nilpotent element of degree 7
  9. a_8_1, a nilpotent element of degree 8
  10. a_8_2, a nilpotent element of degree 8
  11. a_8_3, a nilpotent element of degree 8
  12. a_11_2, a nilpotent element of degree 11
  13. a_11_3, a nilpotent element of degree 11
  14. a_12_2, a nilpotent element of degree 12
  15. a_12_3, a nilpotent element of degree 12
  16. a_12_4, a nilpotent element of degree 12
  17. a_12_5, a nilpotent element of degree 12
  18. a_13_0, a nilpotent element of degree 13
  19. a_13_1, a nilpotent element of degree 13
  20. a_15_4, a nilpotent element of degree 15
  21. a_15_5, a nilpotent element of degree 15
  22. a_16_4, a nilpotent element of degree 16
  23. a_16_5, a nilpotent element of degree 16
  24. a_16_6, a nilpotent element of degree 16
  25. a_17_2, a nilpotent element of degree 17
  26. b_18_0, an element of degree 18
  27. a_19_5, a nilpotent element of degree 19
  28. a_19_6, a nilpotent element of degree 19
  29. a_20_5, a nilpotent element of degree 20
  30. a_20_6, a nilpotent element of degree 20
  31. a_22_1, a nilpotent element of degree 22
  32. a_23_0, a nilpotent element of degree 23
  33. a_23_1, a nilpotent element of degree 23
  34. a_23_4, a nilpotent element of degree 23
  35. a_23_5, a nilpotent element of degree 23
  36. c_24_4, a Duflot element of degree 24
  37. a_24_5, a nilpotent element of degree 24
  38. a_24_6, a nilpotent element of degree 24
  39. a_24_7, a nilpotent element of degree 24
  40. a_24_8, a nilpotent element of degree 24
  41. a_25_4, a nilpotent element of degree 25
  42. a_25_5, a nilpotent element of degree 25
  43. a_27_8, a nilpotent element of degree 27
  44. a_27_9, a nilpotent element of degree 27
  45. a_28_7, a nilpotent element of degree 28
  46. a_28_8, a nilpotent element of degree 28
  47. a_28_9, a nilpotent element of degree 28
  48. a_28_10, a nilpotent element of degree 28
  49. a_29_6, a nilpotent element of degree 29
  50. a_29_7, a nilpotent element of degree 29
  51. b_30_4, an element of degree 30
  52. b_30_5, an element of degree 30
  53. a_34_6, a nilpotent element of degree 34
  54. a_34_7, a nilpotent element of degree 34
  55. a_35_4, a nilpotent element of degree 35
  56. a_35_5, a nilpotent element of degree 35
  57. a_35_7, a nilpotent element of degree 35
  58. a_35_8, a nilpotent element of degree 35
  59. c_36_5, a Duflot element of degree 36
  60. c_36_11, a Duflot element of degree 36
  61. a_39_18, a nilpotent element of degree 39
  62. a_39_19, a nilpotent element of degree 39
  63. a_40_15, a nilpotent element of degree 40
  64. a_40_16, a nilpotent element of degree 40
  65. a_47_14, a nilpotent element of degree 47
  66. a_47_15, a nilpotent element of degree 47
  67. c_48_13, a Duflot element of degree 48
  68. c_48_18, a Duflot element of degree 48

About the group Ring generators Ring relations Completion information Restriction maps

Ring relations

There are 33 "obvious" relations:
   a_3_02, a_3_12, a_7_02, a_7_12, a_7_32, a_7_42, a_11_22, a_11_32, a_13_02, a_13_12, a_15_42, a_15_52, a_17_22, a_19_52, a_19_62, a_23_02, a_23_12, a_23_42, a_23_52, a_25_42, a_25_52, a_27_82, a_27_92, a_29_62, a_29_72, a_35_42, a_35_52, a_35_72, a_35_82, a_39_182, a_39_192, a_47_142, a_47_152

Apart from that, there are 2047 minimal relations of maximal degree 96:

  1. a_2_02
  2. a_2_0·a_3_0
  3. a_2_0·a_3_1
  4. a_2_0·b_4_0 + a_3_0·a_3_1
  5. b_4_0·a_3_1 − b_4_0·a_3_0
  6. a_2_0·a_7_0
  7. a_2_0·a_7_1
  8. a_2_0·a_7_3
  9. a_2_0·a_7_4
  10. a_2_0·a_8_3 + a_2_0·a_8_2 − a_2_0·a_8_1
  11. a_3_0·a_7_0
  12. a_3_0·a_7_1 + a_2_0·a_8_2 − a_2_0·a_8_1
  13. a_3_0·a_7_3 + a_2_0·a_8_2 − a_2_0·a_8_1
  14. a_3_0·a_7_4 + a_2_0·a_8_2 + a_2_0·a_8_1
  15. a_3_1·a_7_0 + a_2_0·a_8_2
  16. a_3_1·a_7_1 − a_2_0·a_8_2 + a_2_0·a_8_1
  17. a_3_1·a_7_3
  18. a_3_1·a_7_4
  19. a_8_2·a_3_1 + a_8_2·a_3_0 + a_8_1·a_3_1 − a_8_1·a_3_0
  20. a_8_3·a_3_0 + a_8_1·a_3_1 − a_8_1·a_3_0
  21. a_8_3·a_3_1 + a_8_2·a_3_0 − a_8_1·a_3_1 + a_8_1·a_3_0
  22. b_4_0·a_7_0 + b_4_02·a_3_0 + a_8_1·a_3_1
  23. b_4_0·a_7_1 − a_8_2·a_3_0
  24. b_4_0·a_7_3 − a_8_2·a_3_0 + a_8_1·a_3_1 − a_8_1·a_3_0
  25. b_4_0·a_7_4 + a_8_1·a_3_1 − a_8_1·a_3_0
  26. b_4_0·a_8_2
  27. b_4_0·a_8_3
  28. a_2_0·a_11_2
  29. a_2_0·a_11_3
  30. a_2_0·a_12_4 + a_2_0·a_12_3 + a_2_0·a_12_2
  31. a_2_0·a_12_5 + a_2_0·a_12_2
  32. a_3_0·a_11_2 + a_2_0·a_12_3 − a_2_0·a_12_2
  33. a_3_0·a_11_3 − a_2_0·a_12_3
  34. a_3_1·a_11_2 + a_2_0·a_12_3 + a_2_0·a_12_2
  35. a_3_1·a_11_3 + a_2_0·a_12_2
  36. a_7_0·a_7_1 + a_2_0·a_12_3 + a_2_0·a_12_2
  37. a_7_0·a_7_3 − a_2_0·a_12_2
  38. a_7_0·a_7_4 + a_2_0·a_12_3 − a_2_0·a_12_2
  39. a_7_1·a_7_3 + a_2_0·a_12_3 + a_2_0·a_12_2
  40. a_7_1·a_7_4 − a_2_0·a_12_3
  41. a_7_3·a_7_4
  42. a_8_1·a_7_1 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1 − a_2_0·a_13_0
  43. a_8_1·a_7_3 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1 − a_2_0·a_13_0
  44. a_8_1·a_7_4 + a_2_0·a_13_1 + a_2_0·a_13_0
  45. a_8_2·a_7_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1
  46. a_8_2·a_7_1 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1 + a_2_0·a_13_0
  47. a_8_2·a_7_3
  48. a_8_2·a_7_4 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0
  49. a_8_3·a_7_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1 + a_2_0·a_13_0
  50. a_8_3·a_7_1 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1
  51. a_8_3·a_7_3 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0
  52. a_8_3·a_7_4 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0
  53. a_12_2·a_3_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1
  54. a_12_2·a_3_1
  55. a_12_3·a_3_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1 + a_2_0·a_13_0
  56. a_12_3·a_3_1 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0
  57. a_12_4·a_3_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1
  58. a_12_4·a_3_1 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0
  59. a_12_5·a_3_0 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1 + a_2_0·a_13_0
  60. a_12_5·a_3_1
  61. b_4_0·a_11_2 − a_2_0·a_13_1
  62. b_4_0·a_11_3 − a_2_0·a_13_1 + a_2_0·a_13_0
  63. a_8_12
  64. a_8_1·a_8_2
  65. a_8_1·a_8_3
  66. a_8_22
  67. a_8_2·a_8_3
  68. a_8_32
  69. a_3_1·a_13_0 − a_3_0·a_13_0
  70. a_3_1·a_13_1 − a_3_0·a_13_1
  71. b_4_0·a_12_2 − a_3_0·a_13_0
  72. b_4_0·a_12_3 − a_3_0·a_13_1
  73. b_4_0·a_12_4
  74. b_4_0·a_12_5
  75. a_2_0·a_15_4
  76. a_2_0·a_15_5
  77. a_2_0·a_16_6 + a_2_0·a_16_4
  78. a_3_0·a_15_4 + a_2_0·a_16_5
  79. a_3_0·a_15_5 − a_2_0·a_16_4
  80. a_3_1·a_15_4 − a_2_0·a_16_5 − a_2_0·a_16_4
  81. a_3_1·a_15_5 − a_2_0·a_16_5 + a_2_0·a_16_4
  82. a_7_0·a_11_2 + a_2_0·a_16_5 + a_2_0·a_16_4
  83. a_7_0·a_11_3 + a_2_0·a_16_5 − a_2_0·a_16_4
  84. a_7_1·a_11_2 − a_2_0·a_16_5 − a_2_0·a_16_4
  85. a_7_1·a_11_3 − a_2_0·a_16_5 + a_2_0·a_16_4
  86. a_7_3·a_11_2 + a_2_0·a_16_4
  87. a_7_3·a_11_3 + a_2_0·a_16_5
  88. a_7_4·a_11_2 + a_2_0·a_16_5 − a_2_0·a_16_4
  89. a_7_4·a_11_3 − a_2_0·a_16_5 − a_2_0·a_16_4
  90. a_8_1·a_11_2 − a_2_0·a_17_2
  91. a_8_1·a_11_3 + a_2_0·a_17_2
  92. a_8_2·a_11_2 − a_2_0·a_17_2
  93. a_8_2·a_11_3
  94. a_8_3·a_11_2
  95. a_8_3·a_11_3 + a_2_0·a_17_2
  96. a_12_2·a_7_1 + a_12_2·a_7_0 + a_2_0·a_17_2
  97. a_12_2·a_7_4 − a_12_2·a_7_3 − a_12_2·a_7_0
  98. a_12_3·a_7_0 + a_12_2·a_7_3 − a_12_2·a_7_0
  99. a_12_3·a_7_1 − a_12_2·a_7_3 + a_12_2·a_7_0 + a_2_0·a_17_2
  100. a_12_3·a_7_3 + a_12_2·a_7_0
  101. a_12_3·a_7_4 + a_12_2·a_7_3 + a_2_0·a_17_2
  102. a_12_4·a_7_0 − a_12_2·a_7_3 − a_12_2·a_7_0 + a_2_0·a_17_2
  103. a_12_4·a_7_1 + a_12_2·a_7_3 + a_12_2·a_7_0
  104. a_12_4·a_7_3 + a_12_2·a_7_3 − a_12_2·a_7_0 − a_2_0·a_17_2
  105. a_12_4·a_7_4 + a_12_2·a_7_0 − a_2_0·a_17_2
  106. a_12_5·a_7_0 + a_12_2·a_7_0
  107. a_12_5·a_7_1 − a_12_2·a_7_0 − a_2_0·a_17_2
  108. a_12_5·a_7_3 + a_12_2·a_7_3 + a_2_0·a_17_2
  109. a_12_5·a_7_4 + a_12_2·a_7_3 + a_12_2·a_7_0 + a_2_0·a_17_2
  110. a_16_4·a_3_0 + a_12_2·a_7_3 + a_12_2·a_7_0
  111. a_16_4·a_3_1 − a_12_2·a_7_3 + a_12_2·a_7_0 + a_2_0·a_17_2
  112. a_16_5·a_3_0 − a_12_2·a_7_0 − a_2_0·a_17_2
  113. a_16_5·a_3_1 − a_12_2·a_7_3 − a_2_0·a_17_2
  114. a_16_6·a_3_0 − a_12_2·a_7_3 − a_12_2·a_7_0 − a_2_0·a_17_2
  115. a_16_6·a_3_1 + a_12_2·a_7_3 − a_12_2·a_7_0 + a_2_0·a_17_2
  116. b_4_0·a_15_4
  117. b_4_0·a_15_5
  118. a_8_1·a_12_3
  119. a_8_1·a_12_4 + a_8_1·a_12_2
  120. a_8_1·a_12_5 + a_8_1·a_12_2
  121. a_8_2·a_12_2 − a_8_1·a_12_2
  122. a_8_2·a_12_3 + a_8_1·a_12_2
  123. a_8_2·a_12_4
  124. a_8_2·a_12_5 + a_8_1·a_12_2
  125. a_8_3·a_12_2
  126. a_8_3·a_12_3 − a_8_1·a_12_2
  127. a_8_3·a_12_4 + a_8_1·a_12_2
  128. a_8_3·a_12_5
  129. a_3_0·a_17_2 + a_8_1·a_12_2
  130. a_3_1·a_17_2
  131. a_7_0·a_13_0 + b_4_0·a_3_0·a_13_0
  132. a_7_0·a_13_1 − a_8_1·a_12_2 + b_4_0·a_3_0·a_13_1
  133. a_7_1·a_13_0
  134. a_7_1·a_13_1 + a_8_1·a_12_2
  135. a_7_3·a_13_0 − a_8_1·a_12_2
  136. a_7_3·a_13_1 − a_8_1·a_12_2
  137. a_7_4·a_13_0 − a_8_1·a_12_2
  138. a_7_4·a_13_1 + a_8_1·a_12_2
  139. a_2_0·b_18_0 + a_8_1·a_12_2
  140. b_4_0·a_16_4 + a_8_1·a_12_2
  141. b_4_0·a_16_5
  142. b_4_0·a_16_6 + a_8_1·a_12_2
  143. a_2_0·a_19_5
  144. a_2_0·a_19_6
  145. a_8_1·a_13_0
  146. a_8_1·a_13_1
  147. a_8_2·a_13_0
  148. a_8_2·a_13_1
  149. a_8_3·a_13_0
  150. a_8_3·a_13_1
  151. b_18_0·a_3_0 − b_4_0·a_17_2
  152. b_18_0·a_3_1 − b_4_0·a_17_2
  153. a_3_0·a_19_5 − a_2_0·a_20_5
  154. a_3_0·a_19_6 + a_2_0·a_20_6
  155. a_3_1·a_19_5
  156. a_3_1·a_19_6
  157. a_7_0·a_15_4 + a_2_0·a_20_6
  158. a_7_0·a_15_5 + a_2_0·a_20_5
  159. a_7_1·a_15_4 − a_2_0·a_20_6
  160. a_7_1·a_15_5 − a_2_0·a_20_5
  161. a_7_3·a_15_4 − a_2_0·a_20_6 + a_2_0·a_20_5
  162. a_7_3·a_15_5 − a_2_0·a_20_6 − a_2_0·a_20_5
  163. a_7_4·a_15_4 + a_2_0·a_20_5
  164. a_7_4·a_15_5 − a_2_0·a_20_6
  165. a_11_2·a_11_3
  166. a_8_1·a_15_4
  167. a_8_1·a_15_5
  168. a_8_2·a_15_4
  169. a_8_2·a_15_5
  170. a_8_3·a_15_4
  171. a_8_3·a_15_5
  172. a_12_2·a_11_2
  173. a_12_2·a_11_3
  174. a_12_3·a_11_2
  175. a_12_3·a_11_3
  176. a_12_4·a_11_2
  177. a_12_4·a_11_3
  178. a_12_5·a_11_2
  179. a_12_5·a_11_3
  180. a_16_4·a_7_1 + a_16_4·a_7_0
  181. a_16_4·a_7_4 − a_16_4·a_7_3 − a_16_4·a_7_0
  182. a_16_5·a_7_0 − a_16_4·a_7_3 − a_16_4·a_7_0
  183. a_16_5·a_7_1 + a_16_4·a_7_3 + a_16_4·a_7_0
  184. a_16_5·a_7_3 + a_16_4·a_7_3 − a_16_4·a_7_0
  185. a_16_5·a_7_4 + a_16_4·a_7_0
  186. a_16_6·a_7_0 + a_16_4·a_7_0
  187. a_16_6·a_7_1 − a_16_4·a_7_0
  188. a_16_6·a_7_3 + a_16_4·a_7_3
  189. a_16_6·a_7_4 + a_16_4·a_7_3 + a_16_4·a_7_0
  190. a_20_5·a_3_0 + a_16_4·a_7_0
  191. a_20_5·a_3_1 + a_16_4·a_7_3
  192. a_20_6·a_3_0 − a_16_4·a_7_3 − a_16_4·a_7_0
  193. a_20_6·a_3_1 + a_16_4·a_7_3 − a_16_4·a_7_0
  194. b_4_0·a_19_5 − a_16_4·a_7_3
  195. b_4_0·a_19_6 + a_16_4·a_7_3 − a_16_4·a_7_0
  196. a_2_0·a_22_1
  197. a_8_1·a_16_4
  198. a_8_1·a_16_5
  199. a_8_1·a_16_6
  200. a_8_2·a_16_4
  201. a_8_2·a_16_5
  202. a_8_2·a_16_6
  203. a_8_3·a_16_4
  204. a_8_3·a_16_5
  205. a_8_3·a_16_6
  206. a_12_22
  207. a_12_2·a_12_3
  208. a_12_2·a_12_4
  209. a_12_2·a_12_5
  210. a_12_32
  211. a_12_3·a_12_4
  212. a_12_3·a_12_5
  213. a_12_42
  214. a_12_4·a_12_5
  215. a_12_52
  216. a_7_0·a_17_2
  217. a_7_1·a_17_2
  218. a_7_3·a_17_2
  219. a_7_4·a_17_2
  220. a_11_2·a_13_0
  221. a_11_2·a_13_1
  222. a_11_3·a_13_0
  223. a_11_3·a_13_1
  224. b_4_0·a_20_5
  225. b_4_0·a_20_6
  226. a_2_0·a_23_0
  227. a_2_0·a_23_1
  228. a_2_0·a_23_4
  229. a_2_0·a_23_5
  230. a_8_2·a_17_2
  231. a_8_3·a_17_2
  232. a_12_2·a_13_0
  233. a_12_2·a_13_1 + a_8_1·a_17_2
  234. a_12_3·a_13_0 − a_8_1·a_17_2
  235. a_12_3·a_13_1
  236. a_12_4·a_13_0
  237. a_12_4·a_13_1
  238. a_12_5·a_13_0
  239. a_12_5·a_13_1
  240. a_22_1·a_3_0 − a_8_1·a_17_2
  241. a_22_1·a_3_1 − a_8_1·a_17_2
  242. b_18_0·a_7_0 + b_4_02·a_17_2 + a_8_1·a_17_2
  243. b_18_0·a_7_1
  244. b_18_0·a_7_3
  245. b_18_0·a_7_4
  246. a_2_0·a_24_7 + a_2_0·a_24_5
  247. a_2_0·a_24_8 − a_2_0·a_24_6 + a_2_0·a_24_5
  248. a_3_0·a_23_4 − a_2_0·a_24_6 − a_2_0·a_24_5
  249. a_3_0·a_23_5 − a_2_0·a_24_6
  250. a_3_1·a_23_0 − a_3_0·a_23_0 − a_2_0·a_24_5
  251. a_3_1·a_23_1 − a_3_0·a_23_1 + a_2_0·a_24_5
  252. a_3_1·a_23_4 + a_2_0·a_24_5
  253. a_3_1·a_23_5 − a_2_0·a_24_6 + a_2_0·a_24_5
  254. a_7_0·a_19_5 + a_2_0·a_24_6 − a_2_0·a_24_5
  255. a_7_0·a_19_6 − a_2_0·a_24_5
  256. a_7_1·a_19_5 + a_2_0·a_24_5
  257. a_7_1·a_19_6 + a_2_0·a_24_6 − a_2_0·a_24_5
  258. a_7_3·a_19_5
  259. a_7_3·a_19_6
  260. a_7_4·a_19_5
  261. a_7_4·a_19_6
  262. a_11_2·a_15_4
  263. a_11_2·a_15_5
  264. a_11_3·a_15_4
  265. a_11_3·a_15_5
  266. b_4_0·a_22_1 + a_13_0·a_13_1
  267. a_8_1·b_18_0 + a_13_0·a_13_1
  268. a_8_2·b_18_0
  269. a_8_3·b_18_0
  270. a_8_2·a_19_5 + a_8_1·a_19_6 + a_8_1·a_19_5 − a_2_0·a_25_4
  271. a_8_2·a_19_6 + a_8_1·a_19_6 − a_8_1·a_19_5 − a_2_0·a_25_5 + a_2_0·a_25_4
  272. a_8_3·a_19_5 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  273. a_8_3·a_19_6 + a_8_1·a_19_6 + a_8_1·a_19_5 − a_2_0·a_25_4
  274. a_12_2·a_15_4 + a_2_0·a_25_4
  275. a_12_2·a_15_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  276. a_12_3·a_15_4 − a_2_0·a_25_5
  277. a_12_3·a_15_5 − a_2_0·a_25_5 − a_2_0·a_25_4
  278. a_12_4·a_15_4 + a_2_0·a_25_5 − a_2_0·a_25_4
  279. a_12_4·a_15_5 − a_2_0·a_25_4
  280. a_12_5·a_15_4 − a_2_0·a_25_4
  281. a_12_5·a_15_5 − a_2_0·a_25_5 + a_2_0·a_25_4
  282. a_16_4·a_11_2 − a_2_0·a_25_5
  283. a_16_4·a_11_3 − a_2_0·a_25_5 − a_2_0·a_25_4
  284. a_16_5·a_11_2 − a_2_0·a_25_5 − a_2_0·a_25_4
  285. a_16_5·a_11_3 + a_2_0·a_25_5
  286. a_16_6·a_11_2 + a_2_0·a_25_5
  287. a_16_6·a_11_3 + a_2_0·a_25_5 + a_2_0·a_25_4
  288. a_20_5·a_7_0 − a_8_1·a_19_5 − a_2_0·a_25_5 − a_2_0·a_25_4
  289. a_20_5·a_7_1 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  290. a_20_5·a_7_3 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  291. a_20_5·a_7_4 − a_8_1·a_19_6 − a_2_0·a_25_5
  292. a_20_6·a_7_0 + a_8_1·a_19_6 − a_2_0·a_25_5
  293. a_20_6·a_7_1 − a_8_1·a_19_6 + a_2_0·a_25_4
  294. a_20_6·a_7_3 − a_8_1·a_19_6 − a_8_1·a_19_5 + a_2_0·a_25_4
  295. a_20_6·a_7_4 − a_8_1·a_19_5 + a_2_0·a_25_5 + a_2_0·a_25_4
  296. a_24_5·a_3_0 − a_8_1·a_19_6 + a_2_0·a_25_4
  297. a_24_5·a_3_1 + a_8_1·a_19_6 − a_8_1·a_19_5 − a_2_0·a_25_5 + a_2_0·a_25_4
  298. a_24_6·a_3_0 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5
  299. a_24_6·a_3_1 + a_8_1·a_19_5 − a_2_0·a_25_5 − a_2_0·a_25_4
  300. a_24_7·a_3_0 + a_8_1·a_19_6
  301. a_24_7·a_3_1 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  302. a_24_8·a_3_0 + a_8_1·a_19_5
  303. a_24_8·a_3_1 − a_8_1·a_19_6 − a_8_1·a_19_5 + a_2_0·a_25_4
  304. b_4_0·a_23_4 − a_2_0·a_25_5
  305. b_4_0·a_23_5 + a_2_0·a_25_5 + a_2_0·a_25_4
  306. a_8_1·a_20_5
  307. a_8_1·a_20_6
  308. a_8_2·a_20_5
  309. a_8_2·a_20_6
  310. a_8_3·a_20_5
  311. a_8_3·a_20_6
  312. a_12_2·a_16_4
  313. a_12_2·a_16_5
  314. a_12_2·a_16_6
  315. a_12_3·a_16_4
  316. a_12_3·a_16_5
  317. a_12_3·a_16_6
  318. a_12_4·a_16_4
  319. a_12_4·a_16_5
  320. a_12_4·a_16_6
  321. a_12_5·a_16_4
  322. a_12_5·a_16_5
  323. a_12_5·a_16_6
  324. a_3_1·a_25_4 − a_3_0·a_25_4
  325. a_3_1·a_25_5 − a_3_0·a_25_5
  326. a_11_2·a_17_2
  327. a_11_3·a_17_2
  328. a_13_0·a_15_4
  329. a_13_0·a_15_5
  330. a_13_1·a_15_4
  331. a_13_1·a_15_5
  332. b_4_0·a_24_5 − a_3_0·a_25_4
  333. b_4_0·a_24_6 − a_3_0·a_25_5
  334. b_4_0·a_24_7
  335. b_4_0·a_24_8
  336. a_2_0·a_27_8
  337. a_2_0·a_27_9
  338. a_12_2·a_17_2
  339. a_12_3·a_17_2
  340. a_12_4·a_17_2
  341. a_12_5·a_17_2
  342. a_16_4·a_13_0
  343. a_16_4·a_13_1
  344. a_16_5·a_13_0
  345. a_16_5·a_13_1
  346. a_16_6·a_13_0
  347. a_16_6·a_13_1
  348. a_22_1·a_7_0 − a_3_0·a_13_0·a_13_1
  349. a_22_1·a_7_1
  350. a_22_1·a_7_3
  351. a_22_1·a_7_4
  352. b_18_0·a_11_2
  353. b_18_0·a_11_3
  354. a_2_0·a_28_9 − a_2_0·a_28_8
  355. a_2_0·a_28_10 + a_2_0·a_28_7
  356. a_8_1·a_22_1
  357. a_8_2·a_22_1
  358. a_8_3·a_22_1
  359. a_3_0·a_27_8 − a_2_0·a_28_8
  360. a_3_0·a_27_9 + a_2_0·a_28_7
  361. a_3_1·a_27_8 + a_2_0·a_28_8 + a_2_0·a_28_7
  362. a_3_1·a_27_9 + a_2_0·a_28_8 − a_2_0·a_28_7
  363. a_7_0·a_23_0 + b_4_0·a_3_0·a_23_0 + a_2_0·a_28_8 − c_24_4·a_3_0·a_3_1
  364. a_7_0·a_23_1 + b_4_0·a_3_0·a_23_1 − a_2_0·a_28_8 − a_2_0·a_28_7 − c_24_4·a_3_0·a_3_1
  365. a_7_0·a_23_4 + a_2_0·a_28_8 + a_2_0·a_28_7
  366. a_7_0·a_23_5 + a_2_0·a_28_8 − a_2_0·a_28_7
  367. a_7_1·a_23_0 − a_2_0·a_28_8 + a_2_0·a_28_7 + c_24_4·a_3_0·a_3_1
  368. a_7_1·a_23_1 − a_2_0·a_28_8 − a_2_0·a_28_7 + c_24_4·a_3_0·a_3_1
  369. a_7_1·a_23_4 − a_2_0·a_28_8 − a_2_0·a_28_7
  370. a_7_1·a_23_5 − a_2_0·a_28_8 + a_2_0·a_28_7
  371. a_7_3·a_23_0 + a_2_0·a_28_8 + a_2_0·a_28_7 + c_24_4·a_3_0·a_3_1
  372. a_7_3·a_23_1 + a_2_0·a_28_8 − a_2_0·a_28_7 − c_24_4·a_3_0·a_3_1
  373. a_7_3·a_23_4 + a_2_0·a_28_7
  374. a_7_3·a_23_5 + a_2_0·a_28_8
  375. a_7_4·a_23_0 + a_2_0·a_28_8 − a_2_0·a_28_7
  376. a_7_4·a_23_1 + c_24_4·a_3_0·a_3_1
  377. a_7_4·a_23_4 + a_2_0·a_28_8 − a_2_0·a_28_7
  378. a_7_4·a_23_5 − a_2_0·a_28_8 − a_2_0·a_28_7
  379. a_11_2·a_19_5 − a_2_0·a_28_7
  380. a_11_2·a_19_6 + a_2_0·a_28_8
  381. a_11_3·a_19_5 − a_2_0·a_28_8
  382. a_11_3·a_19_6 − a_2_0·a_28_7
  383. a_13_0·a_17_2 − b_4_0·a_3_0·a_23_1 + b_4_0·a_3_0·a_23_0
  384. a_13_1·a_17_2 + b_4_0·a_3_0·a_23_1
  385. a_15_4·a_15_5
  386. a_12_2·b_18_0 + b_4_0·a_3_0·a_23_1 − b_4_0·a_3_0·a_23_0
  387. a_12_3·b_18_0 − b_4_0·a_3_0·a_23_1
  388. a_12_4·b_18_0
  389. a_12_5·b_18_0
  390. a_8_1·a_23_4 + a_2_0·a_29_7 + a_2_0·a_29_6
  391. a_8_1·a_23_5 + a_2_0·a_29_7 − a_2_0·a_29_6
  392. a_8_2·a_23_0 − a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7
  393. a_8_2·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  394. a_8_2·a_23_4 + a_2_0·a_29_6
  395. a_8_2·a_23_5 + a_2_0·a_29_7
  396. a_8_3·a_23_0 + a_8_1·a_23_1 + a_2_0·a_29_7
  397. a_8_3·a_23_1 − a_8_1·a_23_1 + a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  398. a_8_3·a_23_4 + a_2_0·a_29_7
  399. a_8_3·a_23_5 − a_2_0·a_29_6
  400. a_12_2·a_19_5 + a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7
  401. a_12_2·a_19_6 + a_8_1·a_23_0 + a_2_0·a_29_6
  402. a_12_3·a_19_5 − a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7 + a_2_0·a_29_6
  403. a_12_3·a_19_6 − a_8_1·a_23_1 + a_2_0·a_29_7
  404. a_12_4·a_19_5 − a_8_1·a_23_0 + a_2_0·a_29_7
  405. a_12_4·a_19_6 + a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  406. a_12_5·a_19_5 − a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_6
  407. a_12_5·a_19_6 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  408. a_16_4·a_15_4 − a_2_0·a_29_7 − a_2_0·a_29_6
  409. a_16_4·a_15_5 + a_2_0·a_29_7 − a_2_0·a_29_6
  410. a_16_5·a_15_4 + a_2_0·a_29_7 − a_2_0·a_29_6
  411. a_16_5·a_15_5 + a_2_0·a_29_7 + a_2_0·a_29_6
  412. a_16_6·a_15_4 + a_2_0·a_29_7 + a_2_0·a_29_6
  413. a_16_6·a_15_5 − a_2_0·a_29_7 + a_2_0·a_29_6
  414. a_20_5·a_11_2 − a_2_0·a_29_7
  415. a_20_5·a_11_3 − a_2_0·a_29_6
  416. a_20_6·a_11_2 + a_2_0·a_29_6
  417. a_20_6·a_11_3 − a_2_0·a_29_7
  418. a_24_5·a_7_0 + a_8_1·a_23_1 − a_2_0·a_29_7 + a_2_0·a_29_6
  419. a_24_5·a_7_1 − a_8_1·a_23_1 − a_2_0·a_29_7
  420. a_24_5·a_7_3 + a_8_1·a_23_0 + a_2_0·a_29_6
  421. a_24_5·a_7_4 + a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7 + a_2_0·a_29_6
  422. a_24_6·a_7_0 − a_8_1·a_23_0 − a_2_0·a_29_6
  423. a_24_6·a_7_1 + a_8_1·a_23_0
  424. a_24_6·a_7_3 − a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  425. a_24_6·a_7_4 − a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  426. a_24_7·a_7_0 − a_8_1·a_23_1 + a_2_0·a_29_7 + a_2_0·a_29_6
  427. a_24_7·a_7_1 + a_8_1·a_23_1 + a_2_0·a_29_7 + a_2_0·a_29_6
  428. a_24_7·a_7_3 − a_8_1·a_23_0 + a_2_0·a_29_7
  429. a_24_7·a_7_4 − a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  430. a_24_8·a_7_0 − a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_6
  431. a_24_8·a_7_1 + a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7
  432. a_24_8·a_7_3 − a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  433. a_24_8·a_7_4 + a_8_1·a_23_1
  434. a_28_7·a_3_0 + a_8_1·a_23_1 + a_2_0·a_29_7 + a_2_0·a_29_6
  435. a_28_7·a_3_1 + a_8_1·a_23_0 − a_2_0·a_29_7
  436. a_28_8·a_3_0 + a_8_1·a_23_1 + a_8_1·a_23_0 + a_2_0·a_29_7
  437. a_28_8·a_3_1 + a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_6
  438. a_28_9·a_3_0 + a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7
  439. a_28_9·a_3_1 + a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  440. a_28_10·a_3_0 − a_8_1·a_23_1 − a_2_0·a_29_7
  441. a_28_10·a_3_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  442. b_4_0·a_27_8
  443. b_4_0·a_27_9
  444. b_18_0·a_13_0 + b_4_02·a_23_1 − b_4_02·a_23_0 + b_4_05·a_8_1·a_3_0
  445. b_18_0·a_13_1 − b_4_02·a_23_1 + b_4_05·a_8_1·a_3_0
  446. a_8_1·a_24_7 + a_8_1·a_24_5
  447. a_8_1·a_24_8 − a_8_1·a_24_6 + a_8_1·a_24_5
  448. a_8_2·a_24_5 + a_8_1·a_24_6
  449. a_8_2·a_24_6 − a_8_1·a_24_6 + a_8_1·a_24_5
  450. a_8_2·a_24_7 − a_8_1·a_24_6
  451. a_8_2·a_24_8 + a_8_1·a_24_6 + a_8_1·a_24_5
  452. a_8_3·a_24_5 − a_8_1·a_24_6 − a_8_1·a_24_5
  453. a_8_3·a_24_6 − a_8_1·a_24_5
  454. a_8_3·a_24_7 + a_8_1·a_24_6 + a_8_1·a_24_5
  455. a_8_3·a_24_8 + a_8_1·a_24_6
  456. a_12_2·a_20_5 + a_8_1·a_24_6
  457. a_12_2·a_20_6 − a_8_1·a_24_6 − a_8_1·a_24_5
  458. a_12_3·a_20_5 + a_8_1·a_24_6 − a_8_1·a_24_5
  459. a_12_3·a_20_6 + a_8_1·a_24_5
  460. a_12_4·a_20_5 + a_8_1·a_24_6 + a_8_1·a_24_5
  461. a_12_4·a_20_6 + a_8_1·a_24_6
  462. a_12_5·a_20_5 − a_8_1·a_24_6
  463. a_12_5·a_20_6 + a_8_1·a_24_6 + a_8_1·a_24_5
  464. a_16_42 + a_8_1·a_24_6 + a_8_1·a_24_5
  465. a_16_4·a_16_5 − a_8_1·a_24_6
  466. a_16_4·a_16_6 − a_8_1·a_24_6 − a_8_1·a_24_5
  467. a_16_52 − a_8_1·a_24_6 − a_8_1·a_24_5
  468. a_16_5·a_16_6 + a_8_1·a_24_6
  469. a_16_62 + a_8_1·a_24_6 + a_8_1·a_24_5
  470. a_3_0·a_29_6 − a_8_1·a_24_6 − a_8_1·a_24_5
  471. a_3_0·a_29_7 − a_8_1·a_24_6
  472. a_3_1·a_29_6
  473. a_3_1·a_29_7
  474. a_7_0·a_25_4 − a_8_1·a_24_6 − a_8_1·a_24_5 + b_4_0·a_3_0·a_25_4
  475. a_7_0·a_25_5 − a_8_1·a_24_5 + b_4_0·a_3_0·a_25_5
  476. a_7_1·a_25_4 + a_8_1·a_24_6 + a_8_1·a_24_5
  477. a_7_1·a_25_5 + a_8_1·a_24_5
  478. a_7_3·a_25_4 − a_8_1·a_24_6 + a_8_1·a_24_5
  479. a_7_3·a_25_5 − a_8_1·a_24_6 − a_8_1·a_24_5
  480. a_7_4·a_25_4 + a_8_1·a_24_6
  481. a_7_4·a_25_5 − a_8_1·a_24_6 + a_8_1·a_24_5
  482. a_13_0·a_19_5 − a_8_1·a_24_6 + a_8_1·a_24_5
  483. a_13_0·a_19_6 + a_8_1·a_24_5
  484. a_13_1·a_19_5 + a_8_1·a_24_6 + a_8_1·a_24_5
  485. a_13_1·a_19_6 − a_8_1·a_24_6
  486. a_15_4·a_17_2
  487. a_15_5·a_17_2
  488. a_2_0·b_30_4 − a_8_1·a_24_6 − a_8_1·a_24_5
  489. a_2_0·b_30_5 − a_8_1·a_24_6
  490. b_4_0·a_28_7 + a_8_1·a_24_6 + a_8_1·a_24_5
  491. b_4_0·a_28_8 − a_8_1·a_24_6
  492. b_4_0·a_28_9 + a_8_1·a_24_6
  493. b_4_0·a_28_10 + a_8_1·a_24_6 + a_8_1·a_24_5
  494. a_8_1·a_25_4
  495. a_8_1·a_25_5
  496. a_8_2·a_25_4
  497. a_8_2·a_25_5
  498. a_8_3·a_25_4
  499. a_8_3·a_25_5
  500. a_16_4·a_17_2
  501. a_16_5·a_17_2
  502. a_16_6·a_17_2
  503. a_20_5·a_13_0
  504. a_20_5·a_13_1
  505. a_20_6·a_13_0
  506. a_20_6·a_13_1
  507. a_22_1·a_11_2
  508. a_22_1·a_11_3
  509. b_18_0·a_15_4
  510. b_18_0·a_15_5
  511. b_30_4·a_3_0 − b_4_0·a_29_6
  512. b_30_4·a_3_1 − b_4_0·a_29_6
  513. b_30_5·a_3_0 − b_4_0·a_29_7
  514. b_30_5·a_3_1 − b_4_0·a_29_7
  515. a_12_2·a_22_1
  516. a_12_3·a_22_1
  517. a_12_4·a_22_1
  518. a_12_5·a_22_1
  519. a_7_0·a_27_8 − a_2_0·a_8_2·c_24_4
  520. a_7_0·a_27_9 + a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  521. a_7_1·a_27_8 + a_2_0·a_8_2·c_24_4
  522. a_7_1·a_27_9 − a_2_0·a_8_2·c_24_4 + a_2_0·a_8_1·c_24_4
  523. a_7_3·a_27_8 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  524. a_7_3·a_27_9 + a_2_0·a_8_1·c_24_4
  525. a_7_4·a_27_8 + a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  526. a_7_4·a_27_9 + a_2_0·a_8_2·c_24_4
  527. a_11_2·a_23_0 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  528. a_11_2·a_23_1 − a_2_0·a_8_2·c_24_4
  529. a_11_2·a_23_4
  530. a_11_2·a_23_5
  531. a_11_3·a_23_0 + a_2_0·a_8_1·c_24_4
  532. a_11_3·a_23_1 + a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  533. a_11_3·a_23_4
  534. a_11_3·a_23_5
  535. a_15_4·a_19_5 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  536. a_15_4·a_19_6 − a_2_0·a_8_1·c_24_4
  537. a_15_5·a_19_5 + a_2_0·a_8_1·c_24_4
  538. a_15_5·a_19_6 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  539. a_16_4·b_18_0
  540. a_16_5·b_18_0
  541. a_16_6·b_18_0
  542. a_8_1·a_27_8
  543. a_8_1·a_27_9
  544. a_8_2·a_27_8
  545. a_8_2·a_27_9
  546. a_8_3·a_27_8
  547. a_8_3·a_27_9
  548. a_12_2·a_23_0 − b_4_06·a_8_1·a_3_0 − a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1
  549. a_12_2·a_23_1 − b_4_06·a_8_1·a_3_0 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1
       + a_8_1·c_24_4·a_3_0
  550. a_12_2·a_23_4
  551. a_12_2·a_23_5
  552. a_12_3·a_23_0 + b_4_06·a_8_1·a_3_0 + a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1
       − a_8_1·c_24_4·a_3_0
  553. a_12_3·a_23_1 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  554. a_12_3·a_23_4
  555. a_12_3·a_23_5
  556. a_12_4·a_23_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  557. a_12_4·a_23_1 − a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  558. a_12_4·a_23_4
  559. a_12_4·a_23_5
  560. a_12_5·a_23_0 − a_8_2·c_24_4·a_3_0
  561. a_12_5·a_23_1 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  562. a_12_5·a_23_4
  563. a_12_5·a_23_5
  564. a_16_4·a_19_5 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  565. a_16_4·a_19_6 − a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  566. a_16_5·a_19_5 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  567. a_16_5·a_19_6 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  568. a_16_6·a_19_5 + a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  569. a_16_6·a_19_6 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  570. a_20_5·a_15_4
  571. a_20_5·a_15_5
  572. a_20_6·a_15_4
  573. a_20_6·a_15_5
  574. a_22_1·a_13_0
  575. a_22_1·a_13_1
  576. a_24_5·a_11_2
  577. a_24_5·a_11_3
  578. a_24_6·a_11_2
  579. a_24_6·a_11_3
  580. a_24_7·a_11_2
  581. a_24_7·a_11_3
  582. a_24_8·a_11_2
  583. a_24_8·a_11_3
  584. a_28_7·a_7_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  585. a_28_7·a_7_1 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  586. a_28_7·a_7_3 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  587. a_28_7·a_7_4 − a_8_2·c_24_4·a_3_0
  588. a_28_8·a_7_0 − a_8_2·c_24_4·a_3_0
  589. a_28_8·a_7_1 + a_8_2·c_24_4·a_3_0
  590. a_28_8·a_7_3 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  591. a_28_8·a_7_4 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  592. a_28_9·a_7_0 − a_8_2·c_24_4·a_3_0
  593. a_28_9·a_7_1 + a_8_2·c_24_4·a_3_0
  594. a_28_9·a_7_3 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  595. a_28_9·a_7_4 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  596. a_28_10·a_7_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  597. a_28_10·a_7_1 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  598. a_28_10·a_7_3 + a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  599. a_28_10·a_7_4 + a_8_2·c_24_4·a_3_0
  600. b_18_0·a_17_2 + b_4_08·a_3_0 + b_4_02·c_24_4·a_3_0
  601. a_2_0·a_34_6
  602. a_2_0·a_34_7
  603. a_8_1·a_28_7
  604. a_8_1·a_28_8
  605. a_8_1·a_28_9
  606. a_8_1·a_28_10
  607. a_8_2·a_28_7
  608. a_8_2·a_28_8
  609. a_8_2·a_28_9
  610. a_8_2·a_28_10
  611. a_8_3·a_28_7
  612. a_8_3·a_28_8
  613. a_8_3·a_28_9
  614. a_8_3·a_28_10
  615. a_12_2·a_24_5
  616. a_12_2·a_24_6
  617. a_12_2·a_24_7
  618. a_12_2·a_24_8
  619. a_12_3·a_24_5
  620. a_12_3·a_24_6
  621. a_12_3·a_24_7
  622. a_12_3·a_24_8
  623. a_12_4·a_24_5
  624. a_12_4·a_24_6
  625. a_12_4·a_24_7
  626. a_12_4·a_24_8
  627. a_12_5·a_24_5
  628. a_12_5·a_24_6
  629. a_12_5·a_24_7
  630. a_12_5·a_24_8
  631. a_16_4·a_20_5
  632. a_16_4·a_20_6
  633. a_16_5·a_20_5
  634. a_16_5·a_20_6
  635. a_16_6·a_20_5
  636. a_16_6·a_20_6
  637. a_7_0·a_29_6
  638. a_7_0·a_29_7
  639. a_7_1·a_29_6
  640. a_7_1·a_29_7
  641. a_7_3·a_29_6
  642. a_7_3·a_29_7
  643. a_7_4·a_29_6
  644. a_7_4·a_29_7
  645. a_11_2·a_25_4
  646. a_11_2·a_25_5
  647. a_11_3·a_25_4
  648. a_11_3·a_25_5
  649. a_13_0·a_23_1 − a_13_0·a_23_0
  650. a_13_0·a_23_4
  651. a_13_0·a_23_5
  652. a_13_1·a_23_0 + a_13_0·a_23_0
  653. a_13_1·a_23_1
  654. a_13_1·a_23_4
  655. a_13_1·a_23_5
  656. a_17_2·a_19_5
  657. a_17_2·a_19_6
  658. b_4_07·a_8_1 − a_13_0·a_23_0 + b_4_0·a_8_1·c_24_4
  659. b_18_02 + b_4_09 + b_4_05·a_3_0·a_13_1 − b_4_05·a_3_0·a_13_0 + b_4_03·c_24_4
  660. a_2_0·a_35_4
  661. a_2_0·a_35_5
  662. a_2_0·a_35_7
  663. a_2_0·a_35_8
  664. a_8_2·a_29_6
  665. a_8_2·a_29_7
  666. a_8_3·a_29_6
  667. a_8_3·a_29_7
  668. a_12_2·a_25_4 − a_8_1·a_29_6
  669. a_12_2·a_25_5 + a_8_1·a_29_7 − a_8_1·a_29_6
  670. a_12_3·a_25_4 − a_8_1·a_29_7 + a_8_1·a_29_6
  671. a_12_3·a_25_5 + a_8_1·a_29_7
  672. a_12_4·a_25_4
  673. a_12_4·a_25_5
  674. a_12_5·a_25_4
  675. a_12_5·a_25_5
  676. a_20_5·a_17_2
  677. a_20_6·a_17_2
  678. a_22_1·a_15_4
  679. a_22_1·a_15_5
  680. a_24_5·a_13_0 + a_8_1·a_29_6
  681. a_24_5·a_13_1 + a_8_1·a_29_7 − a_8_1·a_29_6
  682. a_24_6·a_13_0 − a_8_1·a_29_7 + a_8_1·a_29_6
  683. a_24_6·a_13_1 − a_8_1·a_29_7
  684. a_24_7·a_13_0
  685. a_24_7·a_13_1
  686. a_24_8·a_13_0
  687. a_24_8·a_13_1
  688. a_34_6·a_3_0 + a_8_1·a_29_6
  689. a_34_6·a_3_1 + a_8_1·a_29_6
  690. a_34_7·a_3_0 + a_8_1·a_29_7
  691. a_34_7·a_3_1 + a_8_1·a_29_7
  692. b_18_0·a_19_5
  693. b_18_0·a_19_6
  694. b_30_4·a_7_0 + b_4_02·a_29_6 + a_8_1·a_29_6
  695. b_30_4·a_7_1
  696. b_30_4·a_7_3
  697. b_30_4·a_7_4
  698. b_30_5·a_7_0 + b_4_02·a_29_7 + a_8_1·a_29_7
  699. b_30_5·a_7_1
  700. b_30_5·a_7_3
  701. b_30_5·a_7_4
  702. a_16_4·a_22_1
  703. a_16_5·a_22_1
  704. a_16_6·a_22_1
  705. a_3_1·a_35_4 − a_3_0·a_35_4 − a_2_0·a_12_3·c_24_4 − a_2_0·a_12_2·c_24_4
  706. a_3_1·a_35_5 − a_3_0·a_35_5 − a_2_0·a_12_3·c_24_4 − a_2_0·a_12_2·c_24_4
  707. a_3_1·a_35_7 − a_3_0·a_35_7
  708. a_3_1·a_35_8 − a_3_0·a_35_8
  709. a_11_2·a_27_8
  710. a_11_2·a_27_9
  711. a_11_3·a_27_8
  712. a_11_3·a_27_9
  713. a_13_1·a_25_4 + a_13_0·a_25_5
  714. a_13_1·a_25_5 − a_13_0·a_25_5 + a_13_0·a_25_4
  715. a_15_4·a_23_0 + a_2_0·a_12_2·c_24_4
  716. a_15_4·a_23_1 − a_2_0·a_12_3·c_24_4
  717. a_15_4·a_23_4
  718. a_15_4·a_23_5
  719. a_15_5·a_23_0 − a_2_0·a_12_3·c_24_4 − a_2_0·a_12_2·c_24_4
  720. a_15_5·a_23_1 − a_2_0·a_12_3·c_24_4 + a_2_0·a_12_2·c_24_4
  721. a_15_5·a_23_4
  722. a_15_5·a_23_5
  723. a_19_5·a_19_6
  724. b_4_0·a_34_6 + a_13_0·a_25_4
  725. b_4_0·a_34_7 − a_13_0·a_25_5 + a_13_0·a_25_4
  726. a_8_1·b_30_4 − a_13_0·a_25_4
  727. a_8_1·b_30_5 + a_13_0·a_25_5 − a_13_0·a_25_4
  728. a_8_2·b_30_4
  729. a_8_2·b_30_5
  730. a_8_3·b_30_4
  731. a_8_3·b_30_5
  732. b_18_0·a_20_5
  733. b_18_0·a_20_6
  734. a_12_2·a_27_8 − a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  735. a_12_2·a_27_9 + a_2_0·c_24_4·a_13_0
  736. a_12_3·a_27_8 + a_2_0·c_24_4·a_13_1
  737. a_12_3·a_27_9 − a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  738. a_12_4·a_27_8 + a_2_0·c_24_4·a_13_0
  739. a_12_4·a_27_9 + a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  740. a_12_5·a_27_8 + a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  741. a_12_5·a_27_9 − a_2_0·c_24_4·a_13_0
  742. a_16_4·a_23_0 + a_8_1·c_24_4·a_7_0 + b_4_0·a_8_1·c_24_4·a_3_0 + a_2_0·c_24_4·a_13_1
       − a_2_0·c_24_4·a_13_0
  743. a_16_4·a_23_1 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  744. a_16_4·a_23_4 − a_2_0·c_24_4·a_13_1
  745. a_16_4·a_23_5 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  746. a_16_5·a_23_0 − a_8_1·c_24_4·a_7_0 − b_4_0·a_8_1·c_24_4·a_3_0 + a_2_0·c_24_4·a_13_0
  747. a_16_5·a_23_1 + a_8_1·c_24_4·a_7_0 + b_4_0·a_8_1·c_24_4·a_3_0 − a_2_0·c_24_4·a_13_1
       − a_2_0·c_24_4·a_13_0
  748. a_16_5·a_23_4 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  749. a_16_5·a_23_5 + a_2_0·c_24_4·a_13_1
  750. a_16_6·a_23_0 − a_8_1·c_24_4·a_7_0 − b_4_0·a_8_1·c_24_4·a_3_0 − a_2_0·c_24_4·a_13_0
  751. a_16_6·a_23_1 + a_2_0·c_24_4·a_13_0
  752. a_16_6·a_23_4 + a_2_0·c_24_4·a_13_1
  753. a_16_6·a_23_5 − a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  754. a_20_5·a_19_5 + a_8_1·c_24_4·a_7_0 + b_4_0·a_8_1·c_24_4·a_3_0
  755. a_20_5·a_19_6
  756. a_20_6·a_19_5
  757. a_20_6·a_19_6 − a_8_1·c_24_4·a_7_0 − b_4_0·a_8_1·c_24_4·a_3_0
  758. a_22_1·a_17_2 + a_3_0·a_13_0·a_23_0
  759. a_24_5·a_15_4 + a_2_0·c_24_4·a_13_0
  760. a_24_5·a_15_5 + a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  761. a_24_6·a_15_4 − a_2_0·c_24_4·a_13_1
  762. a_24_6·a_15_5 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  763. a_24_7·a_15_4 − a_2_0·c_24_4·a_13_0
  764. a_24_7·a_15_5 − a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  765. a_24_8·a_15_4 − a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  766. a_24_8·a_15_5 + a_2_0·c_24_4·a_13_0
  767. a_28_7·a_11_2 − a_2_0·c_24_4·a_13_1
  768. a_28_7·a_11_3 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  769. a_28_8·a_11_2 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  770. a_28_8·a_11_3 + a_2_0·c_24_4·a_13_1
  771. a_28_9·a_11_2 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  772. a_28_9·a_11_3 + a_2_0·c_24_4·a_13_1
  773. a_28_10·a_11_2 + a_2_0·c_24_4·a_13_1
  774. a_28_10·a_11_3 − a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  775. a_12_2·a_28_7
  776. a_12_2·a_28_8
  777. a_12_2·a_28_9
  778. a_12_2·a_28_10
  779. a_12_3·a_28_7
  780. a_12_3·a_28_8
  781. a_12_3·a_28_9
  782. a_12_3·a_28_10
  783. a_12_4·a_28_7
  784. a_12_4·a_28_8
  785. a_12_4·a_28_9
  786. a_12_4·a_28_10
  787. a_12_5·a_28_7
  788. a_12_5·a_28_8
  789. a_12_5·a_28_9
  790. a_12_5·a_28_10
  791. a_16_4·a_24_5
  792. a_16_4·a_24_6
  793. a_16_4·a_24_7
  794. a_16_4·a_24_8
  795. a_16_5·a_24_5
  796. a_16_5·a_24_6
  797. a_16_5·a_24_7
  798. a_16_5·a_24_8
  799. a_16_6·a_24_5
  800. a_16_6·a_24_6
  801. a_16_6·a_24_7
  802. a_16_6·a_24_8
  803. a_20_52
  804. a_20_5·a_20_6
  805. a_20_62
  806. a_11_2·a_29_6
  807. a_11_2·a_29_7
  808. a_11_3·a_29_6
  809. a_11_3·a_29_7
  810. a_13_0·a_27_8
  811. a_13_0·a_27_9
  812. a_13_1·a_27_8
  813. a_13_1·a_27_9
  814. a_15_4·a_25_4
  815. a_15_4·a_25_5
  816. a_15_5·a_25_4
  817. a_15_5·a_25_5
  818. a_17_2·a_23_0 + b_4_06·a_3_0·a_13_1 + b_4_06·a_3_0·a_13_0 + c_24_4·a_3_0·a_13_1
       + c_24_4·a_3_0·a_13_0
  819. a_17_2·a_23_1 + b_4_06·a_3_0·a_13_1 + c_24_4·a_3_0·a_13_1
  820. a_17_2·a_23_4
  821. a_17_2·a_23_5
  822. b_18_0·a_22_1 + b_4_0·a_13_0·a_23_0
  823. a_2_0·a_39_18
  824. a_2_0·a_39_19
  825. a_12_2·a_29_6
  826. a_12_2·a_29_7
  827. a_12_3·a_29_6
  828. a_12_3·a_29_7
  829. a_12_4·a_29_6
  830. a_12_4·a_29_7
  831. a_12_5·a_29_6
  832. a_12_5·a_29_7
  833. a_16_4·a_25_4
  834. a_16_4·a_25_5
  835. a_16_5·a_25_4
  836. a_16_5·a_25_5
  837. a_16_6·a_25_4
  838. a_16_6·a_25_5
  839. a_22_1·a_19_5
  840. a_22_1·a_19_6
  841. a_24_5·a_17_2
  842. a_24_6·a_17_2
  843. a_24_7·a_17_2
  844. a_24_8·a_17_2
  845. a_28_7·a_13_0
  846. a_28_7·a_13_1
  847. a_28_8·a_13_0
  848. a_28_8·a_13_1
  849. a_28_9·a_13_0
  850. a_28_9·a_13_1
  851. a_28_10·a_13_0
  852. a_28_10·a_13_1
  853. a_34_6·a_7_0 − a_3_0·a_13_0·a_25_4
  854. a_34_6·a_7_1
  855. a_34_6·a_7_3
  856. a_34_6·a_7_4
  857. a_34_7·a_7_0 + a_3_0·a_13_0·a_25_5 − a_3_0·a_13_0·a_25_4
  858. a_34_7·a_7_1
  859. a_34_7·a_7_3
  860. a_34_7·a_7_4
  861. b_18_0·a_23_0 + b_4_07·a_13_1 + b_4_07·a_13_0 + b_4_0·c_24_4·a_13_1
       + b_4_0·c_24_4·a_13_0
  862. b_18_0·a_23_1 + b_4_07·a_13_1 + b_4_0·c_24_4·a_13_1
  863. b_18_0·a_23_4
  864. b_18_0·a_23_5
  865. b_30_4·a_11_2
  866. b_30_4·a_11_3
  867. b_30_5·a_11_2
  868. b_30_5·a_11_3
  869. a_8_1·a_34_6
  870. a_8_1·a_34_7
  871. a_8_2·a_34_6
  872. a_8_2·a_34_7
  873. a_8_3·a_34_6
  874. a_8_3·a_34_7
  875. a_20_5·a_22_1
  876. a_20_6·a_22_1
  877. a_3_0·a_39_18 − a_2_0·a_40_16
  878. a_3_0·a_39_19 − a_2_0·a_40_16 + a_2_0·a_40_15
  879. a_3_1·a_39_18 + a_2_0·a_40_16 + a_2_0·a_40_15
  880. a_3_1·a_39_19 − a_2_0·a_40_16
  881. a_7_0·a_35_4 + b_4_0·a_3_0·a_35_4 + a_2_0·a_40_16 + a_2_0·a_40_15
  882. a_7_0·a_35_5 + b_4_0·a_3_0·a_35_5 + a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1
       + a_2_0·a_16_4·c_24_4
  883. a_7_0·a_35_7 + b_4_0·a_3_0·a_35_7 + a_2_0·a_40_16 − a_2_0·a_40_15 + a_2_0·a_16_5·c_24_4
       + a_2_0·a_16_4·c_24_4
  884. a_7_0·a_35_8 + b_4_0·a_3_0·a_35_8 + a_2_0·a_40_16 + c_36_5·a_3_0·a_3_1
       + a_2_0·a_16_4·c_24_4
  885. a_7_1·a_35_4 − a_2_0·a_40_16 + a_2_0·a_40_15 − a_2_0·a_16_5·c_24_4
  886. a_7_1·a_35_5 − a_2_0·a_40_16 − c_36_11·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
  887. a_7_1·a_35_7 + a_2_0·a_40_16 + a_2_0·a_40_15 − a_2_0·a_16_5·c_24_4 + a_2_0·a_16_4·c_24_4
  888. a_7_1·a_35_8 + a_2_0·a_40_15 − c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
  889. a_7_3·a_35_4 + a_2_0·a_40_16 − a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  890. a_7_3·a_35_5 + a_2_0·a_40_16 + c_36_11·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  891. a_7_3·a_35_7 − a_2_0·a_40_16 − a_2_0·a_40_15 + c_36_5·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  892. a_7_3·a_35_8 − a_2_0·a_40_15 + c_36_5·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
  893. a_7_4·a_35_4 − a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1 + a_2_0·a_16_4·c_24_4
  894. a_7_4·a_35_5 − a_2_0·a_40_16 + a_2_0·a_40_15 − c_36_11·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  895. a_7_4·a_35_7 − a_2_0·a_40_16 + c_36_5·a_3_0·a_3_1 − a_2_0·a_16_4·c_24_4
  896. a_7_4·a_35_8 + a_2_0·a_40_16 + a_2_0·a_40_15 − c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
       + a_2_0·a_16_4·c_24_4
  897. a_13_0·a_29_6 + b_4_0·a_3_0·a_35_4
  898. a_13_0·a_29_7 + b_4_0·a_3_0·a_35_7
  899. a_13_1·a_29_6 + b_4_0·a_3_0·a_35_5
  900. a_13_1·a_29_7 + b_4_0·a_3_0·a_35_8
  901. a_15_4·a_27_8
  902. a_15_4·a_27_9
  903. a_15_5·a_27_8
  904. a_15_5·a_27_9
  905. a_17_2·a_25_4 − b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5 + b_4_0·a_3_0·a_35_4
  906. a_17_2·a_25_5 − b_4_0·a_3_0·a_35_8 + b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5
  907. a_19_5·a_23_0 − a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1 − c_36_5·a_3_0·a_3_1
       − a_2_0·a_16_5·c_24_4 + a_2_0·a_16_4·c_24_4
  908. a_19_5·a_23_1 + a_2_0·a_40_15 − c_36_11·a_3_0·a_3_1 − a_2_0·a_16_4·c_24_4
  909. a_19_5·a_23_4 − a_2_0·a_40_16
  910. a_19_5·a_23_5 + a_2_0·a_40_15
  911. a_19_6·a_23_0 + a_2_0·a_40_16 − c_36_11·a_3_0·a_3_1 − c_36_5·a_3_0·a_3_1
       + a_2_0·a_16_5·c_24_4 + a_2_0·a_16_4·c_24_4
  912. a_19_6·a_23_1 − a_2_0·a_40_16 + c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
  913. a_19_6·a_23_4 − a_2_0·a_40_15
  914. a_19_6·a_23_5 − a_2_0·a_40_16
  915. a_12_2·b_30_4 − b_4_0·a_3_0·a_35_4
  916. a_12_2·b_30_5 − b_4_0·a_3_0·a_35_7
  917. a_12_3·b_30_4 − b_4_0·a_3_0·a_35_5
  918. a_12_3·b_30_5 − b_4_0·a_3_0·a_35_8
  919. a_12_4·b_30_4
  920. a_12_4·b_30_5
  921. a_12_5·b_30_4
  922. a_12_5·b_30_5
  923. b_18_0·a_24_5 − b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5 + b_4_0·a_3_0·a_35_4
  924. b_18_0·a_24_6 − b_4_0·a_3_0·a_35_8 + b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5
  925. b_18_0·a_24_7
  926. b_18_0·a_24_8
  927. a_8_1·a_35_4 − c_36_11·a_7_4 − c_36_5·a_7_4 + c_36_5·a_7_3 − c_24_4·a_19_6 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 + b_4_02·a_8_1·c_24_4·a_3_0
       − a_2_0·c_24_4·a_17_2
  928. a_8_1·a_35_5 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       − a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  929. a_8_1·a_35_7 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  930. a_8_1·a_35_8 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  931. a_8_2·a_35_4 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  932. a_8_2·a_35_5 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 − a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  933. a_8_2·a_35_7 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  934. a_8_2·a_35_8 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6 + c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  935. a_8_3·a_35_4 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  936. a_8_3·a_35_5 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6 + c_24_4·a_19_5
       + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  937. a_8_3·a_35_7 + c_36_11·a_7_4 + c_36_11·a_7_3 + c_36_5·a_7_3 + c_24_4·a_19_6
       + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  938. a_8_3·a_35_8 − c_36_11·a_7_4 + c_36_11·a_7_3 + c_36_5·a_7_4 − c_24_4·a_19_6
       + c_24_4·a_19_5 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  939. a_16_4·a_27_8 − a_2_0·c_24_4·a_17_2
  940. a_16_4·a_27_9 − a_2_0·c_24_4·a_17_2
  941. a_16_5·a_27_8 − a_2_0·c_24_4·a_17_2
  942. a_16_5·a_27_9 + a_2_0·c_24_4·a_17_2
  943. a_16_6·a_27_8 + a_2_0·c_24_4·a_17_2
  944. a_16_6·a_27_9 + a_2_0·c_24_4·a_17_2
  945. a_20_5·a_23_0 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  946. a_20_5·a_23_1 + a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  947. a_20_5·a_23_4
  948. a_20_5·a_23_5 + a_2_0·c_24_4·a_17_2
  949. a_20_6·a_23_0 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  950. a_20_6·a_23_1 + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  951. a_20_6·a_23_4 − a_2_0·c_24_4·a_17_2
  952. a_20_6·a_23_5
  953. a_24_5·a_19_5 − c_36_11·a_7_4 + c_36_11·a_7_3 + c_36_5·a_7_4 − c_24_4·a_19_6
       + c_24_4·a_19_5 − a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  954. a_24_5·a_19_6 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6
       + c_24_4·a_19_5 − a_12_2·c_24_4·a_7_0
  955. a_24_6·a_19_5 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  956. a_24_6·a_19_6 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       + a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  957. a_24_7·a_19_5 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  958. a_24_7·a_19_6 − c_36_11·a_7_4 − c_36_5·a_7_4 + c_36_5·a_7_3 − c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  959. a_24_8·a_19_5 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6
       + c_24_4·a_19_5 − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  960. a_24_8·a_19_6 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0
  961. a_28_7·a_15_4 + a_2_0·c_24_4·a_17_2
  962. a_28_7·a_15_5 + a_2_0·c_24_4·a_17_2
  963. a_28_8·a_15_4 + a_2_0·c_24_4·a_17_2
  964. a_28_8·a_15_5 − a_2_0·c_24_4·a_17_2
  965. a_28_9·a_15_4 + a_2_0·c_24_4·a_17_2
  966. a_28_9·a_15_5 − a_2_0·c_24_4·a_17_2
  967. a_28_10·a_15_4 − a_2_0·c_24_4·a_17_2
  968. a_28_10·a_15_5 − a_2_0·c_24_4·a_17_2
  969. a_40_15·a_3_0 − c_36_11·a_7_3 + c_36_5·a_7_4 + c_36_5·a_7_3 + c_24_4·a_19_5
       + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  970. a_40_15·a_3_1 − c_36_11·a_7_4 − c_36_5·a_7_4 + c_36_5·a_7_3 − c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  971. a_40_16·a_3_0 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       + a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  972. a_40_16·a_3_1 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0
  973. b_4_0·a_39_18
  974. b_4_0·a_39_19
  975. b_18_0·a_25_4 − b_4_02·a_35_7 + b_4_02·a_35_5 + b_4_02·a_35_4 + b_4_04·c_24_4·a_3_0
       − b_4_02·a_8_1·c_24_4·a_3_0
  976. b_18_0·a_25_5 − b_4_02·a_35_8 + b_4_02·a_35_7 + b_4_02·a_35_5
       − b_4_02·a_8_1·c_24_4·a_3_0
  977. b_30_4·a_13_0 − b_4_02·a_35_4 − b_4_04·c_24_4·a_3_0
  978. b_30_4·a_13_1 − b_4_02·a_35_5 + b_4_02·a_8_1·c_24_4·a_3_0
  979. b_30_5·a_13_0 − b_4_02·a_35_7
  980. b_30_5·a_13_1 − b_4_02·a_35_8
  981. a_20_5·c_24_4 − a_8_3·c_36_11 + a_8_2·c_36_5 + a_8_1·a_12_2·c_24_4
  982. a_20_6·c_24_4 − a_8_3·c_36_5 − a_8_2·c_36_11 − a_8_1·a_12_2·c_24_4
  983. a_16_4·a_28_7 + a_8_1·a_12_2·c_24_4
  984. a_16_4·a_28_8
  985. a_16_4·a_28_9
  986. a_16_4·a_28_10 − a_8_1·a_12_2·c_24_4
  987. a_16_5·a_28_7
  988. a_16_5·a_28_8 − a_8_1·a_12_2·c_24_4
  989. a_16_5·a_28_9 − a_8_1·a_12_2·c_24_4
  990. a_16_5·a_28_10
  991. a_16_6·a_28_7 − a_8_1·a_12_2·c_24_4
  992. a_16_6·a_28_8
  993. a_16_6·a_28_9
  994. a_16_6·a_28_10 + a_8_1·a_12_2·c_24_4
  995. a_20_5·a_24_5 − a_8_1·a_12_2·c_24_4
  996. a_20_5·a_24_6 − a_8_1·a_12_2·c_24_4
  997. a_20_5·a_24_7 + a_8_1·a_12_2·c_24_4
  998. a_20_5·a_24_8
  999. a_20_6·a_24_5
  1000. a_20_6·a_24_6 + a_8_1·a_12_2·c_24_4
  1001. a_20_6·a_24_7
  1002. a_20_6·a_24_8 + a_8_1·a_12_2·c_24_4
  1003. a_22_12
  1004. a_15_4·a_29_6
  1005. a_15_4·a_29_7
  1006. a_15_5·a_29_6
  1007. a_15_5·a_29_7
  1008. a_17_2·a_27_8
  1009. a_17_2·a_27_9
  1010. a_19_5·a_25_4 + a_8_1·a_12_2·c_24_4
  1011. a_19_5·a_25_5 − a_8_1·a_12_2·c_24_4
  1012. a_19_6·a_25_4 − a_8_1·a_12_2·c_24_4
  1013. a_19_6·a_25_5
  1014. b_4_0·a_40_15
  1015. b_4_0·a_40_16 + a_8_1·a_12_2·c_24_4
  1016. a_16_4·a_29_6
  1017. a_16_4·a_29_7
  1018. a_16_5·a_29_6
  1019. a_16_5·a_29_7
  1020. a_16_6·a_29_6
  1021. a_16_6·a_29_7
  1022. a_20_5·a_25_4
  1023. a_20_5·a_25_5
  1024. a_20_6·a_25_4
  1025. a_20_6·a_25_5
  1026. a_22_1·a_23_0
  1027. a_22_1·a_23_1
  1028. a_22_1·a_23_4
  1029. a_22_1·a_23_5
  1030. a_28_7·a_17_2
  1031. a_28_8·a_17_2
  1032. a_28_9·a_17_2
  1033. a_28_10·a_17_2
  1034. a_34_6·a_11_2
  1035. a_34_6·a_11_3
  1036. a_34_7·a_11_2
  1037. a_34_7·a_11_3
  1038. b_18_0·a_27_8
  1039. b_18_0·a_27_9
  1040. b_30_4·a_15_4
  1041. b_30_4·a_15_5
  1042. b_30_5·a_15_4
  1043. b_30_5·a_15_5
  1044. a_12_2·a_34_6
  1045. a_12_2·a_34_7
  1046. a_12_3·a_34_6
  1047. a_12_3·a_34_7
  1048. a_12_4·a_34_6
  1049. a_12_4·a_34_7
  1050. a_12_5·a_34_6
  1051. a_12_5·a_34_7
  1052. a_22_1·a_24_5
  1053. a_22_1·a_24_6
  1054. a_22_1·a_24_7
  1055. a_22_1·a_24_8
  1056. a_7_0·a_39_18 + a_2_0·a_8_2·c_36_11 − a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11
  1057. a_7_0·a_39_19 − a_2_0·a_8_2·c_36_11 − a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1058. a_7_1·a_39_18 − a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11
  1059. a_7_1·a_39_19 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1060. a_7_3·a_39_18 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1061. a_7_3·a_39_19 + a_2_0·a_8_2·c_36_11 − a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11
  1062. a_7_4·a_39_18 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_5
  1063. a_7_4·a_39_19 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1064. a_11_2·a_35_4 + a_2_0·a_8_1·c_36_11
  1065. a_11_2·a_35_5 + a_2_0·a_8_2·c_36_11
  1066. a_11_2·a_35_7 + a_2_0·a_8_1·c_36_5
  1067. a_11_2·a_35_8 + a_2_0·a_8_2·c_36_5
  1068. a_11_3·a_35_4 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11
  1069. a_11_3·a_35_5 − a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11
  1070. a_11_3·a_35_7 + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_5
  1071. a_11_3·a_35_8 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_5
  1072. a_17_2·a_29_6
  1073. a_17_2·a_29_7
  1074. a_19_5·a_27_8 − a_2_0·a_8_2·c_36_11 − a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1075. a_19_5·a_27_9 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1076. a_19_6·a_27_8 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1077. a_19_6·a_27_9 − a_2_0·a_8_2·c_36_11 − a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1078. a_23_0·a_23_1 + b_4_05·a_13_0·a_13_1 − a_22_1·c_24_4 + a_2_0·a_8_2·c_36_11
       + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1079. a_23_0·a_23_4 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1080. a_23_0·a_23_5 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1081. a_23_1·a_23_4 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_5
  1082. a_23_1·a_23_5 − a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11
  1083. a_23_4·a_23_5
  1084. a_16_4·b_30_4
  1085. a_16_4·b_30_5
  1086. a_16_5·b_30_4
  1087. a_16_5·b_30_5
  1088. a_16_6·b_30_4
  1089. a_16_6·b_30_5
  1090. b_18_0·a_28_7
  1091. b_18_0·a_28_8
  1092. b_18_0·a_28_9
  1093. b_18_0·a_28_10
  1094. c_36_11·a_11_2 − c_36_5·a_11_3 − c_24_4·a_23_4 + a_8_2·c_36_5·a_3_0 + a_8_1·c_36_5·a_3_1
       − a_8_1·c_36_5·a_3_0
  1095. c_36_11·a_11_3 + c_36_5·a_11_2 − c_24_4·a_23_5 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_1
       + a_8_1·c_36_5·a_3_0
  1096. a_8_1·a_39_18
  1097. a_8_1·a_39_19
  1098. a_8_2·a_39_18
  1099. a_8_2·a_39_19
  1100. a_8_3·a_39_18
  1101. a_8_3·a_39_19
  1102. a_12_2·a_35_4 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1103. a_12_2·a_35_5 + a_8_2·c_36_11·a_3_0 − a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
       + b_4_03·a_8_1·c_24_4·a_3_0
  1104. a_12_2·a_35_7 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1105. a_12_2·a_35_8 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1106. a_12_3·a_35_4 − a_8_2·c_36_11·a_3_0 − a_8_1·c_36_11·a_3_0 − b_4_03·a_8_1·c_24_4·a_3_0
  1107. a_12_3·a_35_5 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1108. a_12_3·a_35_7 − a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_0
  1109. a_12_3·a_35_8 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1110. a_12_4·a_35_4 − a_8_2·c_36_11·a_3_0
  1111. a_12_4·a_35_5 + a_8_2·c_36_11·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1112. a_12_4·a_35_7 − a_8_2·c_36_5·a_3_0
  1113. a_12_4·a_35_8 + a_8_2·c_36_5·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1114. a_12_5·a_35_4 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1115. a_12_5·a_35_5 + a_8_2·c_36_11·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1116. a_12_5·a_35_7 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1117. a_12_5·a_35_8 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1118. a_20_5·a_27_8
  1119. a_20_5·a_27_9
  1120. a_20_6·a_27_8
  1121. a_20_6·a_27_9
  1122. a_22_1·a_25_4
  1123. a_22_1·a_25_5
  1124. a_24_5·a_23_0 + a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
       + a_8_1·c_36_5·a_3_1
  1125. a_24_5·a_23_1 − a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_0
       − a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0 − b_4_03·a_8_1·c_24_4·a_3_0
  1126. a_24_5·a_23_4
  1127. a_24_5·a_23_5
  1128. a_24_6·a_23_0 + a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_0 + b_4_03·a_8_1·c_24_4·a_3_0
  1129. a_24_6·a_23_1 − a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
       − a_8_1·c_36_5·a_3_1
  1130. a_24_6·a_23_4
  1131. a_24_6·a_23_5
  1132. a_24_7·a_23_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1133. a_24_7·a_23_1 − a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1134. a_24_7·a_23_4
  1135. a_24_7·a_23_5
  1136. a_24_8·a_23_0 − a_8_2·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1137. a_24_8·a_23_1 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1138. a_24_8·a_23_4
  1139. a_24_8·a_23_5
  1140. a_28_7·a_19_5 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1141. a_28_7·a_19_6 − a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1142. a_28_8·a_19_5 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1143. a_28_8·a_19_6 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1144. a_28_9·a_19_5 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1145. a_28_9·a_19_6 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1146. a_28_10·a_19_5 + a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1147. a_28_10·a_19_6 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1148. a_34_6·a_13_0
  1149. a_34_6·a_13_1
  1150. a_34_7·a_13_0
  1151. a_34_7·a_13_1
  1152. a_40_15·a_7_0 − a_8_2·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1153. a_40_15·a_7_1 + a_8_2·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1154. a_40_15·a_7_3 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1155. a_40_15·a_7_4 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1156. a_40_16·a_7_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1157. a_40_16·a_7_1 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1158. a_40_16·a_7_3 + a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1159. a_40_16·a_7_4 + a_8_2·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1160. b_18_0·a_29_6 − b_4_02·c_36_11·a_3_0 − b_4_05·c_24_4·a_3_0
  1161. b_18_0·a_29_7 − b_4_02·c_36_5·a_3_0
  1162. b_30_4·a_17_2 − b_4_02·c_36_11·a_3_0 − b_4_05·c_24_4·a_3_0
  1163. b_30_5·a_17_2 − b_4_02·c_36_5·a_3_0
  1164. a_24_7·c_24_4 + a_12_5·c_36_5 − a_12_4·c_36_11
  1165. a_24_8·c_24_4 − a_12_5·c_36_11 − a_12_4·c_36_5
  1166. b_4_05·a_3_0·a_25_4 + a_24_5·c_24_4 − a_12_3·c_36_11 − a_12_2·c_36_11 + a_12_2·c_36_5
       − b_4_02·c_24_4·a_3_0·a_13_1 − b_4_02·c_24_4·a_3_0·a_13_0
  1167. b_4_05·a_3_0·a_25_5 + a_24_6·c_24_4 − a_12_3·c_36_11 + a_12_3·c_36_5 − a_12_2·c_36_5
       − b_4_02·c_24_4·a_3_0·a_13_1
  1168. a_8_1·a_40_15
  1169. a_8_1·a_40_16
  1170. a_8_2·a_40_15
  1171. a_8_2·a_40_16
  1172. a_8_3·a_40_15
  1173. a_8_3·a_40_16
  1174. a_20_5·a_28_7
  1175. a_20_5·a_28_8
  1176. a_20_5·a_28_9
  1177. a_20_5·a_28_10
  1178. a_20_6·a_28_7
  1179. a_20_6·a_28_8
  1180. a_20_6·a_28_9
  1181. a_20_6·a_28_10
  1182. a_24_52
  1183. a_24_5·a_24_6
  1184. a_24_5·a_24_7
  1185. a_24_5·a_24_8
  1186. a_24_62
  1187. a_24_6·a_24_7
  1188. a_24_6·a_24_8
  1189. a_24_72
  1190. a_24_7·a_24_8
  1191. a_24_82
  1192. a_13_0·a_35_4 − b_4_02·c_24_4·a_3_0·a_13_0
  1193. a_13_0·a_35_5 + b_4_0·a_8_1·c_36_11 + b_4_04·a_8_1·c_24_4
  1194. a_13_0·a_35_7
  1195. a_13_0·a_35_8 + b_4_0·a_8_1·c_36_5
  1196. a_13_1·a_35_4 − b_4_0·a_8_1·c_36_11 − b_4_04·a_8_1·c_24_4
       − b_4_02·c_24_4·a_3_0·a_13_1
  1197. a_13_1·a_35_5
  1198. a_13_1·a_35_7 − b_4_0·a_8_1·c_36_5
  1199. a_13_1·a_35_8
  1200. a_19_5·a_29_6
  1201. a_19_5·a_29_7
  1202. a_19_6·a_29_6
  1203. a_19_6·a_29_7
  1204. a_23_0·a_25_4 − b_4_0·a_8_1·c_36_5
  1205. a_23_0·a_25_5 − b_4_0·a_8_1·c_36_11 − b_4_0·a_8_1·c_36_5 − b_4_04·a_8_1·c_24_4
  1206. a_23_1·a_25_4 + b_4_0·a_8_1·c_36_11 − b_4_0·a_8_1·c_36_5 + b_4_04·a_8_1·c_24_4
  1207. a_23_1·a_25_5 + b_4_0·a_8_1·c_36_5
  1208. a_23_4·a_25_4
  1209. a_23_4·a_25_5
  1210. a_23_5·a_25_4
  1211. a_23_5·a_25_5
  1212. b_18_0·b_30_4 − b_4_03·c_36_11 − b_4_06·c_24_4 − a_24_6·c_24_4 + a_24_5·c_24_4
       − a_12_3·c_36_5 − a_12_2·c_36_11 − a_12_2·c_36_5 + b_4_02·c_24_4·a_3_0·a_13_1
       − b_4_02·c_24_4·a_3_0·a_13_0
  1213. b_18_0·b_30_5 − b_4_03·c_36_5 − a_24_5·c_24_4 + a_12_3·c_36_11 + a_12_2·c_36_11
       − a_12_2·c_36_5
  1214. a_2_0·a_47_14
  1215. a_2_0·a_47_15
  1216. a_20_5·a_29_6
  1217. a_20_5·a_29_7
  1218. a_20_6·a_29_6
  1219. a_20_6·a_29_7
  1220. a_22_1·a_27_8
  1221. a_22_1·a_27_9
  1222. a_24_5·a_25_4
  1223. a_24_5·a_25_5 + b_4_02·a_3_0·a_13_0·a_25_4 + a_8_1·c_24_4·a_17_2
  1224. a_24_6·a_25_4 − b_4_02·a_3_0·a_13_0·a_25_4 − a_8_1·c_24_4·a_17_2
  1225. a_24_6·a_25_5
  1226. a_24_7·a_25_4
  1227. a_24_7·a_25_5
  1228. a_24_8·a_25_4
  1229. a_24_8·a_25_5
  1230. a_34_6·a_15_4
  1231. a_34_6·a_15_5
  1232. a_34_7·a_15_4
  1233. a_34_7·a_15_5
  1234. b_4_06·a_25_4 − b_4_02·a_3_0·a_13_0·a_25_5 − b_4_02·a_3_0·a_13_0·a_25_4
       − c_36_11·a_13_1 − c_36_11·a_13_0 + c_36_5·a_13_0 + c_24_4·a_25_4 − b_4_03·c_24_4·a_13_1
       − b_4_03·c_24_4·a_13_0 − a_8_1·c_24_4·a_17_2
  1235. b_4_06·a_25_5 − b_4_02·a_3_0·a_13_0·a_25_4 − c_36_11·a_13_1 + c_36_5·a_13_1
       − c_36_5·a_13_0 + c_24_4·a_25_5 − b_4_03·c_24_4·a_13_1 + a_8_1·c_24_4·a_17_2
  1236. b_30_4·a_19_5
  1237. b_30_4·a_19_6
  1238. b_30_5·a_19_5
  1239. b_30_5·a_19_6
  1240. a_16_4·a_34_6
  1241. a_16_4·a_34_7
  1242. a_16_5·a_34_6
  1243. a_16_5·a_34_7
  1244. a_16_6·a_34_6
  1245. a_16_6·a_34_7
  1246. a_22_1·a_28_7
  1247. a_22_1·a_28_8
  1248. a_22_1·a_28_9
  1249. a_22_1·a_28_10
  1250. a_3_1·a_47_14 − a_3_0·a_47_14 + a_2_0·a_12_3·c_36_5 + a_2_0·a_12_2·c_36_5
  1251. a_3_1·a_47_15 − a_3_0·a_47_15 − a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1252. a_11_2·a_39_18
  1253. a_11_2·a_39_19
  1254. a_11_3·a_39_18
  1255. a_11_3·a_39_19
  1256. a_15_4·a_35_4 − a_2_0·a_12_3·c_36_11 − a_2_0·a_12_2·c_36_11
  1257. a_15_4·a_35_5 + a_2_0·a_12_3·c_36_11
  1258. a_15_4·a_35_7 − a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1259. a_15_4·a_35_8 + a_2_0·a_12_3·c_36_5
  1260. a_15_5·a_35_4 − a_2_0·a_12_2·c_36_11
  1261. a_15_5·a_35_5 + a_2_0·a_12_3·c_36_11 − a_2_0·a_12_2·c_36_11
  1262. a_15_5·a_35_7 − a_2_0·a_12_2·c_36_5
  1263. a_15_5·a_35_8 + a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1264. a_23_0·a_27_8 + a_2_0·a_12_3·c_36_5 + a_2_0·a_12_2·c_36_11 + a_2_0·a_12_2·c_36_5
  1265. a_23_0·a_27_9 − a_2_0·a_12_3·c_36_11 − a_2_0·a_12_2·c_36_11 + a_2_0·a_12_2·c_36_5
  1266. a_23_1·a_27_8 − a_2_0·a_12_3·c_36_11 + a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1267. a_23_1·a_27_9 − a_2_0·a_12_3·c_36_11 − a_2_0·a_12_3·c_36_5 + a_2_0·a_12_2·c_36_11
  1268. a_23_4·a_27_8
  1269. a_23_4·a_27_9
  1270. a_23_5·a_27_8
  1271. a_23_5·a_27_9
  1272. a_25_4·a_25_5 + b_4_03·a_13_0·a_25_4 − c_24_4·a_13_0·a_13_1
  1273. a_20_5·b_30_4
  1274. a_20_5·b_30_5
  1275. a_20_6·b_30_4
  1276. a_20_6·b_30_5
  1277. c_36_11·a_15_4 − c_36_5·a_15_5 + c_24_4·a_27_8 + a_8_1·c_24_4·a_19_6
       + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1278. c_36_11·a_15_5 + c_36_5·a_15_4 + c_24_4·a_27_9 + a_8_1·c_24_4·a_19_6
       + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1279. a_12_2·a_39_18 + a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
       + a_2_0·c_24_4·a_25_4
  1280. a_12_2·a_39_19 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1281. a_12_3·a_39_18 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1282. a_12_3·a_39_19 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1283. a_12_4·a_39_18 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1284. a_12_4·a_39_19 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1285. a_12_5·a_39_18 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1286. a_12_5·a_39_19 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1287. a_16_4·a_35_4 + a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1288. a_16_4·a_35_5 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1289. a_16_4·a_35_7 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1290. a_16_4·a_35_8
  1291. a_16_5·a_35_4 + a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1292. a_16_5·a_35_5 + a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1293. a_16_5·a_35_7 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_4
  1294. a_16_5·a_35_8 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1295. a_16_6·a_35_4 − a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1296. a_16_6·a_35_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1297. a_16_6·a_35_7 − a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       + a_2_0·c_24_4·a_25_4
  1298. a_16_6·a_35_8 − a_2_0·c_36_5·a_13_1
  1299. a_22_1·a_29_6 − b_4_0·a_8_1·c_36_11·a_3_0 − b_4_04·a_8_1·c_24_4·a_3_0
  1300. a_22_1·a_29_7 − b_4_0·a_8_1·c_36_5·a_3_0
  1301. a_24_5·a_27_8 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1302. a_24_5·a_27_9 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1303. a_24_6·a_27_8 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1304. a_24_6·a_27_9 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1305. a_24_7·a_27_8 + a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
       + a_2_0·c_24_4·a_25_4
  1306. a_24_7·a_27_9 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1307. a_24_8·a_27_8 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1308. a_24_8·a_27_9 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1309. a_28_7·a_23_0 + a_8_1·c_24_4·a_19_6 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_4
  1310. a_28_7·a_23_1 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1311. a_28_7·a_23_4 + a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
  1312. a_28_7·a_23_5 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1313. a_28_8·a_23_0 + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5
  1314. a_28_8·a_23_1 − a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0
       + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1315. a_28_8·a_23_4 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1316. a_28_8·a_23_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1317. a_28_9·a_23_0 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1318. a_28_9·a_23_1 − a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1319. a_28_9·a_23_4 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1320. a_28_9·a_23_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1321. a_28_10·a_23_0 − a_8_1·c_24_4·a_19_6 + a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_4
  1322. a_28_10·a_23_1 − a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1323. a_28_10·a_23_4 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1324. a_28_10·a_23_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1325. a_34_6·a_17_2 + b_4_0·a_8_1·c_36_11·a_3_0 + b_4_04·a_8_1·c_24_4·a_3_0
  1326. a_34_7·a_17_2 + b_4_0·a_8_1·c_36_5·a_3_0
  1327. a_40_15·a_11_2 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1328. a_40_15·a_11_3 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1329. a_40_16·a_11_2 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1330. a_40_16·a_11_3 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1331. c_24_4·a_28_7 + a_16_5·c_36_5 − a_16_4·c_36_11
  1332. c_24_4·a_28_8 + a_16_6·c_36_5 − a_16_5·c_36_11
  1333. c_24_4·a_28_9 − a_16_5·c_36_11 − a_16_4·c_36_5
  1334. c_24_4·a_28_10 − a_16_6·c_36_11 − a_16_5·c_36_5
  1335. a_12_2·a_40_15
  1336. a_12_2·a_40_16
  1337. a_12_3·a_40_15
  1338. a_12_3·a_40_16
  1339. a_12_4·a_40_15
  1340. a_12_4·a_40_16
  1341. a_12_5·a_40_15
  1342. a_12_5·a_40_16
  1343. a_24_5·a_28_7
  1344. a_24_5·a_28_8
  1345. a_24_5·a_28_9
  1346. a_24_5·a_28_10
  1347. a_24_6·a_28_7
  1348. a_24_6·a_28_8
  1349. a_24_6·a_28_9
  1350. a_24_6·a_28_10
  1351. a_24_7·a_28_7
  1352. a_24_7·a_28_8
  1353. a_24_7·a_28_9
  1354. a_24_7·a_28_10
  1355. a_24_8·a_28_7
  1356. a_24_8·a_28_8
  1357. a_24_8·a_28_9
  1358. a_24_8·a_28_10
  1359. a_13_0·a_39_18
  1360. a_13_0·a_39_19
  1361. a_13_1·a_39_18
  1362. a_13_1·a_39_19
  1363. a_17_2·a_35_4 − c_36_11·a_3_0·a_13_0 − b_4_03·c_24_4·a_3_0·a_13_0
  1364. a_17_2·a_35_5 − c_36_11·a_3_0·a_13_1 − b_4_03·c_24_4·a_3_0·a_13_1
  1365. a_17_2·a_35_7 − c_36_5·a_3_0·a_13_0
  1366. a_17_2·a_35_8 − c_36_5·a_3_0·a_13_1
  1367. a_23_0·a_29_6 + c_36_11·a_3_0·a_13_1 + c_36_11·a_3_0·a_13_0
       + b_4_03·c_24_4·a_3_0·a_13_1 + b_4_03·c_24_4·a_3_0·a_13_0
  1368. a_23_0·a_29_7 + c_36_5·a_3_0·a_13_1 + c_36_5·a_3_0·a_13_0
  1369. a_23_1·a_29_6 + c_36_11·a_3_0·a_13_1 + b_4_03·c_24_4·a_3_0·a_13_1
  1370. a_23_1·a_29_7 + c_36_5·a_3_0·a_13_1
  1371. a_23_4·a_29_6
  1372. a_23_4·a_29_7
  1373. a_23_5·a_29_6
  1374. a_23_5·a_29_7
  1375. a_25_4·a_27_8
  1376. a_25_4·a_27_9
  1377. a_25_5·a_27_8
  1378. a_25_5·a_27_9
  1379. b_18_0·a_34_6 + b_4_02·a_8_1·c_36_11 + b_4_05·a_8_1·c_24_4
  1380. b_18_0·a_34_7 + b_4_02·a_8_1·c_36_5
  1381. a_22_1·b_30_4 − b_4_02·a_8_1·c_36_11 − b_4_05·a_8_1·c_24_4
  1382. a_22_1·b_30_5 − b_4_02·a_8_1·c_36_5
  1383. a_24_5·a_29_6
  1384. a_24_5·a_29_7
  1385. a_24_6·a_29_6
  1386. a_24_6·a_29_7
  1387. a_24_7·a_29_6
  1388. a_24_7·a_29_7
  1389. a_24_8·a_29_6
  1390. a_24_8·a_29_7
  1391. a_28_7·a_25_4
  1392. a_28_7·a_25_5
  1393. a_28_8·a_25_4
  1394. a_28_8·a_25_5
  1395. a_28_9·a_25_4
  1396. a_28_9·a_25_5
  1397. a_28_10·a_25_4
  1398. a_28_10·a_25_5
  1399. a_34_6·a_19_5
  1400. a_34_6·a_19_6
  1401. a_34_7·a_19_5
  1402. a_34_7·a_19_6
  1403. a_40_15·a_13_0
  1404. a_40_15·a_13_1
  1405. a_40_16·a_13_0
  1406. a_40_16·a_13_1
  1407. b_4_06·a_29_6 + c_36_11·a_17_2 + c_24_4·a_29_6 + b_4_03·c_24_4·a_17_2
  1408. b_4_06·a_29_7 + c_36_5·a_17_2 + c_24_4·a_29_7
  1409. b_18_0·a_35_4 − b_4_03·a_3_0·a_13_0·a_25_5 + b_4_03·a_3_0·a_13_0·a_25_4
       − b_4_0·c_36_11·a_13_0 + b_4_03·c_24_4·a_17_2 − b_4_04·c_24_4·a_13_0
       − c_24_4·a_3_0·a_13_0·a_13_1
  1410. b_18_0·a_35_5 + b_4_03·a_3_0·a_13_0·a_25_5 + b_4_03·a_3_0·a_13_0·a_25_4
       − b_4_0·c_36_11·a_13_1 − b_4_04·c_24_4·a_13_1 + c_24_4·a_3_0·a_13_0·a_13_1
  1411. b_18_0·a_35_7 − b_4_03·a_3_0·a_13_0·a_25_4 − b_4_0·c_36_5·a_13_0
       + c_24_4·a_3_0·a_13_0·a_13_1
  1412. b_18_0·a_35_8 + b_4_03·a_3_0·a_13_0·a_25_5 − b_4_0·c_36_5·a_13_1
       − c_24_4·a_3_0·a_13_0·a_13_1
  1413. b_30_4·a_23_0 − b_4_0·c_36_11·a_13_1 − b_4_0·c_36_11·a_13_0 − b_4_04·c_24_4·a_13_1
       − b_4_04·c_24_4·a_13_0 − c_24_4·a_3_0·a_13_0·a_13_1
  1414. b_30_4·a_23_1 + b_4_03·a_3_0·a_13_0·a_25_5 − b_4_0·c_36_11·a_13_1
       − b_4_04·c_24_4·a_13_1
  1415. b_30_4·a_23_4
  1416. b_30_4·a_23_5
  1417. b_30_5·a_23_0 − b_4_0·c_36_5·a_13_1 − b_4_0·c_36_5·a_13_0
  1418. b_30_5·a_23_1 − b_4_03·a_3_0·a_13_0·a_25_5 − b_4_03·a_3_0·a_13_0·a_25_4
       − b_4_0·c_36_5·a_13_1 − c_24_4·a_3_0·a_13_0·a_13_1
  1419. b_30_5·a_23_4
  1420. b_30_5·a_23_5
  1421. a_20_5·a_34_6
  1422. a_20_5·a_34_7
  1423. a_20_6·a_34_6
  1424. a_20_6·a_34_7
  1425. a_7_0·a_47_14 + b_4_0·a_3_0·a_47_14 + c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1
       − a_2_0·a_16_5·c_36_5
  1426. a_7_0·a_47_15 + b_4_0·a_3_0·a_47_15 − c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1
       + a_2_0·a_16_5·c_36_5 + a_2_0·a_16_4·c_36_5
  1427. a_7_1·a_47_14 − c_48_18·a_3_0·a_3_1 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
       − a_2_0·a_16_4·c_36_5
  1428. a_7_1·a_47_15 + c_48_18·a_3_0·a_3_1 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
       + a_2_0·a_16_4·c_36_5
  1429. a_7_3·a_47_14 + c_48_13·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_5 − a_2_0·a_16_4·c_36_5
  1430. a_7_3·a_47_15 + c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_5
       + a_2_0·a_16_4·c_36_5
  1431. a_7_4·a_47_14 + c_48_18·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_5 + a_2_0·a_16_4·c_36_5
  1432. a_7_4·a_47_15 + c_48_13·a_3_0·a_3_1
  1433. a_15_4·a_39_18
  1434. a_15_4·a_39_19
  1435. a_15_5·a_39_18
  1436. a_15_5·a_39_19
  1437. a_19_5·a_35_4 − c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_4·c_36_11
       − a_2_0·a_16_4·c_36_5 + c_24_42·a_3_0·a_3_1
  1438. a_19_5·a_35_5 + c_48_18·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_11 + a_2_0·a_16_4·c_36_11
       − a_2_0·a_16_4·c_36_5 + c_24_42·a_3_0·a_3_1
  1439. a_19_5·a_35_7 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5 + a_2_0·a_16_4·c_36_5
  1440. a_19_5·a_35_8 + c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_4·c_36_5
  1441. a_19_6·a_35_4 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_11 + a_2_0·a_16_5·c_36_5
       + a_2_0·a_16_4·c_36_11 + c_24_42·a_3_0·a_3_1
  1442. a_19_6·a_35_5 − c_48_18·a_3_0·a_3_1 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_11
       + a_2_0·a_16_5·c_36_5 − a_2_0·a_16_4·c_36_11
  1443. a_19_6·a_35_7 − c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
       − a_2_0·a_16_4·c_36_5
  1444. a_19_6·a_35_8 + c_48_18·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
  1445. a_25_4·a_29_6 + b_4_0·a_3_0·a_47_15 − b_4_0·a_3_0·a_47_14 − b_4_04·a_3_0·a_35_5
       − b_4_04·a_3_0·a_35_4 − b_4_0·c_24_4·a_3_0·a_23_0
  1446. a_25_4·a_29_7 + b_4_0·a_3_0·a_47_14
  1447. a_25_5·a_29_6 + b_4_0·a_3_0·a_47_15 + b_4_0·a_3_0·a_47_14 − b_4_04·a_3_0·a_35_5
       − b_4_0·c_24_4·a_3_0·a_23_1
  1448. a_25_5·a_29_7 + b_4_0·a_3_0·a_47_15
  1449. a_27_8·a_27_9
  1450. a_24_5·b_30_4 − b_4_0·a_3_0·a_47_15 + b_4_0·a_3_0·a_47_14 + b_4_04·a_3_0·a_35_5
       + b_4_04·a_3_0·a_35_4 + b_4_0·c_24_4·a_3_0·a_23_0
  1451. a_24_5·b_30_5 − b_4_0·a_3_0·a_47_14
  1452. a_24_6·b_30_4 − b_4_0·a_3_0·a_47_15 − b_4_0·a_3_0·a_47_14 + b_4_04·a_3_0·a_35_5
       + b_4_0·c_24_4·a_3_0·a_23_1
  1453. a_24_6·b_30_5 − b_4_0·a_3_0·a_47_15
  1454. a_24_7·b_30_4
  1455. a_24_7·b_30_5
  1456. a_24_8·b_30_4
  1457. a_24_8·b_30_5
  1458. b_4_06·b_30_4 − b_4_04·a_3_0·a_35_8 − b_4_04·a_3_0·a_35_7 + b_4_04·a_3_0·a_35_5
       + b_4_04·a_3_0·a_35_4 + c_24_4·b_30_4 + b_18_0·c_36_11 + b_4_03·b_18_0·c_24_4
       − b_4_0·c_24_4·a_3_0·a_23_1 − a_2_0·a_16_5·c_36_11 − a_2_0·a_16_4·c_36_5
       − c_24_42·a_3_0·a_3_1
  1459. b_4_06·b_30_5 + b_4_04·a_3_0·a_35_8 + b_4_04·a_3_0·a_35_7 + b_4_04·a_3_0·a_35_5
       + b_4_04·a_3_0·a_35_4 + c_24_4·b_30_5 + b_18_0·c_36_5 + b_4_0·c_24_4·a_3_0·a_23_0
  1460. c_36_11·a_19_5 − c_36_5·a_19_6 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
       − c_24_42·a_7_3
  1461. c_36_11·a_19_6 + c_36_5·a_19_5 − a_2_0·c_24_4·a_29_6 + c_24_42·a_7_4 + c_24_42·a_7_3
  1462. c_48_18·a_7_3 − c_48_13·a_7_4 + c_36_5·a_19_6 + c_36_5·a_19_5 − a_12_2·c_36_5·a_7_3
       + a_12_2·c_36_5·a_7_0
  1463. c_48_18·a_7_4 − c_48_13·a_7_4 − c_48_13·a_7_3 + c_36_5·a_19_6 − a_12_2·c_36_5·a_7_0
       − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1464. a_8_1·a_47_14 − a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0 − a_2_0·c_24_4·a_29_7
  1465. a_8_1·a_47_15 + a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0 − a_2_0·c_24_4·a_29_7
  1466. a_8_2·a_47_14 − a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1467. a_8_2·a_47_15 − a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0
  1468. a_8_3·a_47_14 − a_12_2·c_36_5·a_7_3 − a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1469. a_8_3·a_47_15 − a_12_2·c_36_5·a_7_3 − a_2_0·c_24_4·a_29_7
  1470. a_16_4·a_39_18 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1471. a_16_4·a_39_19 − a_2_0·c_24_4·a_29_7
  1472. a_16_5·a_39_18 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1473. a_16_5·a_39_19 + a_2_0·c_24_4·a_29_6
  1474. a_16_6·a_39_18 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1475. a_16_6·a_39_19 + a_2_0·c_24_4·a_29_7
  1476. a_20_5·a_35_4 − a_12_2·c_36_5·a_7_3 − a_12_2·c_36_5·a_7_0 + a_8_1·c_24_4·a_23_1
       + a_8_1·c_24_4·a_23_0 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1477. a_20_5·a_35_5 + a_12_2·c_36_5·a_7_3 − a_12_2·c_36_5·a_7_0 + a_8_1·c_24_4·a_23_1
       − a_8_1·c_24_4·a_23_0 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1478. a_20_5·a_35_7 − a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1479. a_20_5·a_35_8 − a_12_2·c_36_5·a_7_3 + a_2_0·c_24_4·a_29_7
  1480. a_20_6·a_35_4 − a_12_2·c_36_5·a_7_0 + a_8_1·c_24_4·a_23_1 − a_2_0·c_24_4·a_29_6
  1481. a_20_6·a_35_5 − a_12_2·c_36_5·a_7_3 + a_8_1·c_24_4·a_23_0 + a_2_0·c_24_4·a_29_7
       + a_2_0·c_24_4·a_29_6
  1482. a_20_6·a_35_7 + a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1483. a_20_6·a_35_8 − a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0
  1484. a_28_7·a_27_8 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1485. a_28_7·a_27_9 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1486. a_28_8·a_27_8 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1487. a_28_8·a_27_9 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1488. a_28_9·a_27_8 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1489. a_28_9·a_27_9 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1490. a_28_10·a_27_8 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1491. a_28_10·a_27_9 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1492. a_40_15·a_15_4 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1493. a_40_15·a_15_5 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1494. a_40_16·a_15_4 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1495. a_40_16·a_15_5 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1496. b_30_4·a_25_4 − b_4_02·a_47_15 + b_4_02·a_47_14 + b_4_05·a_35_5 + b_4_05·a_35_4
       + b_4_02·c_24_4·a_23_0 + b_4_07·c_24_4·a_3_0 − b_4_02·a_8_1·c_36_11·a_3_0
       + b_4_05·a_8_1·c_24_4·a_3_0
  1497. b_30_4·a_25_5 − b_4_02·a_47_15 − b_4_02·a_47_14 + b_4_05·a_35_5
       + b_4_02·c_24_4·a_23_1 + b_4_02·a_8_1·c_36_11·a_3_0 + b_4_02·a_8_1·c_36_5·a_3_0
  1498. b_30_5·a_25_4 − b_4_02·a_47_14 − b_4_02·a_8_1·c_36_11·a_3_0
  1499. b_30_5·a_25_5 − b_4_02·a_47_15
  1500. a_20_5·c_36_5 − a_8_3·c_48_18 + a_8_3·c_48_13 − a_8_2·c_48_18 + a_8_1·a_12_2·c_36_11
  1501. a_20_5·c_36_11 − a_8_3·c_48_18 + a_8_2·c_48_18 − a_8_2·c_48_13 − a_8_1·a_12_2·c_36_5
       − a_8_3·c_24_42
  1502. a_20_6·c_36_5 + a_8_3·c_48_18 − a_8_2·c_48_18 + a_8_2·c_48_13 + a_8_1·a_12_2·c_36_11
       − a_8_1·a_12_2·c_36_5
  1503. a_20_6·c_36_11 − a_8_3·c_48_18 + a_8_3·c_48_13 − a_8_2·c_48_18 − a_8_1·a_12_2·c_36_11
       − a_8_2·c_24_42
  1504. a_16_4·a_40_15 + a_8_1·a_12_2·c_36_5
  1505. a_16_4·a_40_16 − a_8_1·a_12_2·c_36_11
  1506. a_16_5·a_40_15 − a_8_1·a_12_2·c_36_11
  1507. a_16_5·a_40_16 − a_8_1·a_12_2·c_36_5
  1508. a_16_6·a_40_15 − a_8_1·a_12_2·c_36_5
  1509. a_16_6·a_40_16 + a_8_1·a_12_2·c_36_11
  1510. a_22_1·a_34_6
  1511. a_22_1·a_34_7
  1512. a_28_72 + a_8_1·a_12_2·c_36_11
  1513. a_28_7·a_28_8 + a_8_1·a_12_2·c_36_5
  1514. a_28_7·a_28_9 + a_8_1·a_12_2·c_36_5
  1515. a_28_7·a_28_10 − a_8_1·a_12_2·c_36_11
  1516. a_28_82 − a_8_1·a_12_2·c_36_11
  1517. a_28_8·a_28_9 − a_8_1·a_12_2·c_36_11
  1518. a_28_8·a_28_10 − a_8_1·a_12_2·c_36_5
  1519. a_28_92 − a_8_1·a_12_2·c_36_11
  1520. a_28_9·a_28_10 − a_8_1·a_12_2·c_36_5
  1521. a_28_102 + a_8_1·a_12_2·c_36_11
  1522. a_17_2·a_39_18
  1523. a_17_2·a_39_19
  1524. a_27_8·a_29_6
  1525. a_27_8·a_29_7
  1526. a_27_9·a_29_6
  1527. a_27_9·a_29_7
  1528. a_22_1·a_35_4 − b_4_0·c_24_4·a_3_0·a_13_0·a_13_1
  1529. a_22_1·a_35_5
  1530. a_22_1·a_35_7
  1531. a_22_1·a_35_8
  1532. a_28_7·a_29_6
  1533. a_28_7·a_29_7
  1534. a_28_8·a_29_6
  1535. a_28_8·a_29_7
  1536. a_28_9·a_29_6
  1537. a_28_9·a_29_7
  1538. a_28_10·a_29_6
  1539. a_28_10·a_29_7
  1540. a_34_6·a_23_0
  1541. a_34_6·a_23_1
  1542. a_34_6·a_23_4
  1543. a_34_6·a_23_5
  1544. a_34_7·a_23_0
  1545. a_34_7·a_23_1
  1546. a_34_7·a_23_4
  1547. a_34_7·a_23_5
  1548. a_40_15·a_17_2
  1549. a_40_16·a_17_2
  1550. b_18_0·a_39_18
  1551. b_18_0·a_39_19
  1552. b_30_4·a_27_8
  1553. b_30_4·a_27_9
  1554. b_30_5·a_27_8
  1555. b_30_5·a_27_9
  1556. b_4_05·a_13_0·a_25_4 − c_24_4·a_34_6 + a_22_1·c_36_11 − b_4_02·c_24_4·a_13_0·a_13_1
       − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
  1557. b_4_05·a_13_0·a_25_5 + c_24_4·a_34_7 − c_24_4·a_34_6 + a_22_1·c_36_11 − a_22_1·c_36_5
       − b_4_02·c_24_4·a_13_0·a_13_1 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_2·c_24_42
  1558. a_24_5·a_34_6
  1559. a_24_5·a_34_7
  1560. a_24_6·a_34_6
  1561. a_24_6·a_34_7
  1562. a_24_7·a_34_6
  1563. a_24_7·a_34_7
  1564. a_24_8·a_34_6
  1565. a_24_8·a_34_7
  1566. a_11_2·a_47_14 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       − a_2_0·a_8_1·c_48_13
  1567. a_11_2·a_47_15 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
  1568. a_11_3·a_47_14 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_1·c_48_13
  1569. a_11_3·a_47_15 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
  1570. a_19_5·a_39_18 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_1·c_24_42
  1571. a_19_5·a_39_19 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18 + a_2_0·a_8_2·c_24_42
       − a_2_0·a_8_1·c_24_42
  1572. a_19_6·a_39_18 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
       − a_2_0·a_8_2·c_24_42 − a_2_0·a_8_1·c_24_42
  1573. a_19_6·a_39_19 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13 − a_2_0·a_8_2·c_24_42
  1574. a_23_0·a_35_4 − a_22_1·c_36_11 + b_4_02·c_24_4·a_13_0·a_13_1
       − b_4_02·c_24_4·a_3_0·a_23_0 + a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13 + a_2_0·a_8_2·c_24_42 + a_2_0·a_8_1·c_24_42
  1575. a_23_0·a_35_5 + a_22_1·c_36_11 − b_4_02·c_24_4·a_13_0·a_13_1 − a_2_0·a_8_2·c_48_18
       + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_2·c_24_42 − a_2_0·a_8_1·c_24_42
  1576. a_23_0·a_35_7 − a_22_1·c_36_5 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13
       + a_2_0·a_8_1·c_48_18
  1577. a_23_0·a_35_8 + a_22_1·c_36_5 − a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13
       + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
  1578. a_23_1·a_35_4 − a_22_1·c_36_11 + b_4_02·c_24_4·a_13_0·a_13_1
       − b_4_02·c_24_4·a_3_0·a_23_1 − a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13
       − a_2_0·a_8_1·c_48_13 + a_2_0·a_8_2·c_24_42 + a_2_0·a_8_1·c_24_42
  1579. a_23_1·a_35_5 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
  1580. a_23_1·a_35_7 − a_22_1·c_36_5 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13
  1581. a_23_1·a_35_8 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
       − a_2_0·a_8_1·c_48_13
  1582. a_23_4·a_35_4 − a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_1·c_24_42
  1583. a_23_4·a_35_5 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13 + a_2_0·a_8_2·c_24_42
  1584. a_23_4·a_35_7 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
  1585. a_23_4·a_35_8 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
  1586. a_23_5·a_35_4 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_2·c_24_42 + a_2_0·a_8_1·c_24_42
  1587. a_23_5·a_35_5 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_2·c_24_42
       + a_2_0·a_8_1·c_24_42
  1588. a_23_5·a_35_7 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_13
  1589. a_23_5·a_35_8 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
       − a_2_0·a_8_1·c_48_13
  1590. a_29_6·a_29_7
  1591. b_18_0·a_40_15
  1592. b_18_0·a_40_16
  1593. a_28_7·b_30_4
  1594. a_28_7·b_30_5
  1595. a_28_8·b_30_4
  1596. a_28_8·b_30_5
  1597. a_28_9·b_30_4
  1598. a_28_9·b_30_5
  1599. a_28_10·b_30_4
  1600. a_28_10·b_30_5
  1601. c_36_11·a_23_4 + c_36_5·a_23_5 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0 + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 − c_24_42·a_11_2
  1602. c_36_11·a_23_5 − c_36_5·a_23_4 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 − c_24_42·a_11_3
  1603. c_48_18·a_11_2 − c_48_13·a_11_3 + c_48_13·a_11_2 − c_36_5·a_23_5 + c_36_5·a_23_4
       − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
  1604. c_48_18·a_11_3 + c_48_13·a_11_3 + c_48_13·a_11_2 + c_36_5·a_23_5 + c_36_5·a_23_4
       − a_8_2·c_48_18·a_3_0
  1605. a_12_2·a_47_14 + a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1
  1606. a_12_2·a_47_15 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1
       + a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
  1607. a_12_3·a_47_14 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
  1608. a_12_3·a_47_15 + a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
  1609. a_12_4·a_47_14 − a_8_2·c_48_18·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0
  1610. a_12_4·a_47_15 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0
  1611. a_12_5·a_47_14 + a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0
  1612. a_12_5·a_47_15 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_13·a_3_1
       − a_8_1·c_48_13·a_3_0
  1613. a_20_5·a_39_18
  1614. a_20_5·a_39_19
  1615. a_20_6·a_39_18
  1616. a_20_6·a_39_19
  1617. a_24_5·a_35_4 − a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
  1618. a_24_5·a_35_5 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_0
  1619. a_24_5·a_35_7 − a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       + a_8_1·c_48_18·a_3_0 + a_8_1·c_48_13·a_3_1
  1620. a_24_5·a_35_8 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_13·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
  1621. a_24_6·a_35_4 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0
       − a_8_1·c_24_42·a_3_0
  1622. a_24_6·a_35_5 + a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0 − a_8_1·c_48_13·a_3_1 + a_8_1·c_24_42·a_3_1
       − a_8_1·c_24_42·a_3_0
  1623. a_24_6·a_35_7 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       + a_8_1·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
  1624. a_24_6·a_35_8 − a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
  1625. a_24_7·a_35_4 − a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0
  1626. a_24_7·a_35_5 + a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1627. a_24_7·a_35_7 − a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0
  1628. a_24_7·a_35_8 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0
  1629. a_24_8·a_35_4 − a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0 + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1630. a_24_8·a_35_5 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
       + a_8_1·c_24_42·a_3_0
  1631. a_24_8·a_35_7 + a_8_2·c_48_18·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0
  1632. a_24_8·a_35_8 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0
  1633. a_34_6·a_25_4
  1634. a_34_6·a_25_5
  1635. a_34_7·a_25_4
  1636. a_34_7·a_25_5
  1637. a_40_15·a_19_5 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1638. a_40_15·a_19_6 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0 + a_8_1·c_24_42·a_3_1
       − a_8_1·c_24_42·a_3_0
  1639. a_40_16·a_19_5 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_13·a_3_1
       − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
       + a_8_1·c_24_42·a_3_0
  1640. a_40_16·a_19_6 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1641. b_4_06·a_35_4 − c_36_11·a_23_1 + c_36_11·a_23_0 − c_36_5·a_23_4 + c_24_4·a_35_4
       − b_4_03·c_24_4·a_23_1 + b_4_03·c_24_4·a_23_0 + b_4_08·c_24_4·a_3_0
       + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0 + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0
       − b_4_03·a_8_1·c_36_5·a_3_0 + b_4_06·a_8_1·c_24_4·a_3_0 + b_4_02·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1
  1642. b_4_06·a_35_5 + c_36_11·a_23_1 − c_36_5·a_23_4 + c_24_4·a_35_5 + b_4_03·c_24_4·a_23_1
       − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
       + b_4_03·a_8_1·c_36_5·a_3_0 + a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_0
  1643. b_4_06·a_35_7 − c_36_5·a_23_5 − c_36_5·a_23_1 + c_36_5·a_23_0 + c_24_4·a_35_7
       − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       + b_4_03·a_8_1·c_36_11·a_3_0 − a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
  1644. b_4_06·a_35_8 − c_36_5·a_23_5 + c_36_5·a_23_1 + c_24_4·a_35_8 − a_8_2·c_48_13·a_3_0
       + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
       + b_4_03·a_8_1·c_36_5·a_3_0 + a_8_2·c_24_42·a_3_0 + a_8_1·c_24_42·a_3_0
  1645. b_30_4·a_29_6 + b_4_02·c_48_18·a_3_0 + b_4_02·c_24_42·a_3_0
  1646. b_30_4·a_29_7 + b_4_02·c_48_18·a_3_0 − b_4_02·c_48_13·a_3_0
  1647. b_30_5·a_29_6 + b_4_02·c_48_18·a_3_0 − b_4_02·c_48_13·a_3_0
  1648. b_30_5·a_29_7 − b_4_02·c_48_18·a_3_0 − b_4_05·c_36_11·a_3_0
  1649. a_24_5·c_36_5 − a_12_3·c_48_18 + a_12_3·c_48_13 + a_12_2·c_48_18 + a_12_2·c_48_13
       − b_4_02·c_36_11·a_3_0·a_13_0
  1650. a_24_5·c_36_11 − a_12_3·c_48_18 − a_12_2·c_48_13 + b_4_02·c_24_4·a_3_0·a_25_4
       − a_12_3·c_24_42 − a_12_2·c_24_42
  1651. a_24_6·c_36_5 + a_12_3·c_48_18 + a_12_3·c_48_13 + a_12_2·c_48_18
       − b_4_02·c_36_11·a_3_0·a_13_1 + b_4_02·c_36_11·a_3_0·a_13_0
  1652. a_24_6·c_36_11 − a_12_3·c_48_13 − a_12_2·c_48_18 + a_12_2·c_48_13
       + b_4_02·c_24_4·a_3_0·a_25_5 − a_12_3·c_24_42
  1653. a_24_7·c_36_5 − a_12_5·c_48_18 − a_12_4·c_48_18 + a_12_4·c_48_13
  1654. a_24_7·c_36_11 + a_12_5·c_48_18 − a_12_5·c_48_13 − a_12_4·c_48_18 − a_12_4·c_24_42
  1655. a_24_8·c_36_5 − a_12_5·c_48_18 + a_12_5·c_48_13 + a_12_4·c_48_18
  1656. a_24_8·c_36_11 − a_12_5·c_48_18 − a_12_4·c_48_18 + a_12_4·c_48_13 − a_12_5·c_24_42
  1657. a_20_5·a_40_15
  1658. a_20_5·a_40_16
  1659. a_20_6·a_40_15
  1660. a_20_6·a_40_16
  1661. a_13_0·a_47_14 + b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13
  1662. a_13_0·a_47_15 − b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13 + b_4_04·a_8_1·c_36_11
  1663. a_13_1·a_47_14 + b_4_0·a_8_1·c_48_18 + b_4_0·a_8_1·c_48_13 − b_4_04·a_8_1·c_36_11
  1664. a_13_1·a_47_15 + b_4_0·a_8_1·c_48_18 + b_4_04·a_8_1·c_36_11
  1665. a_25_4·a_35_4 − b_4_0·a_8_1·c_48_18 − b_4_02·c_24_4·a_3_0·a_25_4
       − b_4_0·a_8_1·c_24_42
  1666. a_25_4·a_35_5 + b_4_0·a_8_1·c_48_13 + b_4_0·a_8_1·c_24_42
  1667. a_25_4·a_35_7 − b_4_0·a_8_1·c_48_18 + b_4_0·a_8_1·c_48_13
  1668. a_25_4·a_35_8 − b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13 + b_4_04·a_8_1·c_36_11
  1669. a_25_5·a_35_4 − b_4_0·a_8_1·c_48_13 − b_4_02·c_24_4·a_3_0·a_25_5
       − b_4_0·a_8_1·c_24_42
  1670. a_25_5·a_35_5 + b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13
  1671. a_25_5·a_35_7 + b_4_0·a_8_1·c_48_18 + b_4_0·a_8_1·c_48_13 − b_4_04·a_8_1·c_36_11
  1672. a_25_5·a_35_8 − b_4_0·a_8_1·c_48_18 − b_4_04·a_8_1·c_36_11
  1673. b_30_42 + b_4_03·c_48_18 + b_4_03·c_24_42
  1674. b_30_4·b_30_5 + b_4_03·c_48_18 − b_4_03·c_48_13 − b_4_02·c_36_11·a_3_0·a_13_1
       + b_4_02·c_36_11·a_3_0·a_13_0
  1675. b_30_52 − b_4_03·c_48_18 − b_4_06·c_36_11 + b_4_02·c_36_11·a_3_0·a_13_1
       + b_4_02·c_36_11·a_3_0·a_13_0 − b_4_02·c_24_4·a_3_0·a_25_5
       + b_4_02·c_24_4·a_3_0·a_25_4
  1676. c_36_11·a_25_4 − c_36_5·a_25_5 + c_36_5·a_25_4 + b_4_03·c_36_11·a_13_1
       + b_4_03·c_36_11·a_13_0 + b_4_03·c_24_4·a_25_4 − a_8_1·c_36_11·a_17_2
       − a_8_1·c_24_4·a_29_7 + a_8_1·c_24_4·a_29_6 − c_24_42·a_13_1 − c_24_42·a_13_0
  1677. c_36_11·a_25_5 − c_36_5·a_25_5 − c_36_5·a_25_4 + b_4_03·c_36_11·a_13_1
       + b_4_03·c_24_4·a_25_5 + a_8_1·c_24_4·a_29_7 − c_24_42·a_13_1
  1678. c_48_18·a_13_0 + c_48_13·a_13_1 − c_48_13·a_13_0 − c_36_5·a_25_5 − c_36_5·a_25_4
       + b_4_03·c_36_11·a_13_1 − a_8_1·c_36_11·a_17_2 − a_8_1·c_24_4·a_29_6
  1679. c_48_18·a_13_1 + c_48_13·a_13_0 − c_36_5·a_25_5 + c_36_5·a_25_4 + b_4_03·c_36_11·a_13_1
       + b_4_03·c_36_11·a_13_0 − a_8_1·c_36_11·a_17_2 − a_8_1·c_24_4·a_29_6
  1680. a_22_1·a_39_18
  1681. a_22_1·a_39_19
  1682. a_34_6·a_27_8
  1683. a_34_6·a_27_9
  1684. a_34_7·a_27_8
  1685. a_34_7·a_27_9
  1686. a_22_1·a_40_15
  1687. a_22_1·a_40_16
  1688. a_28_7·a_34_6
  1689. a_28_7·a_34_7
  1690. a_28_8·a_34_6
  1691. a_28_8·a_34_7
  1692. a_28_9·a_34_6
  1693. a_28_9·a_34_7
  1694. a_28_10·a_34_6
  1695. a_28_10·a_34_7
  1696. a_15_4·a_47_14 − a_2_0·a_12_3·c_48_18 + a_2_0·a_12_2·c_48_18 + a_2_0·a_12_2·c_48_13
  1697. a_15_4·a_47_15 − a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
  1698. a_15_5·a_47_14 + a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_13
  1699. a_15_5·a_47_15 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       + a_2_0·a_12_2·c_48_13
  1700. a_23_0·a_39_18 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_2·c_48_13 − a_2_0·a_12_3·c_24_42
       − a_2_0·a_12_2·c_24_42
  1701. a_23_0·a_39_19 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_3·c_24_42 + a_2_0·a_12_2·c_24_42
  1702. a_23_1·a_39_18 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_3·c_24_42 + a_2_0·a_12_2·c_24_42
  1703. a_23_1·a_39_19 − a_2_0·a_12_3·c_48_18 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
       + a_2_0·a_12_2·c_48_13 + a_2_0·a_12_2·c_24_42
  1704. a_23_4·a_39_18
  1705. a_23_4·a_39_19
  1706. a_23_5·a_39_18
  1707. a_23_5·a_39_19
  1708. a_27_8·a_35_4 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_2·c_48_13 + a_2_0·a_12_3·c_24_42
       + a_2_0·a_12_2·c_24_42
  1709. a_27_8·a_35_5 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18 + a_2_0·a_12_2·c_48_13
       − a_2_0·a_12_3·c_24_42
  1710. a_27_8·a_35_7 + a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_2·c_48_13
  1711. a_27_8·a_35_8 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
  1712. a_27_9·a_35_4 + a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_2·c_48_13 + a_2_0·a_12_2·c_24_42
  1713. a_27_9·a_35_5 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_3·c_24_42 + a_2_0·a_12_2·c_24_42
  1714. a_27_9·a_35_7 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_2·c_48_13
  1715. a_27_9·a_35_8 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18 − a_2_0·a_12_2·c_48_13
  1716. c_36_5·a_27_8 + c_24_4·a_39_18 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4 + c_24_42·a_15_5
       − a_2_0·c_24_42·a_13_1 − a_2_0·c_24_42·a_13_0
  1717. c_36_5·a_27_9 + c_24_4·a_39_19 − c_24_4·a_39_18 + a_8_1·c_36_5·a_19_6
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − c_24_42·a_15_4 + a_2_0·c_24_42·a_13_0
  1718. c_36_11·a_27_8 − c_24_4·a_39_19 + c_24_4·a_39_18 + a_8_1·c_36_5·a_19_6
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 − c_24_42·a_15_4 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1719. c_36_11·a_27_9 + c_24_4·a_39_18 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4 − c_24_42·a_15_5
       − a_2_0·c_24_42·a_13_0
  1720. c_48_18·a_15_4 − c_48_13·a_15_5 + c_48_13·a_15_4 − c_24_4·a_39_19 − c_24_4·a_39_18
       − a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 + c_24_42·a_15_5
       + c_24_42·a_15_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1721. c_48_18·a_15_5 + c_48_13·a_15_5 + c_48_13·a_15_4 + c_24_4·a_39_19 − a_8_1·c_36_5·a_19_6
       − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 + c_24_42·a_15_5 − c_24_42·a_15_4 − a_2_0·c_24_42·a_13_1
  1722. a_16_4·a_47_14 + a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_5
  1723. a_16_4·a_47_15 + a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4
  1724. a_16_5·a_47_14 + a_8_1·c_36_5·a_19_6 + a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1725. a_16_5·a_47_15 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_4
  1726. a_16_6·a_47_14 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4
  1727. a_16_6·a_47_15 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1728. a_24_5·a_39_18 + a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1
       − a_2_0·c_24_42·a_13_0
  1729. a_24_5·a_39_19 + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − a_2_0·c_24_42·a_13_1
  1730. a_24_6·a_39_18 − a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1731. a_24_6·a_39_19 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_4 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1732. a_24_7·a_39_18 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_4 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1733. a_24_7·a_39_19 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_24_42·a_13_1
  1734. a_24_8·a_39_18 + a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_0
  1735. a_24_8·a_39_19 − a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1736. a_28_7·a_35_4 + a_8_1·c_36_5·a_19_6 − a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
  1737. a_28_7·a_35_5 − a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1738. a_28_7·a_35_7 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_4
  1739. a_28_7·a_35_8 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0
  1740. a_28_8·a_35_4 + a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
       − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1741. a_28_8·a_35_5 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4
       − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1742. a_28_8·a_35_7 − a_8_1·c_36_5·a_19_6 − a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4
  1743. a_28_8·a_35_8 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1744. a_28_9·a_35_4 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_4
       − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1745. a_28_9·a_35_5 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
       + a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1746. a_28_9·a_35_7 − a_8_1·c_36_5·a_19_6 + a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0
  1747. a_28_9·a_35_8 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5
  1748. a_28_10·a_35_4 − a_8_1·c_36_5·a_19_6 − a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4 + a_8_1·c_24_42·a_7_0
       + b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_0
  1749. a_28_10·a_35_5 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_0
  1750. a_28_10·a_35_7 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4
  1751. a_28_10·a_35_8 + a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1752. a_34_6·a_29_6 − b_4_0·a_8_1·c_48_18·a_3_0 − b_4_0·a_8_1·c_24_42·a_3_0
  1753. a_34_6·a_29_7 − b_4_0·a_8_1·c_48_18·a_3_0 + b_4_0·a_8_1·c_48_13·a_3_0
  1754. a_34_7·a_29_6 − b_4_0·a_8_1·c_48_18·a_3_0 + b_4_0·a_8_1·c_48_13·a_3_0
  1755. a_34_7·a_29_7 + b_4_0·a_8_1·c_48_18·a_3_0 + b_4_04·a_8_1·c_36_11·a_3_0
  1756. a_40_15·a_23_0 − a_8_1·c_36_5·a_19_6 + a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4 − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
       + a_2_0·c_24_42·a_13_0
  1757. a_40_15·a_23_1 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 + a_8_1·c_24_42·a_7_0
       + b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_1 − a_2_0·c_24_42·a_13_0
  1758. a_40_15·a_23_4 + a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4 + a_2_0·c_24_42·a_13_1 − a_2_0·c_24_42·a_13_0
  1759. a_40_15·a_23_5 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_24_42·a_13_1
  1760. a_40_16·a_23_0 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 − a_8_1·c_24_42·a_7_0
       − b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_0
  1761. a_40_16·a_23_1 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
       + a_2_0·c_24_42·a_13_0
  1762. a_40_16·a_23_4 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_24_42·a_13_1
  1763. a_40_16·a_23_5 − a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1764. c_24_4·a_40_15 + a_16_6·c_48_18 − a_16_6·c_48_13 + a_16_5·c_48_18 − a_16_4·c_48_18
       + a_16_4·c_48_13 − a_16_5·c_24_42
  1765. c_24_4·a_40_16 − a_16_6·c_48_18 + a_16_5·c_48_18 − a_16_5·c_48_13 + a_16_4·c_48_18
       − a_16_6·c_24_42
  1766. a_28_7·c_36_5 − a_16_5·c_48_18 − a_16_4·c_48_18 + a_16_4·c_48_13
  1767. a_28_7·c_36_11 + a_16_5·c_48_18 − a_16_5·c_48_13 − a_16_4·c_48_18 − a_16_4·c_24_42
  1768. a_28_8·c_36_5 − a_16_6·c_48_18 − a_16_5·c_48_18 + a_16_5·c_48_13
  1769. a_28_8·c_36_11 + a_16_6·c_48_18 − a_16_6·c_48_13 − a_16_5·c_48_18 − a_16_5·c_24_42
  1770. a_28_9·c_36_5 − a_16_5·c_48_18 + a_16_5·c_48_13 + a_16_4·c_48_18
  1771. a_28_9·c_36_11 − a_16_5·c_48_18 − a_16_4·c_48_18 + a_16_4·c_48_13 − a_16_5·c_24_42
  1772. a_28_10·c_36_5 − a_16_6·c_48_18 + a_16_6·c_48_13 + a_16_5·c_48_18
  1773. a_28_10·c_36_11 − a_16_6·c_48_18 − a_16_5·c_48_18 + a_16_5·c_48_13 − a_16_6·c_24_42
  1774. a_24_5·a_40_15
  1775. a_24_5·a_40_16
  1776. a_24_6·a_40_15
  1777. a_24_6·a_40_16
  1778. a_24_7·a_40_15
  1779. a_24_7·a_40_16
  1780. a_24_8·a_40_15
  1781. a_24_8·a_40_16
  1782. a_17_2·a_47_14 − c_36_5·a_3_0·a_25_4
  1783. a_17_2·a_47_15 − c_36_5·a_3_0·a_25_5
  1784. a_25_4·a_39_18
  1785. a_25_4·a_39_19
  1786. a_25_5·a_39_18
  1787. a_25_5·a_39_19
  1788. a_29_6·a_35_4 − c_48_13·a_3_0·a_13_1 + c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5
       + c_36_5·a_3_0·a_25_4 − b_4_03·c_36_11·a_3_0·a_13_1 + c_24_42·a_3_0·a_13_0
  1789. a_29_6·a_35_5 − c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5 − c_36_5·a_3_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0 + c_24_42·a_3_0·a_13_1
  1790. a_29_6·a_35_7 − c_48_13·a_3_0·a_13_1 + c_36_5·a_3_0·a_25_5 + c_36_5·a_3_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_1
  1791. a_29_6·a_35_8 − c_48_13·a_3_0·a_13_1 − c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5
       − c_36_5·a_3_0·a_25_4 − b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0
  1792. a_29_7·a_35_4 − c_48_13·a_3_0·a_13_1 + c_36_5·a_3_0·a_25_5 + c_36_5·a_3_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_1
  1793. a_29_7·a_35_5 − c_48_13·a_3_0·a_13_1 − c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5
       − c_36_5·a_3_0·a_25_4 − b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0
  1794. a_29_7·a_35_7 + c_48_13·a_3_0·a_13_1 − c_48_13·a_3_0·a_13_0 − c_36_5·a_3_0·a_25_5
       − c_36_5·a_3_0·a_25_4 + b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0
  1795. a_29_7·a_35_8 + c_48_13·a_3_0·a_13_0 − c_36_5·a_3_0·a_25_5 + c_36_5·a_3_0·a_25_4
       + b_4_03·c_36_11·a_3_0·a_13_0
  1796. b_30_4·a_34_6 − b_4_02·a_8_1·c_48_18 − b_4_02·a_8_1·c_24_42
  1797. b_30_4·a_34_7 − b_4_02·a_8_1·c_48_18 + b_4_02·a_8_1·c_48_13
  1798. b_30_5·a_34_6 − b_4_02·a_8_1·c_48_18 + b_4_02·a_8_1·c_48_13
  1799. b_30_5·a_34_7 + b_4_02·a_8_1·c_48_18 + b_4_05·a_8_1·c_36_11
  1800. c_36_11·a_29_6 + c_36_5·a_29_7 − b_4_03·c_36_11·a_17_2 + b_4_03·c_24_4·a_29_6
       + c_24_42·a_17_2
  1801. c_36_11·a_29_7 − c_36_5·a_29_6 + b_4_03·c_24_4·a_29_7
  1802. c_48_13·a_17_2 − c_36_5·a_29_7 − c_36_5·a_29_6 + b_4_03·c_36_11·a_17_2
  1803. c_48_18·a_17_2 − c_36_5·a_29_7 + b_4_03·c_36_11·a_17_2
  1804. a_40_15·a_25_4
  1805. a_40_15·a_25_5
  1806. a_40_16·a_25_4
  1807. a_40_16·a_25_5
  1808. b_18_0·a_47_14 − b_4_0·c_36_5·a_25_4 − c_36_11·a_3_0·a_13_0·a_13_1
       + c_24_4·a_3_0·a_13_0·a_25_5 − c_24_4·a_3_0·a_13_0·a_25_4
  1809. b_18_0·a_47_15 − b_4_0·c_36_5·a_25_5 − c_36_11·a_3_0·a_13_0·a_13_1
       + c_24_4·a_3_0·a_13_0·a_25_5 − c_24_4·a_3_0·a_13_0·a_25_4
  1810. b_30_4·a_35_4 − b_4_0·c_48_13·a_13_1 + b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5
       + b_4_0·c_36_5·a_25_4 + b_4_03·c_24_4·a_29_6 − b_4_04·c_36_11·a_13_1
       − c_36_11·a_3_0·a_13_0·a_13_1 + c_24_4·a_3_0·a_13_0·a_25_4 + b_4_0·c_24_42·a_13_0
  1811. b_30_4·a_35_5 − b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5 − b_4_0·c_36_5·a_25_4
       − b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0 − c_36_11·a_3_0·a_13_0·a_13_1
       + b_4_0·c_24_42·a_13_1
  1812. b_30_4·a_35_7 − b_4_0·c_48_13·a_13_1 + b_4_0·c_36_5·a_25_5 + b_4_0·c_36_5·a_25_4
       − b_4_04·c_36_11·a_13_1 + c_24_4·a_3_0·a_13_0·a_25_4
  1813. b_30_4·a_35_8 − b_4_0·c_48_13·a_13_1 − b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5
       − b_4_0·c_36_5·a_25_4 − b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0
       + c_24_4·a_3_0·a_13_0·a_25_4
  1814. b_30_5·a_35_4 − b_4_0·c_48_13·a_13_1 + b_4_0·c_36_5·a_25_5 + b_4_0·c_36_5·a_25_4
       + b_4_03·c_24_4·a_29_7 − b_4_04·c_36_11·a_13_1 + c_24_4·a_3_0·a_13_0·a_25_4
  1815. b_30_5·a_35_5 − b_4_0·c_48_13·a_13_1 − b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5
       − b_4_0·c_36_5·a_25_4 − b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0
       + c_24_4·a_3_0·a_13_0·a_25_5
  1816. b_30_5·a_35_7 + b_4_0·c_48_13·a_13_1 − b_4_0·c_48_13·a_13_0 − b_4_0·c_36_5·a_25_5
       − b_4_0·c_36_5·a_25_4 + b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0
       + c_24_4·a_3_0·a_13_0·a_25_5 + c_24_4·a_3_0·a_13_0·a_25_4
  1817. b_30_5·a_35_8 + b_4_0·c_48_13·a_13_0 − b_4_0·c_36_5·a_25_5 + b_4_0·c_36_5·a_25_4
       + b_4_04·c_36_11·a_13_0 − c_36_11·a_3_0·a_13_0·a_13_1 − c_24_4·a_3_0·a_13_0·a_25_5
       + c_24_4·a_3_0·a_13_0·a_25_4
  1818. b_30_5·c_36_5 + b_30_4·c_36_11 + b_4_03·c_24_4·b_30_4 − b_4_03·b_18_0·c_36_11
       − b_4_0·c_36_11·a_3_0·a_23_1 − b_4_0·c_36_11·a_3_0·a_23_0 − b_4_0·c_24_4·a_3_0·a_35_5
       − a_2_0·a_16_5·c_48_18 − a_2_0·a_16_4·c_48_18 + a_2_0·a_16_4·c_48_13 + b_18_0·c_24_42
       − c_24_4·c_36_11·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_42
  1819. b_30_5·c_36_11 − b_30_4·c_36_5 + b_4_03·c_24_4·b_30_5 + b_4_0·c_36_11·a_3_0·a_23_0
       − b_4_0·c_24_4·a_3_0·a_35_8 + a_2_0·a_16_5·c_48_18 − a_2_0·a_16_5·c_48_13
       − a_2_0·a_16_4·c_48_18 + c_24_4·c_36_5·a_3_0·a_3_1
  1820. b_4_04·a_3_0·a_47_14 + b_30_4·c_36_11 + b_18_0·c_48_18 + b_4_03·c_24_4·b_30_4
       − b_4_0·c_36_11·a_3_0·a_23_1 + b_4_0·c_36_11·a_3_0·a_23_0 − b_4_0·c_24_4·a_3_0·a_35_5
       + b_4_0·c_24_4·a_3_0·a_35_4 − a_2_0·a_16_5·c_48_18 − a_2_0·a_16_4·c_48_18
       + a_2_0·a_16_4·c_48_13 + b_18_0·c_24_42 − c_24_4·c_36_11·a_3_0·a_3_1
       − a_2_0·a_16_5·c_24_42
  1821. b_4_04·a_3_0·a_47_15 + b_30_4·c_36_11 − b_30_4·c_36_5 + b_18_0·c_48_13
       + b_4_03·c_24_4·b_30_4 + b_4_0·c_36_11·a_3_0·a_23_1 + b_4_0·c_36_11·a_3_0·a_23_0
       − b_4_0·c_24_4·a_3_0·a_35_5 + b_4_0·c_24_4·a_3_0·a_35_4 − a_2_0·a_16_5·c_48_13
       + a_2_0·a_16_4·c_48_18 + a_2_0·a_16_4·c_48_13 + b_18_0·c_24_42
       − c_24_4·c_36_11·a_3_0·a_3_1 + c_24_4·c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_42
  1822. a_19_5·a_47_14 + a_2_0·a_16_5·c_48_13 − a_2_0·a_16_4·c_48_18 + a_2_0·a_16_4·c_48_13
       − c_24_4·c_36_5·a_3_0·a_3_1
  1823. a_19_5·a_47_15 + a_2_0·a_16_5·c_48_18 + a_2_0·a_16_5·c_48_13 − a_2_0·a_16_4·c_48_18
       − a_2_0·a_16_4·c_48_13 + c_24_4·c_36_5·a_3_0·a_3_1
  1824. a_19_6·a_47_14 + a_2_0·a_16_5·c_48_18 + a_2_0·a_16_5·c_48_13 − a_2_0·a_16_4·c_48_18
       + c_24_4·c_36_5·a_3_0·a_3_1
  1825. a_19_6·a_47_15 − a_2_0·a_16_5·c_48_13 + a_2_0·a_16_4·c_48_13
  1826. a_27_8·a_39_18
  1827. a_27_8·a_39_19
  1828. a_27_9·a_39_18
  1829. a_27_9·a_39_19
  1830. c_48_18·a_19_5 − c_48_13·a_19_6 + c_48_13·a_19_5 + a_2_0·c_36_5·a_29_7
       − a_2_0·c_36_5·a_29_6 + c_24_4·c_36_11·a_7_4 + c_24_4·c_36_11·a_7_3
       + c_24_4·c_36_5·a_7_4 + c_24_42·a_19_6 − a_12_2·c_24_42·a_7_0 + a_2_0·c_24_42·a_17_2
  1831. c_48_18·a_19_6 + c_48_13·a_19_6 + c_48_13·a_19_5 + a_2_0·c_36_5·a_29_7
       + c_24_4·c_36_11·a_7_3 + c_24_4·c_36_5·a_7_4 − c_24_4·c_36_5·a_7_3 − c_24_42·a_19_5
       + a_12_2·c_24_42·a_7_3 + a_12_2·c_24_42·a_7_0 + a_2_0·c_24_42·a_17_2
  1832. a_20_5·a_47_14 + a_12_2·c_48_13·a_7_3 + a_2_0·c_36_5·a_29_7 + c_24_4·c_36_11·a_7_4
       + c_24_4·c_36_11·a_7_3 + c_24_4·c_36_5·a_7_3 + c_24_42·a_19_6 + a_12_2·c_24_42·a_7_3
       − a_12_2·c_24_42·a_7_0
  1833. a_20_5·a_47_15 + a_12_2·c_48_13·a_7_0 + a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6
       + c_24_4·c_36_11·a_7_4 + c_24_4·c_36_5·a_7_4 − c_24_4·c_36_5·a_7_3 + c_24_42·a_19_6
       + c_24_42·a_19_5 − a_12_2·c_24_42·a_7_3 − a_12_2·c_24_42·a_7_0
       + a_2_0·c_24_42·a_17_2
  1834. a_20_6·a_47_14 + a_12_2·c_48_13·a_7_3 − a_12_2·c_48_13·a_7_0 − a_2_0·c_36_5·a_29_7
       + c_24_4·c_36_11·a_7_3 − c_24_4·c_36_5·a_7_4 − c_24_4·c_36_5·a_7_3 − c_24_42·a_19_5
       − a_12_2·c_24_42·a_7_3 − a_2_0·c_24_42·a_17_2
  1835. a_20_6·a_47_15 − a_12_2·c_48_13·a_7_3 − a_12_2·c_48_13·a_7_0 − a_2_0·c_36_5·a_29_7
       + a_2_0·c_36_5·a_29_6 + c_24_4·c_36_11·a_7_4 − c_24_4·c_36_11·a_7_3
       − c_24_4·c_36_5·a_7_4 + c_24_42·a_19_6 − c_24_42·a_19_5 − a_12_2·c_24_42·a_7_0
       − a_2_0·c_24_42·a_17_2
  1836. a_28_7·a_39_18 + a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 − a_2_0·c_24_42·a_17_2
  1837. a_28_7·a_39_19 + a_2_0·c_36_5·a_29_6
  1838. a_28_8·a_39_18 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1839. a_28_8·a_39_19 + a_2_0·c_36_5·a_29_7 − a_2_0·c_24_42·a_17_2
  1840. a_28_9·a_39_18 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1841. a_28_9·a_39_19 + a_2_0·c_36_5·a_29_7 − a_2_0·c_24_42·a_17_2
  1842. a_28_10·a_39_18 − a_2_0·c_36_5·a_29_7 + a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1843. a_28_10·a_39_19 − a_2_0·c_36_5·a_29_6
  1844. a_40_15·a_27_8 + a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 − a_2_0·c_24_42·a_17_2
  1845. a_40_15·a_27_9 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1846. a_40_16·a_27_8 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1847. a_40_16·a_27_9 − a_2_0·c_36_5·a_29_7 + a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1848. a_20_6·c_48_13 + a_20_5·c_48_18 + a_20_5·c_48_13 + a_8_1·a_12_2·c_48_13
       + a_8_3·c_24_4·c_36_5 + a_8_2·c_24_4·c_36_5
  1849. a_20_6·c_48_18 − a_20_5·c_48_18 + a_20_5·c_48_13 + a_8_3·c_24_4·c_36_5
  1850. a_28_7·a_40_15 − a_8_1·a_12_2·c_48_18 + a_8_1·a_12_2·c_48_13
  1851. a_28_7·a_40_16 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_24_42
  1852. a_28_8·a_40_15 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_24_42
  1853. a_28_8·a_40_16 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_48_13
  1854. a_28_9·a_40_15 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_24_42
  1855. a_28_9·a_40_16 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_48_13
  1856. a_28_10·a_40_15 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_48_13
  1857. a_28_10·a_40_16 − a_8_1·a_12_2·c_48_18 + a_8_1·a_12_2·c_24_42
  1858. a_34_62
  1859. a_34_6·a_34_7
  1860. a_34_72
  1861. a_29_6·a_39_18
  1862. a_29_6·a_39_19
  1863. a_29_7·a_39_18
  1864. a_29_7·a_39_19
  1865. a_22_1·a_47_14
  1866. a_22_1·a_47_15
  1867. a_34_6·a_35_4 − b_4_0·c_24_4·a_3_0·a_13_0·a_25_4
  1868. a_34_6·a_35_5
  1869. a_34_6·a_35_7
  1870. a_34_6·a_35_8
  1871. a_34_7·a_35_4 + b_4_0·c_24_4·a_3_0·a_13_0·a_25_5 − b_4_0·c_24_4·a_3_0·a_13_0·a_25_4
  1872. a_34_7·a_35_5
  1873. a_34_7·a_35_7
  1874. a_34_7·a_35_8
  1875. a_40_15·a_29_6
  1876. a_40_15·a_29_7
  1877. a_40_16·a_29_6
  1878. a_40_16·a_29_7
  1879. b_30_4·a_39_18
  1880. b_30_4·a_39_19
  1881. b_30_5·a_39_18
  1882. b_30_5·a_39_19
  1883. a_34_6·c_36_5 − a_22_1·c_48_18 + a_22_1·c_48_13 + a_2_0·a_20_5·c_48_18
       − a_2_0·a_20_5·c_48_13 + a_2_0·a_8_2·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_36_5
  1884. a_34_6·c_36_11 − a_22_1·c_48_18 − b_4_02·c_24_4·a_13_0·a_25_4 + a_2_0·a_20_5·c_48_18
       − a_22_1·c_24_42 − a_2_0·a_8_2·c_24_4·c_36_5
  1885. a_34_7·c_36_5 + a_22_1·c_48_18 − b_4_02·c_36_11·a_13_0·a_13_1 − a_2_0·a_20_5·c_48_18
       + a_2_0·a_8_2·c_24_4·c_36_5
  1886. a_34_7·c_36_11 − a_22_1·c_48_18 + a_22_1·c_48_13 + b_4_02·c_24_4·a_13_0·a_25_5
       − b_4_02·c_24_4·a_13_0·a_25_4 + a_2_0·a_20_5·c_48_18 − a_2_0·a_20_5·c_48_13
       + a_2_0·a_8_2·c_24_4·c_36_11
  1887. a_23_0·a_47_14 − a_22_1·c_48_18 + b_4_02·c_36_11·a_13_0·a_13_1 + a_2_0·a_20_5·c_48_18
  1888. a_23_0·a_47_15 − a_22_1·c_48_13 + b_4_02·c_36_11·a_13_0·a_13_1 + a_2_0·a_20_5·c_48_13
       + a_2_0·a_8_2·c_24_4·c_36_5
  1889. a_23_1·a_47_14 + a_22_1·c_48_18 + a_22_1·c_48_13 + b_4_02·c_36_11·a_13_0·a_13_1
       − a_2_0·a_20_5·c_48_18 − a_2_0·a_20_5·c_48_13 − a_2_0·a_8_2·c_24_4·c_36_5
  1890. a_23_1·a_47_15 + a_22_1·c_48_18 − b_4_02·c_36_11·a_13_0·a_13_1 − a_2_0·a_20_5·c_48_18
  1891. a_23_4·a_47_14 + a_2_0·a_8_2·c_24_4·c_36_5 + a_2_0·a_8_1·c_24_4·c_36_5
  1892. a_23_4·a_47_15 + a_2_0·a_8_2·c_24_4·c_36_5
  1893. a_23_5·a_47_14 − a_2_0·a_8_1·c_24_4·c_36_5
  1894. a_23_5·a_47_15 − a_2_0·a_8_2·c_24_4·c_36_5 + a_2_0·a_8_1·c_24_4·c_36_5
  1895. a_35_4·a_35_5 − a_22_1·c_48_18 + b_4_02·c_24_4·a_3_0·a_35_5 + a_2_0·a_20_5·c_48_18
       − a_22_1·c_24_42 + a_2_0·a_8_2·c_24_4·c_36_11 − a_2_0·a_8_2·c_24_4·c_36_5
       + a_2_0·a_8_1·c_24_4·c_36_11
  1896. a_35_4·a_35_7 + b_4_02·c_24_4·a_3_0·a_35_7 − a_2_0·a_8_2·c_24_4·c_36_5
       − a_2_0·a_8_1·c_24_4·c_36_5
  1897. a_35_4·a_35_8 − a_22_1·c_48_18 + a_22_1·c_48_13 + b_4_02·c_24_4·a_3_0·a_35_8
       + a_2_0·a_20_5·c_48_18 − a_2_0·a_20_5·c_48_13 + a_2_0·a_8_2·c_24_4·c_36_5
       − a_2_0·a_8_1·c_24_4·c_36_5
  1898. a_35_5·a_35_7 + a_22_1·c_48_18 − a_22_1·c_48_13 − a_2_0·a_20_5·c_48_18
       + a_2_0·a_20_5·c_48_13 − a_2_0·a_8_2·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_36_5
  1899. a_35_5·a_35_8 + a_2_0·a_8_2·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_36_5
  1900. a_35_7·a_35_8 + a_22_1·c_48_18 − b_4_02·c_36_11·a_13_0·a_13_1 − a_2_0·a_20_5·c_48_18
  1901. b_30_4·a_40_15
  1902. b_30_4·a_40_16
  1903. b_30_5·a_40_15
  1904. b_30_5·a_40_16
  1905. c_36_11·a_35_4 + c_36_5·a_35_7 + b_4_03·c_36_11·a_23_1 − b_4_03·c_36_11·a_23_0
       + b_4_03·c_24_4·a_35_4 − c_24_4·c_36_5·a_11_2 − c_24_42·a_23_1 + c_24_42·a_23_0
       + b_4_02·c_24_4·c_36_11·a_3_0 + b_4_05·c_24_42·a_3_0 − a_8_2·c_24_4·c_36_5·a_3_0
       + a_8_1·c_24_4·c_36_11·a_3_0 + b_4_03·a_8_1·c_24_42·a_3_0
  1906. c_36_11·a_35_5 + c_36_5·a_35_8 − b_4_03·c_36_11·a_23_1 + b_4_03·c_24_4·a_35_5
       − c_24_4·c_36_5·a_11_2 + c_24_42·a_23_1 + a_8_2·c_24_4·c_36_11·a_3_0
       − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1907. c_36_11·a_35_7 − c_36_5·a_35_4 + b_4_03·c_24_4·a_35_7 − b_4_06·a_8_1·c_36_11·a_3_0
       − c_24_4·c_36_5·a_11_3 − b_4_02·c_24_4·c_36_5·a_3_0 − a_8_2·c_24_4·c_36_11·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_1
  1908. c_36_11·a_35_8 − c_36_5·a_35_5 + b_4_03·c_24_4·a_35_8 + b_4_06·a_8_1·c_36_11·a_3_0
       − c_24_4·c_36_5·a_11_3 + a_8_2·c_24_4·c_36_11·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_0
       + a_8_1·c_24_4·c_36_5·a_3_0
  1909. c_48_13·a_23_1 + c_48_13·a_23_0 + c_36_5·a_35_8 − c_36_5·a_35_7 + c_36_5·a_35_5
       − c_36_5·a_35_4 + b_4_03·c_36_11·a_23_1 + b_4_03·c_36_11·a_23_0
       − a_16_4·c_48_13·a_7_3 − a_16_4·c_48_13·a_7_0 + b_4_03·a_8_1·c_48_18·a_3_0
       − b_4_03·a_8_1·c_48_13·a_3_0 − b_4_02·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_36_11·a_3_0 + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1
       − a_8_1·c_24_4·c_36_11·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1910. c_48_13·a_23_5 + c_48_13·a_23_0 − c_36_5·a_35_8 − c_36_5·a_35_7 − c_36_5·a_35_5
       − c_36_5·a_35_4 + b_4_03·c_36_11·a_23_0 + a_16_4·c_48_13·a_7_3 − a_16_4·c_48_13·a_7_0
       + b_4_06·a_8_1·c_36_11·a_3_0 + c_24_4·c_36_5·a_11_3 − b_4_02·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1 + a_8_1·c_24_4·c_36_11·a_3_0
       − a_8_1·c_24_4·c_36_5·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_0
       − b_4_03·a_8_1·c_24_42·a_3_0
  1911. c_48_18·a_23_0 + c_48_13·a_23_4 + c_48_13·a_23_0 + c_36_5·a_35_8 + c_36_5·a_35_7
       − c_36_5·a_35_5 − c_36_5·a_35_4 − b_4_03·c_36_11·a_23_0 − a_16_4·c_48_13·a_7_3
       + b_4_06·a_8_1·c_36_11·a_3_0 + c_24_4·c_36_5·a_11_2 − b_4_02·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1912. c_48_18·a_23_1 − c_48_13·a_23_4 − c_48_13·a_23_0 + c_36_5·a_35_7 + c_36_5·a_35_5
       + c_36_5·a_35_4 + b_4_03·c_36_11·a_23_1 − b_4_03·c_36_11·a_23_0
       − a_16_4·c_48_13·a_7_3 − a_16_4·c_48_13·a_7_0 + b_4_03·a_8_1·c_48_13·a_3_0
       − b_4_06·a_8_1·c_36_11·a_3_0 − c_24_4·c_36_5·a_11_2 + b_4_02·c_24_4·c_36_5·a_3_0
       − a_8_2·c_24_4·c_36_11·a_3_0 − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_1
       + a_8_1·c_24_4·c_36_5·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
  1913. c_48_18·a_23_4 + c_48_13·a_23_4 − c_48_13·a_23_0 + c_36_5·a_35_8 + c_36_5·a_35_7
       + c_36_5·a_35_5 + c_36_5·a_35_4 − b_4_03·c_36_11·a_23_0 + a_16_4·c_48_13·a_7_3
       − a_16_4·c_48_13·a_7_0 − b_4_06·a_8_1·c_36_11·a_3_0 + c_24_4·c_36_5·a_11_2
       + b_4_02·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_36_5·a_3_0
       + a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_11·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1914. c_48_18·a_23_5 − c_48_13·a_23_4 − c_48_13·a_23_0 + c_36_5·a_35_8 + c_36_5·a_35_7
       + c_36_5·a_35_5 + c_36_5·a_35_4 − b_4_03·c_36_11·a_23_0 + a_16_4·c_48_13·a_7_3
       + a_16_4·c_48_13·a_7_0 − b_4_06·a_8_1·c_36_11·a_3_0 − c_24_4·c_36_5·a_11_2
       + b_4_02·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_36_5·a_3_0
       + a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_11·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_1
       + b_4_03·a_8_1·c_24_42·a_3_0
  1915. a_24_5·a_47_14 − a_8_1·c_24_4·c_36_5·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
  1916. a_24_5·a_47_15 − b_4_03·a_8_1·c_48_18·a_3_0 + b_4_03·a_8_1·c_48_13·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_0
  1917. a_24_6·a_47_14 + b_4_03·a_8_1·c_48_18·a_3_0 − b_4_03·a_8_1·c_48_13·a_3_0
       − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
  1918. a_24_6·a_47_15 + a_8_1·c_24_4·c_36_5·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_0
  1919. a_24_7·a_47_14 + a_8_1·c_24_4·c_36_5·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_0
  1920. a_24_7·a_47_15 + a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_1
       − a_8_1·c_24_4·c_36_5·a_3_0
  1921. a_24_8·a_47_14 + a_8_2·c_24_4·c_36_5·a_3_0
  1922. a_24_8·a_47_15 + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_1
       + a_8_1·c_24_4·c_36_5·a_3_0
  1923. b_4_06·a_47_14 + c_36_5·a_35_7 − c_36_5·a_35_5 − c_36_5·a_35_4 + c_24_4·a_47_14
       + b_4_03·a_8_1·c_48_13·a_3_0 − b_4_06·a_8_1·c_36_11·a_3_0
       − b_4_02·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_36_11·a_3_0
       − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_1
  1924. b_4_06·a_47_15 + c_36_5·a_35_8 − c_36_5·a_35_7 − c_36_5·a_35_5 + c_24_4·a_47_15
       + b_4_03·a_8_1·c_48_18·a_3_0 − b_4_03·a_8_1·c_48_13·a_3_0
       + b_4_06·a_8_1·c_36_11·a_3_0 + a_8_2·c_24_4·c_36_11·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_1
       + a_8_1·c_24_4·c_36_5·a_3_0
  1925. a_24_6·c_48_13 − a_24_5·c_48_18 + a_24_5·c_48_13 − b_4_02·c_48_13·a_3_0·a_13_0
       + b_4_02·c_36_5·a_3_0·a_25_5 − b_4_02·c_36_5·a_3_0·a_25_4
       − b_4_05·c_36_11·a_3_0·a_13_1 − b_4_05·c_36_11·a_3_0·a_13_0 + a_24_6·c_24_42
       − a_12_3·c_24_4·c_36_11
  1926. a_24_6·c_48_18 − a_24_5·c_48_13 + b_4_02·c_48_13·a_3_0·a_13_1
       − b_4_02·c_48_13·a_3_0·a_13_0 − b_4_02·c_36_5·a_3_0·a_25_5
       − b_4_02·c_36_5·a_3_0·a_25_4 + b_4_05·c_36_11·a_3_0·a_13_1 + a_24_6·c_24_42
       − a_24_5·c_24_42 + a_12_2·c_24_4·c_36_11
  1927. a_24_8·c_48_13 + a_24_7·c_48_18 + a_24_7·c_48_13 + a_12_5·c_24_4·c_36_5
       + a_12_4·c_24_4·c_36_5
  1928. a_24_8·c_48_18 − a_24_7·c_48_18 + a_24_7·c_48_13 + a_12_4·c_24_4·c_36_5
  1929. b_4_09·c_36_11 − b_4_05·c_36_11·a_3_0·a_13_0 + c_36_112 + c_36_52
       − a_12_5·c_24_4·c_36_11 − a_12_5·c_24_4·c_36_5 − a_12_4·c_24_4·c_36_5
       + a_12_3·c_24_4·c_36_5 + a_12_2·c_24_4·c_36_11 + a_12_2·c_24_4·c_36_5
       − b_4_02·c_24_42·a_3_0·a_13_0 − c_24_43
  1930. b_4_06·c_48_13 + a_24_7·c_48_18 − a_24_7·c_48_13 + b_4_02·c_48_13·a_3_0·a_13_1
       − b_4_02·c_48_13·a_3_0·a_13_0 + b_4_02·c_36_5·a_3_0·a_25_5
       − b_4_05·c_36_11·a_3_0·a_13_1 − b_4_05·c_36_11·a_3_0·a_13_0 − c_36_112
       + c_36_5·c_36_11 + c_24_4·c_48_13 + b_4_03·c_24_4·c_36_11 + b_4_03·c_24_4·c_36_5
       + a_12_5·c_24_4·c_36_11 + a_12_5·c_24_4·c_36_5 + a_12_3·c_24_4·c_36_11
       − a_12_3·c_24_4·c_36_5 + c_24_43
  1931. b_4_06·c_48_18 + a_24_7·c_48_13 + b_4_02·c_48_13·a_3_0·a_13_1
       + b_4_02·c_48_13·a_3_0·a_13_0 − b_4_02·c_36_5·a_3_0·a_25_4
       + b_4_05·c_36_11·a_3_0·a_13_0 − c_36_112 + c_24_4·c_48_18 + b_4_03·c_24_4·c_36_11
       − a_12_5·c_24_4·c_36_11 − a_12_3·c_24_4·c_36_11 + c_24_43
  1932. a_25_4·a_47_14
  1933. a_25_4·a_47_15 − b_4_04·a_8_1·c_48_18 + b_4_04·a_8_1·c_48_13
       + b_4_0·a_8_1·c_24_4·c_36_5
  1934. a_25_5·a_47_14 + b_4_04·a_8_1·c_48_18 − b_4_04·a_8_1·c_48_13
       − b_4_0·a_8_1·c_24_4·c_36_5
  1935. a_25_5·a_47_15
  1936. c_48_18·a_25_4 − c_48_13·a_25_5 − c_48_13·a_25_4 + b_4_03·c_48_13·a_13_0
       − b_4_03·c_36_5·a_25_5 + b_4_03·c_36_5·a_25_4 + b_4_06·c_36_11·a_13_1
       + b_4_06·c_36_11·a_13_0 + a_8_1·c_36_5·a_29_7 − b_4_02·c_36_11·a_3_0·a_13_0·a_13_1
       + b_4_02·c_24_4·a_3_0·a_13_0·a_25_5 − b_4_02·c_24_4·a_3_0·a_13_0·a_25_4
       + c_24_4·c_36_11·a_13_1 − c_24_42·a_25_5 + a_8_1·c_24_42·a_17_2
  1937. c_48_18·a_25_5 − c_48_13·a_25_4 + b_4_03·c_48_13·a_13_1 − b_4_03·c_48_13·a_13_0
       − b_4_03·c_36_5·a_25_5 − b_4_03·c_36_5·a_25_4 + b_4_06·c_36_11·a_13_1
       − a_8_1·c_36_5·a_29_7 + a_8_1·c_36_5·a_29_6 + c_24_4·c_36_11·a_13_0 + c_24_42·a_25_5
       − c_24_42·a_25_4 + a_8_1·c_24_42·a_17_2
  1938. a_34_6·a_39_18
  1939. a_34_6·a_39_19
  1940. a_34_7·a_39_18
  1941. a_34_7·a_39_19
  1942. a_34_6·a_40_15
  1943. a_34_6·a_40_16
  1944. a_34_7·a_40_15
  1945. a_34_7·a_40_16
  1946. a_27_8·a_47_14 + a_2_0·a_12_2·c_24_4·c_36_5
  1947. a_27_8·a_47_15 − a_2_0·a_12_3·c_24_4·c_36_5
  1948. a_27_9·a_47_14 − a_2_0·a_12_3·c_24_4·c_36_5 − a_2_0·a_12_2·c_24_4·c_36_5
  1949. a_27_9·a_47_15 − a_2_0·a_12_3·c_24_4·c_36_5 + a_2_0·a_12_2·c_24_4·c_36_5
  1950. a_35_4·a_39_18 + a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 + a_2_0·c_24_4·c_48_13
       + a_2_0·a_12_3·c_24_4·c_36_11 + a_2_0·a_12_3·c_24_4·c_36_5
       − a_2_0·a_12_2·c_24_4·c_36_5
  1951. a_35_4·a_39_19 − a_2_0·c_36_52 − a_2_0·c_24_4·c_48_18 − a_2_0·a_12_3·c_24_4·c_36_11
       + a_2_0·a_12_3·c_24_4·c_36_5 + a_2_0·a_12_2·c_24_4·c_36_5
  1952. a_35_5·a_39_18 + a_2_0·c_36_5·c_36_11 − a_2_0·c_24_4·c_48_18 + a_2_0·c_24_4·c_48_13
       − a_2_0·a_12_3·c_24_4·c_36_5
  1953. a_35_5·a_39_19 + a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 + a_2_0·c_24_4·c_48_13
       + a_2_0·a_12_3·c_24_4·c_36_11 + a_2_0·a_12_3·c_24_4·c_36_5
       − a_2_0·a_12_2·c_24_4·c_36_5
  1954. a_35_7·a_39_18 − a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 − a_2_0·c_24_4·c_48_18
       − a_2_0·c_24_4·c_48_13 − a_2_0·a_12_2·c_24_4·c_36_11
  1955. a_35_7·a_39_19 + a_2_0·c_36_5·c_36_11 − a_2_0·c_24_4·c_48_18 + a_2_0·c_24_4·c_48_13
       − a_2_0·a_12_3·c_24_4·c_36_11 + a_2_0·a_12_3·c_24_4·c_36_5
       + a_2_0·a_12_2·c_24_4·c_36_11
  1956. a_35_8·a_39_18 + a_2_0·c_36_52 + a_2_0·c_24_4·c_48_18 − a_2_0·a_12_3·c_24_4·c_36_11
       + a_2_0·a_12_3·c_24_4·c_36_5
  1957. a_35_8·a_39_19 − a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 − a_2_0·c_24_4·c_48_18
       − a_2_0·c_24_4·c_48_13 − a_2_0·a_12_2·c_24_4·c_36_11
  1958. c_36_11·a_39_18 + c_36_5·a_39_19 − c_36_5·a_39_18 − c_24_42·a_27_9
       + a_2_0·c_24_42·a_25_5
  1959. c_36_11·a_39_19 + c_36_5·a_39_19 + c_36_5·a_39_18 − c_24_42·a_27_9 + c_24_42·a_27_8
       − a_2_0·c_24_42·a_25_5 + a_2_0·c_24_42·a_25_4
  1960. c_48_13·a_27_8 + c_36_5·a_39_19 + c_36_5·a_39_18 + a_2_0·c_48_13·a_25_5
       + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 − c_36_52·a_3_1 + c_36_52·a_3_0
       + c_24_4·c_48_18·a_3_1 − c_24_4·c_48_18·a_3_0 + c_24_4·c_48_13·a_3_1
       − c_24_4·c_48_13·a_3_0 − c_24_4·c_36_5·a_15_5 + c_24_4·c_36_5·a_15_4
       − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_4·c_36_5·a_13_0
  1961. c_48_13·a_27_9 − c_36_5·a_39_19 + a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4
       − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 − c_36_52·a_3_1 + c_36_52·a_3_0
       − c_24_4·c_48_13·a_3_1 + c_24_4·c_48_13·a_3_0 + c_24_4·c_36_5·a_15_5
       + c_24_4·c_36_5·a_15_4 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_5 − a_2_0·c_24_42·a_25_4
  1962. c_48_18·a_27_8 − c_36_5·a_39_18 + a_2_0·c_48_13·a_25_4 + c_36_5·c_36_11·a_3_1
       − c_36_5·c_36_11·a_3_0 − c_24_4·c_48_18·a_3_1 + c_24_4·c_48_18·a_3_0
       + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0 − c_24_4·c_36_5·a_15_5
       + a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5 − a_2_0·c_24_4·c_36_5·a_13_1
       + a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_5 − a_2_0·c_24_42·a_25_4
  1963. c_48_18·a_27_9 − c_36_5·a_39_19 + c_36_5·a_39_18 + a_2_0·c_48_13·a_25_5
       − a_2_0·c_48_13·a_25_4 − c_36_52·a_3_1 + c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 + c_24_4·c_36_5·a_15_4 − a_8_1·c_24_42·a_19_6
       − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_5 + a_2_0·c_24_42·a_25_4
  1964. a_28_7·a_47_14 + a_2_0·c_48_13·a_25_5 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_4
  1965. a_28_7·a_47_15 − a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0
  1966. a_28_8·a_47_14 + a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4 − a_8_1·c_24_42·a_19_6
       − a_8_1·c_24_42·a_19_5 − a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_42·a_25_4
  1967. a_28_8·a_47_15 + a_2_0·c_48_13·a_25_4 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_4
  1968. a_28_9·a_47_14 − a_2_0·c_48_13·a_25_5 − a_2_0·c_48_13·a_25_4 − a_8_1·c_24_42·a_19_6
       − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_4·c_36_5·a_13_0
       + a_2_0·c_24_42·a_25_4
  1969. a_28_9·a_47_15 − a_2_0·c_48_13·a_25_4 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_42·a_25_4
  1970. a_28_10·a_47_14 + a_2_0·c_48_13·a_25_5 − a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1971. a_28_10·a_47_15 − a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4
  1972. a_40_15·a_35_4 − c_36_52·a_3_1 + c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 − a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0
  1973. a_40_15·a_35_5 + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 + c_36_52·a_3_1
       − c_36_52·a_3_0 + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0 + a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1974. a_40_15·a_35_7 + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0
       − a_8_1·c_24_42·a_19_6 + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_42·a_25_5
       + a_2_0·c_24_42·a_25_4
  1975. a_40_15·a_35_8 − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 + c_36_52·a_3_1
       − c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1 + c_24_4·c_48_18·a_3_0 − c_24_4·c_48_13·a_3_1
       + c_24_4·c_48_13·a_3_0 + a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_42·a_25_5
  1976. a_40_16·a_35_4 + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0
       − a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_1
       − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1977. a_40_16·a_35_5 − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 + c_36_52·a_3_1
       − c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1 + c_24_4·c_48_18·a_3_0 − c_24_4·c_48_13·a_3_1
       + c_24_4·c_48_13·a_3_0 − a_8_1·c_24_42·a_19_6 + a_2_0·c_24_4·c_36_5·a_13_1
       − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1978. a_40_16·a_35_7 + c_36_52·a_3_1 − c_36_52·a_3_0 + c_24_4·c_48_18·a_3_1
       − c_24_4·c_48_18·a_3_0 − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_0
       + a_2_0·c_24_42·a_25_4
  1979. a_40_16·a_35_8 − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 − c_36_52·a_3_1
       + c_36_52·a_3_0 − c_24_4·c_48_13·a_3_1 + c_24_4·c_48_13·a_3_0 + a_8_1·c_24_42·a_19_6
       + a_8_1·c_24_42·a_19_5 − a_2_0·c_24_42·a_25_5 + a_2_0·c_24_42·a_25_4
  1980. a_28_9·c_48_13 + a_28_7·c_48_18 + a_28_7·c_48_13 + a_16_5·c_24_4·c_36_5
       + a_16_4·c_24_4·c_36_5
  1981. a_28_9·c_48_18 − a_28_7·c_48_18 + a_28_7·c_48_13 + a_16_4·c_24_4·c_36_5
  1982. a_28_10·c_48_13 + a_28_8·c_48_18 + a_28_8·c_48_13 + a_16_6·c_24_4·c_36_5
       + a_16_5·c_24_4·c_36_5
  1983. a_28_10·c_48_18 − a_28_8·c_48_18 + a_28_8·c_48_13 + a_16_5·c_24_4·c_36_5
  1984. c_36_5·a_40_15 − a_28_8·c_48_18 + a_28_8·c_48_13 + a_28_7·c_48_18
  1985. c_36_5·a_40_16 + a_28_8·c_48_18 + a_28_7·c_48_18 − a_28_7·c_48_13 − a_16_6·c_24_4·c_36_5
       − a_16_4·c_24_4·c_36_5
  1986. c_36_11·a_40_15 − a_28_8·c_48_18 − a_28_7·c_48_18 + a_28_7·c_48_13
       + a_16_6·c_24_4·c_36_5 − a_16_5·c_24_4·c_36_11
  1987. c_36_11·a_40_16 − a_28_8·c_48_18 + a_28_8·c_48_13 + a_28_7·c_48_18
       − a_16_6·c_24_4·c_36_11 − a_16_5·c_24_4·c_36_5
  1988. a_29_6·a_47_14 + c_48_13·a_3_0·a_25_5 − b_4_03·c_48_13·a_3_0·a_13_0
       + b_4_03·c_36_5·a_3_0·a_25_5 − b_4_03·c_36_5·a_3_0·a_25_4
       − b_4_06·c_36_11·a_3_0·a_13_1 − b_4_06·c_36_11·a_3_0·a_13_0
       − c_24_4·c_36_11·a_3_0·a_13_1 + c_24_42·a_3_0·a_25_5
  1989. a_29_6·a_47_15 − c_48_13·a_3_0·a_25_5 + c_48_13·a_3_0·a_25_4
       − b_4_03·c_48_13·a_3_0·a_13_1 + b_4_03·c_48_13·a_3_0·a_13_0
       + b_4_03·c_36_5·a_3_0·a_25_5 + b_4_03·c_36_5·a_3_0·a_25_4
       − b_4_06·c_36_11·a_3_0·a_13_1 − c_24_4·c_36_11·a_3_0·a_13_0 − c_24_42·a_3_0·a_25_5
       + c_24_42·a_3_0·a_25_4
  1990. a_29_7·a_47_14 − c_48_13·a_3_0·a_25_5 − c_48_13·a_3_0·a_25_4
       + b_4_03·c_48_13·a_3_0·a_13_0 + b_4_03·c_36_5·a_3_0·a_25_5
       − b_4_03·c_36_5·a_3_0·a_25_4 − b_4_06·c_36_11·a_3_0·a_13_1
       − b_4_06·c_36_11·a_3_0·a_13_0 − c_24_4·c_36_11·a_3_0·a_13_1
       + c_24_4·c_36_11·a_3_0·a_13_0 − c_24_4·c_36_5·a_3_0·a_13_0 − c_24_42·a_3_0·a_25_5
       − c_24_42·a_3_0·a_25_4
  1991. a_29_7·a_47_15 − c_48_13·a_3_0·a_25_4 + b_4_03·c_48_13·a_3_0·a_13_1
       − b_4_03·c_48_13·a_3_0·a_13_0 + b_4_03·c_36_5·a_3_0·a_25_5
       + b_4_03·c_36_5·a_3_0·a_25_4 − b_4_06·c_36_11·a_3_0·a_13_1
       + c_24_4·c_36_11·a_3_0·a_13_1 + c_24_4·c_36_11·a_3_0·a_13_0
       − c_24_4·c_36_5·a_3_0·a_13_1 + c_24_4·c_36_5·a_3_0·a_13_0 − c_24_42·a_3_0·a_25_4
  1992. c_48_18·a_29_6 + c_48_13·a_29_7 + c_48_13·a_29_6 + b_4_03·c_36_5·a_29_7
       − b_4_06·c_36_11·a_17_2 − c_24_4·c_36_11·a_17_2 + c_24_42·a_29_7 − c_24_42·a_29_6
  1993. c_48_18·a_29_7 + c_48_13·a_29_7 − c_48_13·a_29_6 + b_4_03·c_36_5·a_29_7
       − b_4_06·c_36_11·a_17_2 − c_24_4·c_36_11·a_17_2 − c_24_42·a_29_7 − c_24_42·a_29_6
  1994. b_30_4·a_47_14 + b_4_0·c_48_13·a_25_5 − b_4_04·c_48_13·a_13_0 + b_4_04·c_36_5·a_25_5
       − b_4_04·c_36_5·a_25_4 − b_4_07·c_36_11·a_13_1 − b_4_07·c_36_11·a_13_0
       + c_36_5·a_3_0·a_13_0·a_25_5 + c_36_5·a_3_0·a_13_0·a_25_4
       + b_4_03·c_36_11·a_3_0·a_13_0·a_13_1 + b_4_03·c_24_4·a_3_0·a_13_0·a_25_5
       − b_4_03·c_24_4·a_3_0·a_13_0·a_25_4 − b_4_0·c_24_4·c_36_11·a_13_1
       + b_4_0·c_24_42·a_25_5 + c_24_42·a_3_0·a_13_0·a_13_1
  1995. b_30_4·a_47_15 − b_4_0·c_48_13·a_25_5 + b_4_0·c_48_13·a_25_4 − b_4_04·c_48_13·a_13_1
       + b_4_04·c_48_13·a_13_0 + b_4_04·c_36_5·a_25_5 + b_4_04·c_36_5·a_25_4
       − b_4_07·c_36_11·a_13_1 − c_36_5·a_3_0·a_13_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_0·a_13_1 − b_4_03·c_24_4·a_3_0·a_13_0·a_25_4
       − b_4_0·c_24_4·c_36_11·a_13_0 − b_4_0·c_24_42·a_25_5 + b_4_0·c_24_42·a_25_4
       − c_24_42·a_3_0·a_13_0·a_13_1
  1996. b_30_5·a_47_14 − b_4_0·c_48_13·a_25_5 − b_4_0·c_48_13·a_25_4 + b_4_04·c_48_13·a_13_0
       + b_4_04·c_36_5·a_25_5 − b_4_04·c_36_5·a_25_4 − b_4_07·c_36_11·a_13_1
       − b_4_07·c_36_11·a_13_0 − c_36_5·a_3_0·a_13_0·a_25_5
       − b_4_03·c_24_4·a_3_0·a_13_0·a_25_5 − b_4_0·c_24_4·c_36_11·a_13_1
       + b_4_0·c_24_4·c_36_11·a_13_0 − b_4_0·c_24_4·c_36_5·a_13_0 − b_4_0·c_24_42·a_25_5
       − b_4_0·c_24_42·a_25_4 − c_24_42·a_3_0·a_13_0·a_13_1
  1997. b_30_5·a_47_15 − b_4_0·c_48_13·a_25_4 + b_4_04·c_48_13·a_13_1
       − b_4_04·c_48_13·a_13_0 + b_4_04·c_36_5·a_25_5 + b_4_04·c_36_5·a_25_4
       − b_4_07·c_36_11·a_13_1 − c_36_5·a_3_0·a_13_0·a_25_5
       − b_4_03·c_36_11·a_3_0·a_13_0·a_13_1 − b_4_03·c_24_4·a_3_0·a_13_0·a_25_4
       + b_4_0·c_24_4·c_36_11·a_13_1 + b_4_0·c_24_4·c_36_11·a_13_0
       − b_4_0·c_24_4·c_36_5·a_13_1 + b_4_0·c_24_4·c_36_5·a_13_0 − b_4_0·c_24_42·a_25_4
       − c_24_42·a_3_0·a_13_0·a_13_1
  1998. b_30_5·c_48_13 + b_30_4·c_48_18 + b_30_4·c_48_13 + b_4_03·b_18_0·c_48_18
       + b_4_0·c_36_5·a_3_0·a_35_8 − b_4_0·c_36_5·a_3_0·a_35_7 − b_4_0·c_36_5·a_3_0·a_35_5
       + b_4_04·c_36_11·a_3_0·a_23_1 + b_4_04·c_36_11·a_3_0·a_23_0
       − b_4_04·c_24_4·a_3_0·a_35_7 − b_4_04·c_24_4·a_3_0·a_35_5
       − b_4_04·c_24_4·a_3_0·a_35_4 − a_2_0·a_28_7·c_48_13 + c_24_42·b_30_5
       − c_24_42·b_30_4 − b_18_0·c_24_4·c_36_11 − c_24_4·c_48_18·a_3_0·a_3_1
       − c_24_4·c_48_13·a_3_0·a_3_1 − b_4_0·c_24_42·a_3_0·a_23_0
       + a_2_0·a_16_5·c_24_4·c_36_11 + a_2_0·a_16_5·c_24_4·c_36_5 + c_24_43·a_3_0·a_3_1
  1999. b_30_5·c_48_18 − b_30_4·c_48_18 + b_30_4·c_48_13 − b_4_0·c_36_5·a_3_0·a_35_8
       + b_4_0·c_36_5·a_3_0·a_35_7 − b_4_04·c_36_11·a_3_0·a_23_1
       − b_4_04·c_36_11·a_3_0·a_23_0 − b_4_04·c_24_4·a_3_0·a_35_5
       + b_4_04·c_24_4·a_3_0·a_35_4 − a_2_0·a_28_7·c_48_18 + c_24_42·b_30_5
       + c_24_4·c_48_18·a_3_0·a_3_1 − c_24_4·c_48_13·a_3_0·a_3_1
       + b_4_0·c_24_42·a_3_0·a_23_1 + b_4_0·c_24_42·a_3_0·a_23_0
       + a_2_0·a_16_5·c_24_4·c_36_5
  2000. a_39_18·a_39_19
  2001. a_40_15·a_39_18 − c_36_5·c_36_11·a_7_1 − c_36_52·a_7_4 − c_36_52·a_7_3
       + c_36_52·a_7_1 − c_24_4·c_48_18·a_7_1 + c_24_4·c_48_13·a_7_4 − c_24_4·c_48_13·a_7_3
       − c_24_4·c_48_13·a_7_1 − c_24_4·c_36_5·a_19_6 + c_24_4·c_36_5·a_19_5
       + a_12_2·c_24_4·c_36_5·a_7_3 + a_8_1·c_24_42·a_23_1 − a_8_1·c_24_42·a_23_0
       − a_2_0·c_24_42·a_29_6
  2002. a_40_15·a_39_19 − c_36_5·c_36_11·a_7_1 + c_36_52·a_7_3 − c_36_52·a_7_1
       + c_24_4·c_48_13·a_7_4 − c_24_4·c_48_13·a_7_1 − c_24_4·c_36_5·a_19_6
       − c_24_4·c_36_5·a_19_5 − a_12_2·c_24_4·c_36_5·a_7_0 + a_8_1·c_24_42·a_23_1
       − a_8_1·c_24_42·a_23_0 − a_2_0·c_24_42·a_29_7
  2003. a_40_16·a_39_18 + c_36_52·a_7_4 − c_36_52·a_7_3 + c_36_52·a_7_1
       + c_24_4·c_48_18·a_7_1 + c_24_4·c_48_13·a_7_3 + c_24_4·c_36_5·a_19_5
       − a_12_2·c_24_4·c_36_5·a_7_3 − a_12_2·c_24_4·c_36_5·a_7_0 − a_2_0·c_24_42·a_29_7
       + a_2_0·c_24_42·a_29_6
  2004. a_40_16·a_39_19 + c_36_5·c_36_11·a_7_1 − c_36_52·a_7_4 − c_24_4·c_48_18·a_7_1
       − c_24_4·c_48_13·a_7_4 − c_24_4·c_48_13·a_7_3 + c_24_4·c_48_13·a_7_1
       + c_24_4·c_36_5·a_19_6 + a_12_2·c_24_4·c_36_5·a_7_3 − a_12_2·c_24_4·c_36_5·a_7_0
       − a_8_1·c_24_42·a_23_1 + a_8_1·c_24_42·a_23_0 − a_2_0·c_24_42·a_29_7
       − a_2_0·c_24_42·a_29_6
  2005. a_40_152 − a_8_2·c_36_5·c_36_11 − a_8_2·c_36_52 − a_8_2·c_24_4·c_48_13
       − a_8_1·a_12_2·c_24_4·c_36_11 − a_8_1·a_12_2·c_24_4·c_36_5
  2006. a_40_15·a_40_16 + a_8_2·c_36_5·c_36_11 − a_8_2·c_36_52 + a_8_2·c_24_4·c_48_18
       + a_8_2·c_24_4·c_48_13 + a_8_1·a_12_2·c_24_4·c_36_11 − a_8_1·a_12_2·c_24_4·c_36_5
  2007. a_40_162 + a_8_2·c_36_5·c_36_11 + a_8_2·c_36_52 + a_8_2·c_24_4·c_48_13
       + a_8_1·a_12_2·c_24_4·c_36_11 + a_8_1·a_12_2·c_24_4·c_36_5
  2008. a_34_6·a_47_14
  2009. a_34_6·a_47_15
  2010. a_34_7·a_47_14
  2011. a_34_7·a_47_15
  2012. a_34_7·c_48_13 + a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 − b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_7
       − c_24_42·a_34_6 + a_22_1·c_24_4·c_36_11 + a_2_0·a_8_2·c_24_4·c_48_13
       + a_2_0·a_8_1·c_24_4·c_48_18 − a_2_0·a_8_1·c_24_4·c_48_13 + a_2_0·a_8_2·c_24_43
  2013. a_34_7·c_48_18 − a_34_6·c_48_18 + a_34_6·c_48_13 + c_24_42·a_34_7
       + a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
       − a_2_0·a_8_1·c_24_4·c_48_13 + a_2_0·a_8_2·c_24_43
  2014. a_35_4·a_47_14 − a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_24_4·a_3_0·a_47_14
       − a_2_0·a_8_2·c_24_4·c_48_13 − a_2_0·a_8_1·c_24_4·c_48_13
  2015. a_35_4·a_47_15 + a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 + b_4_02·c_24_4·a_3_0·a_47_15
       − b_4_05·c_36_11·a_13_0·a_13_1 − c_24_42·a_34_6 + a_22_1·c_24_4·c_36_11
       + a_2_0·a_8_2·c_24_4·c_48_18 + a_2_0·a_8_2·c_24_4·c_48_13
       + a_2_0·a_8_1·c_24_4·c_48_18 − a_2_0·a_8_1·c_24_4·c_48_13
  2016. a_35_5·a_47_14 − a_34_6·c_48_18 − a_34_6·c_48_13 − b_4_02·c_36_5·a_13_0·a_25_5
       + b_4_02·c_36_5·a_13_0·a_25_4 + b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_6
       − a_22_1·c_24_4·c_36_11 − a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
       + a_2_0·a_8_1·c_24_4·c_48_13
  2017. a_35_5·a_47_15 − a_34_6·c_48_18 + b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 − b_4_05·c_36_11·a_13_0·a_13_1 − c_24_42·a_34_6
       + a_22_1·c_24_4·c_36_11 − a_2_0·a_8_2·c_24_4·c_48_13
  2018. a_35_7·a_47_14 + a_34_6·c_48_18 − b_4_02·c_36_5·a_13_0·a_25_5
       + b_4_02·c_36_5·a_13_0·a_25_4 + b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_6
       − a_22_1·c_24_4·c_36_11 + a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
  2019. a_35_7·a_47_15 + a_34_6·c_48_13 − b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 + b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_6
       − a_22_1·c_24_4·c_36_11 + a_22_1·c_24_4·c_36_5 + a_2_0·a_8_2·c_24_4·c_48_13
       − a_2_0·a_8_1·c_24_4·c_48_18
  2020. a_35_8·a_47_14 − a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_5
       + b_4_02·c_36_5·a_13_0·a_25_4 − b_4_05·c_36_11·a_13_0·a_13_1 − c_24_42·a_34_6
       + a_22_1·c_24_4·c_36_11 − a_22_1·c_24_4·c_36_5 + a_2_0·a_8_2·c_24_4·c_48_18
       − a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
  2021. a_35_8·a_47_15 − a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_4
       + a_22_1·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_48_18
  2022. c_36_11·a_47_14 − c_36_5·a_47_15 + c_36_5·a_47_14 + b_4_03·c_36_5·a_35_5
       + b_4_03·c_36_5·a_35_4 + b_4_03·c_24_4·a_47_14 − c_24_4·c_48_13·a_11_2
       − c_24_4·c_36_5·a_23_4 + c_24_4·c_36_5·a_23_0 + b_4_05·c_24_4·c_36_5·a_3_0
       − a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_112·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1
       − a_8_1·c_24_4·c_48_18·a_3_0 − a_8_1·c_24_4·c_48_13·a_3_1
       − a_8_1·c_24_4·c_48_13·a_3_0 + b_4_03·a_8_1·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_43·a_3_0 + a_8_1·c_24_43·a_3_1 − a_8_1·c_24_43·a_3_0
  2023. c_36_11·a_47_15 − c_36_5·a_47_15 − c_36_5·a_47_14 + b_4_03·c_36_5·a_35_5
       + b_4_03·c_24_4·a_47_15 + c_24_4·c_48_13·a_11_3 − c_24_4·c_48_13·a_11_2
       + c_24_4·c_36_5·a_23_5 − c_24_4·c_36_5·a_23_4 + c_24_4·c_36_5·a_23_1
       − a_8_2·c_24_4·c_48_18·a_3_0 − a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_112·a_3_0
       − a_8_1·c_36_5·c_36_11·a_3_0 + a_8_1·c_36_52·a_3_0 + a_8_1·c_24_4·c_48_18·a_3_1
       + a_8_1·c_24_4·c_48_13·a_3_1 − a_8_1·c_24_4·c_48_13·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 + a_8_2·c_24_43·a_3_0
  2024. c_48_13·a_35_7 − c_48_13·a_35_5 − c_48_13·a_35_4 − c_36_5·a_47_15
       + b_4_03·c_36_5·a_35_8 + b_4_03·c_36_5·a_35_7 + b_4_03·c_36_5·a_35_5
       − b_4_03·c_36_5·a_35_4 − b_4_06·c_36_11·a_23_0 − c_24_4·c_48_13·a_11_2
       − c_24_4·c_36_11·a_23_0 − c_24_4·c_36_5·a_23_5 + c_24_4·c_36_5·a_23_4
       − c_24_4·c_36_5·a_23_1 − c_24_4·c_36_5·a_23_0 + c_24_42·a_35_7 − c_24_42·a_35_5
       − c_24_42·a_35_4 − b_4_02·c_24_4·c_48_13·a_3_0 − b_4_05·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_48_18·a_3_0 − a_8_2·c_24_4·c_48_13·a_3_0
       + a_8_1·c_36_5·c_36_11·a_3_0 − a_8_1·c_36_52·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1
       + a_8_1·c_24_4·c_48_18·a_3_0 − a_8_1·c_24_4·c_48_13·a_3_1
       + a_8_1·c_24_4·c_48_13·a_3_0 − b_4_03·a_8_1·c_24_4·c_36_11·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0 + b_4_06·a_8_1·c_24_42·a_3_0
       − b_4_02·c_24_43·a_3_0 + a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_0
  2025. c_48_13·a_35_8 + c_48_13·a_35_5 − c_48_13·a_35_4 − c_36_5·a_47_14
       − b_4_03·c_36_5·a_35_8 + b_4_03·c_36_5·a_35_7 + b_4_03·c_36_5·a_35_4
       − b_4_06·c_36_11·a_23_1 − b_4_06·c_36_11·a_23_0 + c_24_4·c_48_13·a_11_3
       + c_24_4·c_48_13·a_11_2 − c_24_4·c_36_11·a_23_1 − c_24_4·c_36_11·a_23_0
       + c_24_4·c_36_5·a_23_4 − c_24_4·c_36_5·a_23_1 + c_24_4·c_36_5·a_23_0 + c_24_42·a_35_8
       + c_24_42·a_35_5 − c_24_42·a_35_4 − b_4_02·c_24_4·c_48_13·a_3_0
       + b_4_05·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_112·a_3_0
       − a_8_1·c_36_5·c_36_11·a_3_0 − a_8_1·c_36_52·a_3_0
       + b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 − b_4_06·a_8_1·c_24_42·a_3_0
       − b_4_02·c_24_43·a_3_0 + a_8_1·c_24_43·a_3_1 + a_8_1·c_24_43·a_3_0
  2026. c_48_18·a_35_4 + c_48_13·a_35_5 − c_48_13·a_35_4 + c_36_5·a_47_15
       − b_4_03·c_36_5·a_35_8 − b_4_03·c_36_5·a_35_5 + b_4_03·c_36_5·a_35_4
       + b_4_06·c_36_11·a_23_1 + c_24_4·c_36_11·a_23_1 − c_24_4·c_36_5·a_23_4
       + c_24_4·c_36_5·a_23_1 + c_24_4·c_36_5·a_23_0 + c_24_42·a_35_5
       + b_4_02·c_24_4·c_48_18·a_3_0 − b_4_02·c_24_4·c_48_13·a_3_0
       + b_4_05·c_24_4·c_36_5·a_3_0 − a_8_2·c_24_4·c_48_13·a_3_0 − a_8_1·c_36_112·a_3_0
       + a_8_1·c_36_52·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1 − a_8_1·c_24_4·c_48_18·a_3_0
       + a_8_1·c_24_4·c_48_13·a_3_1 + a_8_1·c_24_4·c_48_13·a_3_0
       + b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0
       − b_4_06·a_8_1·c_24_42·a_3_0 + a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1
       + a_8_1·c_24_43·a_3_0
  2027. c_48_18·a_35_5 + c_48_13·a_35_4 + c_36_5·a_47_14 − b_4_03·c_36_5·a_35_8
       − b_4_03·c_36_5·a_35_7 − b_4_03·c_36_5·a_35_4 + b_4_06·c_36_11·a_23_0
       − c_24_4·c_48_13·a_11_3 + c_24_4·c_48_13·a_11_2 + c_24_4·c_36_11·a_23_0
       − c_24_4·c_36_5·a_23_5 − c_24_4·c_36_5·a_23_4 + c_24_4·c_36_5·a_23_1
       − c_24_4·c_36_5·a_23_0 + c_24_42·a_35_5 + c_24_42·a_35_4
       + b_4_02·c_24_4·c_48_13·a_3_0 − b_4_05·c_24_4·c_36_5·a_3_0
       − a_8_2·c_24_4·c_48_18·a_3_0 − a_8_1·c_36_112·a_3_0 − a_8_1·c_36_5·c_36_11·a_3_0
       + a_8_1·c_36_52·a_3_0 + a_8_1·c_24_4·c_48_18·a_3_1 − a_8_1·c_24_4·c_48_18·a_3_0
       + a_8_1·c_24_4·c_48_13·a_3_1 − a_8_1·c_24_4·c_48_13·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0 − b_4_06·a_8_1·c_24_42·a_3_0
       + b_4_02·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1 − a_8_1·c_24_43·a_3_0
  2028. c_48_18·a_35_7 + c_48_13·a_35_5 + c_36_5·a_47_15 − b_4_03·c_36_5·a_35_8
       − b_4_03·c_36_5·a_35_5 + b_4_03·c_36_5·a_35_4 + b_4_06·c_36_11·a_23_1
       − c_24_4·c_48_13·a_11_3 + c_24_4·c_48_13·a_11_2 + c_24_4·c_36_11·a_23_1
       + c_24_4·c_36_5·a_23_5 + c_24_4·c_36_5·a_23_1 + c_24_4·c_36_5·a_23_0 + c_24_42·a_35_7
       + c_24_42·a_35_5 + b_4_05·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_48_18·a_3_0
       + a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_52·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1
       − a_8_1·c_24_4·c_48_18·a_3_0 − a_8_1·c_24_4·c_48_13·a_3_1
       − b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0
       − b_4_06·a_8_1·c_24_42·a_3_0 − a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1
       + a_8_1·c_24_43·a_3_0
  2029. c_48_18·a_35_8 + c_48_13·a_35_5 + c_48_13·a_35_4 + c_36_5·a_47_14
       − b_4_03·c_36_5·a_35_8 − b_4_03·c_36_5·a_35_7 − b_4_03·c_36_5·a_35_4
       + b_4_06·c_36_11·a_23_0 + c_24_4·c_48_13·a_11_3 − c_24_4·c_48_13·a_11_2
       + c_24_4·c_36_11·a_23_0 + c_24_4·c_36_5·a_23_1 − c_24_4·c_36_5·a_23_0 + c_24_42·a_35_8
       + c_24_42·a_35_5 + c_24_42·a_35_4 + b_4_02·c_24_4·c_48_13·a_3_0
       − b_4_05·c_24_4·c_36_5·a_3_0 − a_8_2·c_24_4·c_48_18·a_3_0
       − a_8_2·c_24_4·c_48_13·a_3_0 − a_8_1·c_36_5·c_36_11·a_3_0 + a_8_1·c_36_52·a_3_0
       + a_8_1·c_24_4·c_48_18·a_3_0 + a_8_1·c_24_4·c_48_13·a_3_1
       + a_8_1·c_24_4·c_48_13·a_3_0 + b_4_03·a_8_1·c_24_4·c_36_11·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0 − b_4_06·a_8_1·c_24_42·a_3_0
       + b_4_02·c_24_43·a_3_0 − a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1
       − a_8_1·c_24_43·a_3_0
  2030. c_36_11·c_48_13 − c_36_5·c_48_18 − c_36_5·c_48_13 + b_4_03·c_36_112
       + b_4_03·c_24_4·c_48_13 + b_4_06·c_24_4·c_36_11 − a_12_5·c_24_4·c_48_18
       + a_12_3·c_36_112 − a_12_3·c_24_4·c_48_18 − a_12_2·c_36_112 − a_12_2·c_36_5·c_36_11
       + a_12_2·c_24_4·c_48_18 + a_12_2·c_24_4·c_48_13 − b_4_02·c_24_4·c_36_11·a_3_0·a_13_0
       + c_24_42·c_36_5 − a_12_2·c_24_43
  2031. c_36_11·c_48_18 + c_36_5·c_48_18 − c_36_5·c_48_13 + b_4_03·c_36_112
       + b_4_03·c_24_4·c_48_18 + b_4_06·c_24_4·c_36_11 + a_12_5·c_24_4·c_48_18
       + a_12_4·c_24_4·c_48_18 − a_12_4·c_24_4·c_48_13 − a_12_3·c_36_112
       + a_12_3·c_24_4·c_48_18 + a_12_3·c_24_4·c_48_13 − a_12_2·c_36_112
       − a_12_2·c_36_5·c_36_11 + a_12_2·c_24_4·c_48_18 + a_12_2·c_24_4·c_48_13
       + b_4_02·c_24_4·c_36_11·a_3_0·a_13_1 − b_4_02·c_24_4·c_36_11·a_3_0·a_13_0
       + a_12_5·c_24_43 − a_12_2·c_24_43
  2032. a_39_18·a_47_14 − a_2_0·a_12_3·c_24_4·c_48_18 + a_2_0·a_12_3·c_24_4·c_48_13
       + a_2_0·a_12_2·c_24_4·c_48_18 + a_2_0·a_12_2·c_24_4·c_48_13
  2033. a_39_18·a_47_15 + a_2_0·a_12_3·c_24_4·c_48_13 + a_2_0·a_12_2·c_24_4·c_48_18
       − a_2_0·a_12_2·c_24_4·c_48_13
  2034. a_39_19·a_47_14 + a_2_0·a_12_3·c_24_4·c_48_13 + a_2_0·a_12_2·c_24_4·c_48_18
       − a_2_0·a_12_2·c_24_4·c_48_13
  2035. a_39_19·a_47_15 − a_2_0·a_12_3·c_24_4·c_48_18 − a_2_0·a_12_2·c_24_4·c_48_13
  2036. c_48_18·a_39_18 + c_48_13·a_39_19 − c_24_42·a_39_19 − c_24_42·a_39_18
       − a_8_1·c_24_4·c_36_5·a_19_6 + a_8_1·c_24_4·c_36_5·a_19_5
       − a_2_0·c_24_4·c_48_13·a_13_1 − a_2_0·c_24_4·c_48_13·a_13_0
       + a_2_0·c_24_4·c_36_5·a_25_4 + c_24_43·a_15_5 + c_24_43·a_15_4
       − a_2_0·c_24_43·a_13_1 − a_2_0·c_24_43·a_13_0
  2037. c_48_18·a_39_19 − c_48_13·a_39_19 + c_48_13·a_39_18 − c_24_42·a_39_18
       − a_8_1·c_24_4·c_36_5·a_19_5 − a_2_0·c_24_4·c_48_13·a_13_1
       + a_2_0·c_24_4·c_36_5·a_25_5 − c_24_43·a_15_5 − a_2_0·c_24_43·a_13_1
  2038. a_40_15·a_47_14 − a_8_1·c_24_4·c_36_5·a_19_5 + a_2_0·c_24_4·c_48_13·a_13_1
       + a_2_0·c_24_4·c_48_13·a_13_0 − a_2_0·c_24_4·c_36_5·a_25_5
       + a_2_0·c_24_4·c_36_5·a_25_4
  2039. a_40_15·a_47_15 + a_8_1·c_24_4·c_36_5·a_19_6 − a_8_1·c_24_4·c_36_5·a_19_5
       − a_2_0·c_24_4·c_48_13·a_13_1 − a_2_0·c_24_4·c_48_13·a_13_0
       − a_2_0·c_24_4·c_36_5·a_25_5 + a_2_0·c_24_4·c_36_5·a_25_4
  2040. a_40_16·a_47_14 + a_8_1·c_24_4·c_36_5·a_19_6 − a_2_0·c_24_4·c_48_13·a_13_0
       + a_2_0·c_24_4·c_36_5·a_25_5
  2041. a_40_16·a_47_15 + a_8_1·c_24_4·c_36_5·a_19_6 + a_8_1·c_24_4·c_36_5·a_19_5
       + a_2_0·c_24_4·c_48_13·a_13_0 − a_2_0·c_24_4·c_36_5·a_25_4
  2042. a_40_16·c_48_13 + a_40_15·c_48_18 + a_40_15·c_48_13 + a_16_6·c_24_4·c_48_18
       − a_16_6·c_24_4·c_48_13 − a_16_5·c_24_4·c_48_13 − a_16_4·c_24_4·c_48_18
  2043. a_40_16·c_48_18 − a_40_15·c_48_18 + a_40_15·c_48_13 + a_16_5·c_24_4·c_48_18
       − a_16_5·c_24_4·c_48_13 − a_16_4·c_24_4·c_48_18
  2044. a_47_14·a_47_15 + b_4_02·c_48_13·a_13_0·a_25_5 + b_4_02·c_48_13·a_13_0·a_25_4
       + a_22_1·c_36_112 + b_4_02·c_24_4·c_36_11·a_13_0·a_13_1
       + b_4_02·c_24_42·a_13_0·a_25_5 + b_4_02·c_24_42·a_13_0·a_25_4
       + a_2_0·a_8_2·c_36_5·c_48_18 − a_2_0·a_8_2·c_36_5·c_48_13
       − a_2_0·a_8_1·c_36_5·c_48_18 − a_2_0·a_8_1·c_36_5·c_48_13 − a_22_1·c_24_43
  2045. c_48_18·a_47_14 − c_48_13·a_47_15 − c_48_13·a_47_14 + b_4_03·c_48_13·a_35_5
       + b_4_03·c_48_13·a_35_4 + b_4_03·c_36_5·a_47_14 − c_36_112·a_23_0
       + c_36_5·c_48_13·a_11_3 + c_36_5·c_48_13·a_11_2 − c_36_5·c_36_11·a_23_1
       + c_36_5·c_36_11·a_23_0 + c_24_4·c_48_13·a_23_4 + c_24_4·c_48_13·a_23_0
       − c_24_42·a_47_15 − b_4_03·c_24_4·c_36_11·a_23_0 + b_4_03·c_24_42·a_35_5
       + b_4_03·c_24_42·a_35_4 + b_4_05·c_24_4·c_48_13·a_3_0 − a_8_2·c_36_5·c_48_18·a_3_0
       + a_8_2·c_36_5·c_48_13·a_3_0 + a_8_1·c_36_5·c_48_18·a_3_1
       + a_8_1·c_36_5·c_48_18·a_3_0 − a_8_1·c_36_5·c_48_13·a_3_1
       + a_8_1·c_36_5·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_112·a_3_0
       − b_4_03·a_8_1·c_36_5·c_36_11·a_3_0 + b_4_03·a_8_1·c_24_4·c_48_18·a_3_0
       + b_4_03·a_8_1·c_24_4·c_48_13·a_3_0 + c_24_42·c_36_5·a_11_2 + c_24_43·a_23_0
       + b_4_05·c_24_43·a_3_0 − a_8_2·c_24_42·c_36_11·a_3_0 − a_8_2·c_24_42·c_36_5·a_3_0
       + a_8_1·c_24_42·c_36_11·a_3_1 − b_4_03·a_8_1·c_24_43·a_3_0
  2046. c_48_18·a_47_15 − c_48_13·a_47_14 + b_4_03·c_48_13·a_35_5 + b_4_03·c_36_5·a_47_15
       − c_36_112·a_23_1 − c_36_5·c_48_13·a_11_2 − c_36_5·c_36_11·a_23_1
       − c_36_5·c_36_11·a_23_0 + c_24_4·c_48_13·a_23_4 + c_24_4·c_36_5·a_35_8
       + c_24_4·c_36_5·a_35_5 + c_24_42·a_47_15 − c_24_42·a_47_14
       + b_4_03·c_24_4·c_36_11·a_23_1 + b_4_03·c_24_42·a_35_5
       + a_8_2·c_36_5·c_48_18·a_3_0 + a_8_1·c_36_5·c_48_18·a_3_1
       − a_8_1·c_36_5·c_48_18·a_3_0 + b_4_03·a_8_1·c_24_4·c_48_13·a_3_0
       + b_4_06·a_8_1·c_24_4·c_36_11·a_3_0 + c_24_42·c_36_5·a_11_2 + c_24_43·a_23_1
       + a_8_2·c_24_42·c_36_5·a_3_0 − a_8_1·c_24_42·c_36_11·a_3_1
       − a_8_1·c_24_42·c_36_5·a_3_1 − a_8_1·c_24_42·c_36_5·a_3_0
       − b_4_03·a_8_1·c_24_43·a_3_0
  2047. c_48_182 − c_48_13·c_48_18 − c_48_132 + b_4_03·c_36_5·c_48_18
       − b_4_03·c_36_5·c_48_13 + b_4_06·c_36_112 + a_24_5·c_24_4·c_48_18
       − a_24_5·c_24_4·c_48_13 − a_12_5·c_36_5·c_48_18 + a_12_3·c_36_5·c_48_18
       + a_12_3·c_36_5·c_48_13 + a_12_2·c_36_5·c_48_13 + b_4_02·c_36_112·a_3_0·a_13_1
       + b_4_02·c_36_112·a_3_0·a_13_0 − b_4_02·c_36_5·c_36_11·a_3_0·a_13_0
       + b_4_02·c_24_4·c_48_13·a_3_0·a_13_1 + b_4_02·c_24_4·c_48_13·a_3_0·a_13_0
       − b_4_02·c_24_4·c_36_5·a_3_0·a_25_5 + b_4_02·c_24_4·c_36_5·a_3_0·a_25_4
       + b_4_05·c_24_4·c_36_11·a_3_0·a_13_1 − c_24_4·c_36_52 + c_24_42·c_48_18
       + b_4_03·c_24_42·c_36_11 + a_12_5·c_24_42·c_36_11 + a_12_4·c_24_42·c_36_5
       − a_12_3·c_24_42·c_36_11 + a_12_3·c_24_42·c_36_5 + a_12_2·c_24_42·c_36_11


About the group Ring generators Ring relations Completion information Restriction maps

Data used for the Symonds test

  • We proved completion in degree 96 using the Symonds criterion.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_24_4, an element of degree 24
    2. c_48_18, an element of degree 48
    3. b_4_0, an element of degree 4
  • A Duflot regular sequence is given by c_24_4, c_48_18.
  • The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 68, 73].


About the group Ring generators Ring relations Completion information Restriction maps

Restriction maps

Expressing the generators as elements of H*(SmallGroup(1944,803); GF(3))

  1. a_2_0a_2_0
  2. a_3_0a_3_0
  3. a_3_1a_3_1
  4. b_4_0b_4_0
  5. a_7_0a_7_0
  6. a_7_1a_7_1
  7. a_7_3a_7_3
  8. a_7_4a_7_4
  9. a_8_1a_8_1
  10. a_8_2a_8_2
  11. a_8_3a_8_3
  12. a_11_2a_11_2
  13. a_11_3a_11_3
  14. a_12_2a_12_2
  15. a_12_3a_12_3
  16. a_12_4a_12_4
  17. a_12_5a_12_5
  18. a_13_0a_13_0
  19. a_13_1a_13_1
  20. a_15_4a_15_4
  21. a_15_5a_15_5
  22. a_16_4a_16_4
  23. a_16_5a_16_5
  24. a_16_6a_16_6
  25. a_17_2a_17_2
  26. b_18_0b_18_0
  27. a_19_5a_19_5
  28. a_19_6a_19_6
  29. a_20_5a_20_5
  30. a_20_6a_20_6
  31. a_22_1a_22_1
  32. a_23_0a_23_0
  33. a_23_1a_23_1
  34. a_23_4a_23_4
  35. a_23_5a_23_5
  36. c_24_4c_24_4
  37. a_24_5a_24_5
  38. a_24_6a_24_6
  39. a_24_7a_24_7
  40. a_24_8a_24_8
  41. a_25_4a_25_4
  42. a_25_5a_25_5
  43. a_27_8a_27_8
  44. a_27_9a_27_9
  45. a_28_7a_28_7
  46. a_28_8a_28_8
  47. a_28_9a_28_9
  48. a_28_10a_28_10
  49. a_29_6a_29_6
  50. a_29_7a_29_7
  51. b_30_4b_30_4
  52. b_30_5b_30_5
  53. a_34_6a_34_6
  54. a_34_7a_34_7
  55. a_35_4a_35_4
  56. a_35_5a_35_5
  57. a_35_7a_35_7
  58. a_35_8a_35_8
  59. c_36_5c_36_5
  60. c_36_11c_36_11
  61. a_39_18a_39_18
  62. a_39_19a_39_19
  63. a_40_15a_40_15
  64. a_40_16a_40_16
  65. a_47_14a_47_14
  66. a_47_15a_47_15
  67. c_48_13c_48_13
  68. c_48_18c_48_18

Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2

  1. a_2_00, an element of degree 2
  2. a_3_00, an element of degree 3
  3. a_3_10, an element of degree 3
  4. b_4_00, an element of degree 4
  5. a_7_00, an element of degree 7
  6. a_7_10, an element of degree 7
  7. a_7_30, an element of degree 7
  8. a_7_40, an element of degree 7
  9. a_8_10, an element of degree 8
  10. a_8_20, an element of degree 8
  11. a_8_30, an element of degree 8
  12. a_11_20, an element of degree 11
  13. a_11_30, an element of degree 11
  14. a_12_20, an element of degree 12
  15. a_12_30, an element of degree 12
  16. a_12_40, an element of degree 12
  17. a_12_50, an element of degree 12
  18. a_13_00, an element of degree 13
  19. a_13_10, an element of degree 13
  20. a_15_40, an element of degree 15
  21. a_15_50, an element of degree 15
  22. a_16_40, an element of degree 16
  23. a_16_50, an element of degree 16
  24. a_16_60, an element of degree 16
  25. a_17_20, an element of degree 17
  26. b_18_0 − c_2_16·c_2_23, an element of degree 18
  27. a_19_50, an element of degree 19
  28. a_19_60, an element of degree 19
  29. a_20_50, an element of degree 20
  30. a_20_60, an element of degree 20
  31. a_22_10, an element of degree 22
  32. a_23_00, an element of degree 23
  33. a_23_10, an element of degree 23
  34. a_23_40, an element of degree 23
  35. a_23_50, an element of degree 23
  36. c_24_4c_2_112, an element of degree 24
  37. a_24_50, an element of degree 24
  38. a_24_60, an element of degree 24
  39. a_24_70, an element of degree 24
  40. a_24_80, an element of degree 24
  41. a_25_40, an element of degree 25
  42. a_25_50, an element of degree 25
  43. a_27_80, an element of degree 27
  44. a_27_90, an element of degree 27
  45. a_28_70, an element of degree 28
  46. a_28_80, an element of degree 28
  47. a_28_90, an element of degree 28
  48. a_28_100, an element of degree 28
  49. a_29_60, an element of degree 29
  50. a_29_70, an element of degree 29
  51. b_30_4c_2_112·c_2_23, an element of degree 30
  52. b_30_50, an element of degree 30
  53. a_34_60, an element of degree 34
  54. a_34_70, an element of degree 34
  55. a_35_40, an element of degree 35
  56. a_35_50, an element of degree 35
  57. a_35_70, an element of degree 35
  58. a_35_80, an element of degree 35
  59. c_36_5c_2_115·c_2_23, an element of degree 36
  60. c_36_11c_2_118, an element of degree 36
  61. a_39_180, an element of degree 39
  62. a_39_190, an element of degree 39
  63. a_40_150, an element of degree 40
  64. a_40_160, an element of degree 40
  65. a_47_140, an element of degree 47
  66. a_47_150, an element of degree 47
  67. c_48_13 − c_2_121·c_2_23, an element of degree 48
  68. c_48_180, an element of degree 48

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. a_2_00, an element of degree 2
  2. a_3_00, an element of degree 3
  3. a_3_1 − c_2_5·a_1_2, an element of degree 3
  4. b_4_00, an element of degree 4
  5. a_7_0c_2_52·a_1_0·a_1_1·a_1_2 − c_2_53·a_1_1 + c_2_4·c_2_52·a_1_2, an element of degree 7
  6. a_7_1c_2_52·a_1_0·a_1_1·a_1_2 − c_2_53·a_1_2, an element of degree 7
  7. a_7_30, an element of degree 7
  8. a_7_40, an element of degree 7
  9. a_8_1 − c_2_54, an element of degree 8
  10. a_8_20, an element of degree 8
  11. a_8_30, an element of degree 8
  12. a_11_2c_2_55·a_1_2 + c_2_3·c_2_54·a_1_2 − c_2_33·c_2_52·a_1_2, an element of degree 11
  13. a_11_3 − c_2_54·a_1_0·a_1_1·a_1_2 + c_2_55·a_1_1 − c_2_4·c_2_54·a_1_2 + c_2_3·c_2_54·a_1_1
       − c_2_3·c_2_4·c_2_53·a_1_2 − c_2_33·c_2_52·a_1_1 + c_2_33·c_2_4·c_2_5·a_1_2, an element of degree 11
  14. a_12_2 − c_2_3·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_52·a_1_0·a_1_2 + c_2_56 + c_2_3·c_2_55
       − c_2_33·c_2_53, an element of degree 12
  15. a_12_3 − c_2_3·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_52·a_1_0·a_1_2 + c_2_56 + c_2_3·c_2_55
       − c_2_33·c_2_53, an element of degree 12
  16. a_12_4 − c_2_55·a_1_1·a_1_2 − c_2_3·c_2_54·a_1_1·a_1_2 + c_2_33·c_2_52·a_1_1·a_1_2, an element of degree 12
  17. a_12_5c_2_55·a_1_1·a_1_2 − c_2_55·a_1_0·a_1_2 + c_2_3·c_2_54·a_1_1·a_1_2
       − c_2_3·c_2_54·a_1_0·a_1_2 − c_2_33·c_2_52·a_1_1·a_1_2
       + c_2_33·c_2_52·a_1_0·a_1_2, an element of degree 12
  18. a_13_0c_2_55·a_1_0·a_1_1·a_1_2 + c_2_3·c_2_54·a_1_0·a_1_1·a_1_2
       − c_2_33·c_2_52·a_1_0·a_1_1·a_1_2 − c_2_56·a_1_2 − c_2_3·c_2_55·a_1_2
       + c_2_33·c_2_53·a_1_2, an element of degree 13
  19. a_13_1 − c_2_55·a_1_0·a_1_1·a_1_2 + c_2_3·c_2_54·a_1_0·a_1_1·a_1_2
       − c_2_33·c_2_52·a_1_0·a_1_1·a_1_2 + c_2_56·a_1_2 − c_2_56·a_1_1 + c_2_56·a_1_0
       + c_2_4·c_2_55·a_1_2 − c_2_3·c_2_55·a_1_1 + c_2_3·c_2_55·a_1_0
       + c_2_3·c_2_4·c_2_54·a_1_2 − c_2_32·c_2_54·a_1_2 − c_2_33·c_2_53·a_1_2
       + c_2_33·c_2_53·a_1_1 − c_2_33·c_2_53·a_1_0 − c_2_33·c_2_4·c_2_52·a_1_2
       + c_2_34·c_2_52·a_1_2, an element of degree 13
  20. a_15_4 − c_2_57·a_1_2 + c_2_3·c_2_56·a_1_2 − c_2_32·c_2_55·a_1_2 − c_2_33·c_2_54·a_1_2
       − c_2_34·c_2_53·a_1_2 − c_2_36·c_2_5·a_1_2, an element of degree 15
  21. a_15_5 − c_2_57·a_1_2 + c_2_3·c_2_56·a_1_2 − c_2_32·c_2_55·a_1_2 − c_2_33·c_2_54·a_1_2
       − c_2_34·c_2_53·a_1_2 − c_2_36·c_2_5·a_1_2, an element of degree 15
  22. a_16_40, an element of degree 16
  23. a_16_50, an element of degree 16
  24. a_16_6c_2_57·a_1_0·a_1_2 + c_2_3·c_2_56·a_1_0·a_1_2 − c_2_33·c_2_54·a_1_0·a_1_2
       − c_2_58 + c_2_3·c_2_57 − c_2_32·c_2_56 − c_2_33·c_2_55 − c_2_34·c_2_54
       − c_2_36·c_2_52, an element of degree 16
  25. a_17_2 − c_2_58·a_1_2 + c_2_3·c_2_57·a_1_2 − c_2_32·c_2_56·a_1_2 − c_2_33·c_2_55·a_1_2
       − c_2_34·c_2_54·a_1_2 − c_2_36·c_2_52·a_1_2, an element of degree 17
  26. b_18_0 − c_2_58·a_1_0·a_1_2 + c_2_4·c_2_57·a_1_0·a_1_2 − c_2_43·c_2_55·a_1_0·a_1_2
       − c_2_3·c_2_57·a_1_0·a_1_2 + c_2_3·c_2_4·c_2_56·a_1_0·a_1_2
       − c_2_3·c_2_43·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_55·a_1_0·a_1_2
       − c_2_33·c_2_4·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_43·c_2_52·a_1_0·a_1_2 + c_2_59
       − c_2_4·c_2_58 + c_2_43·c_2_56 − c_2_3·c_2_58 + c_2_3·c_2_4·c_2_57
       − c_2_3·c_2_43·c_2_55 + c_2_32·c_2_57 − c_2_32·c_2_4·c_2_56
       + c_2_32·c_2_43·c_2_54 + c_2_33·c_2_56 − c_2_33·c_2_4·c_2_55
       + c_2_33·c_2_43·c_2_53 + c_2_34·c_2_55 − c_2_34·c_2_4·c_2_54
       + c_2_34·c_2_43·c_2_52 + c_2_36·c_2_53 − c_2_36·c_2_4·c_2_52
       + c_2_36·c_2_43, an element of degree 18
  27. a_19_50, an element of degree 19
  28. a_19_60, an element of degree 19
  29. a_20_50, an element of degree 20
  30. a_20_60, an element of degree 20
  31. a_22_1c_2_510·a_1_1·a_1_2 + c_2_510·a_1_0·a_1_2 − c_2_3·c_2_59·a_1_1·a_1_2
       − c_2_3·c_2_59·a_1_0·a_1_2 + c_2_32·c_2_58·a_1_1·a_1_2
       + c_2_32·c_2_58·a_1_0·a_1_2 + c_2_33·c_2_57·a_1_1·a_1_2
       + c_2_33·c_2_57·a_1_0·a_1_2 + c_2_34·c_2_56·a_1_1·a_1_2
       + c_2_34·c_2_56·a_1_0·a_1_2 + c_2_36·c_2_54·a_1_1·a_1_2
       + c_2_36·c_2_54·a_1_0·a_1_2, an element of degree 22
  32. a_23_0c_2_511·a_1_2 − c_2_511·a_1_1 + c_2_4·c_2_510·a_1_2 + c_2_33·c_2_58·a_1_2
       − c_2_33·c_2_58·a_1_1 + c_2_33·c_2_4·c_2_57·a_1_2 − c_2_39·c_2_52·a_1_2
       + c_2_39·c_2_52·a_1_1 − c_2_39·c_2_4·c_2_5·a_1_2, an element of degree 23
  33. a_23_1 − c_2_511·a_1_2 + c_2_511·a_1_0 − c_2_3·c_2_510·a_1_2 − c_2_33·c_2_58·a_1_2
       + c_2_33·c_2_58·a_1_0 − c_2_34·c_2_57·a_1_2 + c_2_39·c_2_52·a_1_2
       − c_2_39·c_2_52·a_1_0 + c_2_310·c_2_5·a_1_2, an element of degree 23
  34. a_23_4c_2_511·a_1_2 + c_2_33·c_2_58·a_1_2 − c_2_39·c_2_52·a_1_2, an element of degree 23
  35. a_23_5c_2_511·a_1_1 − c_2_4·c_2_510·a_1_2 + c_2_33·c_2_58·a_1_1
       − c_2_33·c_2_4·c_2_57·a_1_2 − c_2_39·c_2_52·a_1_1 + c_2_39·c_2_4·c_2_5·a_1_2, an element of degree 23
  36. c_24_4 − c_2_511·a_1_0·a_1_2 − c_2_33·c_2_58·a_1_0·a_1_2 + c_2_39·c_2_52·a_1_0·a_1_2
       + c_2_3·c_2_511 − c_2_33·c_2_59 + c_2_34·c_2_58 − c_2_36·c_2_56
       − c_2_310·c_2_52 + c_2_312, an element of degree 24
  37. a_24_5c_2_511·a_1_0·a_1_2 + c_2_33·c_2_58·a_1_0·a_1_2 − c_2_39·c_2_52·a_1_0·a_1_2
       − c_2_512 − c_2_33·c_2_59 + c_2_39·c_2_53, an element of degree 24
  38. a_24_6 − c_2_511·a_1_0·a_1_2 − c_2_33·c_2_58·a_1_0·a_1_2 + c_2_39·c_2_52·a_1_0·a_1_2
       + c_2_512 + c_2_33·c_2_59 − c_2_39·c_2_53, an element of degree 24
  39. a_24_7 − c_2_511·a_1_1·a_1_2 − c_2_33·c_2_58·a_1_1·a_1_2 + c_2_39·c_2_52·a_1_1·a_1_2, an element of degree 24
  40. a_24_8c_2_511·a_1_1·a_1_2 − c_2_511·a_1_0·a_1_2 + c_2_33·c_2_58·a_1_1·a_1_2
       − c_2_33·c_2_58·a_1_0·a_1_2 − c_2_39·c_2_52·a_1_1·a_1_2
       + c_2_39·c_2_52·a_1_0·a_1_2, an element of degree 24
  41. a_25_4 − c_2_511·a_1_0·a_1_1·a_1_2 − c_2_33·c_2_58·a_1_0·a_1_1·a_1_2
       + c_2_39·c_2_52·a_1_0·a_1_1·a_1_2 − c_2_512·a_1_1 + c_2_512·a_1_0
       + c_2_4·c_2_511·a_1_2 − c_2_3·c_2_511·a_1_2 − c_2_33·c_2_59·a_1_1
       + c_2_33·c_2_59·a_1_0 + c_2_33·c_2_4·c_2_58·a_1_2 − c_2_34·c_2_58·a_1_2
       + c_2_39·c_2_53·a_1_1 − c_2_39·c_2_53·a_1_0 − c_2_39·c_2_4·c_2_52·a_1_2
       + c_2_310·c_2_52·a_1_2, an element of degree 25
  42. a_25_5c_2_511·a_1_0·a_1_1·a_1_2 + c_2_33·c_2_58·a_1_0·a_1_1·a_1_2
       − c_2_39·c_2_52·a_1_0·a_1_1·a_1_2 + c_2_512·a_1_2 − c_2_512·a_1_1 + c_2_512·a_1_0
       + c_2_4·c_2_511·a_1_2 − c_2_3·c_2_511·a_1_2 + c_2_33·c_2_59·a_1_2
       − c_2_33·c_2_59·a_1_1 + c_2_33·c_2_59·a_1_0 + c_2_33·c_2_4·c_2_58·a_1_2
       − c_2_34·c_2_58·a_1_2 − c_2_39·c_2_53·a_1_2 + c_2_39·c_2_53·a_1_1
       − c_2_39·c_2_53·a_1_0 − c_2_39·c_2_4·c_2_52·a_1_2 + c_2_310·c_2_52·a_1_2, an element of degree 25
  43. a_27_8c_2_513·a_1_2 + c_2_3·c_2_512·a_1_2 + c_2_34·c_2_59·a_1_2 − c_2_36·c_2_57·a_1_2
       − c_2_39·c_2_54·a_1_2 − c_2_310·c_2_53·a_1_2 + c_2_312·c_2_5·a_1_2, an element of degree 27
  44. a_27_9c_2_513·a_1_2 + c_2_3·c_2_512·a_1_2 + c_2_34·c_2_59·a_1_2 − c_2_36·c_2_57·a_1_2
       − c_2_39·c_2_54·a_1_2 − c_2_310·c_2_53·a_1_2 + c_2_312·c_2_5·a_1_2, an element of degree 27
  45. a_28_70, an element of degree 28
  46. a_28_80, an element of degree 28
  47. a_28_90, an element of degree 28
  48. a_28_10 − c_2_513·a_1_0·a_1_2 − c_2_33·c_2_510·a_1_0·a_1_2 + c_2_39·c_2_54·a_1_0·a_1_2
       − c_2_514 − c_2_3·c_2_513 − c_2_34·c_2_510 + c_2_36·c_2_58 + c_2_39·c_2_55
       + c_2_310·c_2_54 − c_2_312·c_2_52, an element of degree 28
  49. a_29_6c_2_514·a_1_2 + c_2_3·c_2_513·a_1_2 + c_2_34·c_2_510·a_1_2 − c_2_36·c_2_58·a_1_2
       − c_2_39·c_2_55·a_1_2 − c_2_310·c_2_54·a_1_2 + c_2_312·c_2_52·a_1_2, an element of degree 29
  50. a_29_70, an element of degree 29
  51. b_30_4 − c_2_514·a_1_0·a_1_2 + c_2_4·c_2_513·a_1_0·a_1_2 − c_2_43·c_2_511·a_1_0·a_1_2
       − c_2_33·c_2_511·a_1_0·a_1_2 + c_2_33·c_2_4·c_2_510·a_1_0·a_1_2
       − c_2_33·c_2_43·c_2_58·a_1_0·a_1_2 + c_2_39·c_2_55·a_1_0·a_1_2
       − c_2_39·c_2_4·c_2_54·a_1_0·a_1_2 + c_2_39·c_2_43·c_2_52·a_1_0·a_1_2 − c_2_515
       + c_2_4·c_2_514 − c_2_43·c_2_512 − c_2_3·c_2_514 + c_2_3·c_2_4·c_2_513
       − c_2_3·c_2_43·c_2_511 − c_2_34·c_2_511 + c_2_34·c_2_4·c_2_510
       − c_2_34·c_2_43·c_2_58 + c_2_36·c_2_59 − c_2_36·c_2_4·c_2_58
       + c_2_36·c_2_43·c_2_56 + c_2_39·c_2_56 − c_2_39·c_2_4·c_2_55
       + c_2_39·c_2_43·c_2_53 + c_2_310·c_2_55 − c_2_310·c_2_4·c_2_54
       + c_2_310·c_2_43·c_2_52 − c_2_312·c_2_53 + c_2_312·c_2_4·c_2_52
       − c_2_312·c_2_43, an element of degree 30
  52. b_30_50, an element of degree 30
  53. a_34_6c_2_516·a_1_1·a_1_2 + c_2_516·a_1_0·a_1_2 + c_2_3·c_2_515·a_1_1·a_1_2
       + c_2_3·c_2_515·a_1_0·a_1_2 + c_2_34·c_2_512·a_1_1·a_1_2
       + c_2_34·c_2_512·a_1_0·a_1_2 − c_2_36·c_2_510·a_1_1·a_1_2
       − c_2_36·c_2_510·a_1_0·a_1_2 − c_2_39·c_2_57·a_1_1·a_1_2
       − c_2_39·c_2_57·a_1_0·a_1_2 − c_2_310·c_2_56·a_1_1·a_1_2
       − c_2_310·c_2_56·a_1_0·a_1_2 + c_2_312·c_2_54·a_1_1·a_1_2
       + c_2_312·c_2_54·a_1_0·a_1_2, an element of degree 34
  54. a_34_70, an element of degree 34
  55. a_35_4c_2_516·a_1_0·a_1_1·a_1_2 + c_2_3·c_2_515·a_1_0·a_1_1·a_1_2
       + c_2_34·c_2_512·a_1_0·a_1_1·a_1_2 − c_2_36·c_2_510·a_1_0·a_1_1·a_1_2
       − c_2_39·c_2_57·a_1_0·a_1_1·a_1_2 − c_2_310·c_2_56·a_1_0·a_1_1·a_1_2
       + c_2_312·c_2_54·a_1_0·a_1_1·a_1_2 + c_2_517·a_1_2 + c_2_517·a_1_1 + c_2_517·a_1_0
       − c_2_4·c_2_516·a_1_2 + c_2_3·c_2_516·a_1_2 − c_2_3·c_2_516·a_1_1
       − c_2_3·c_2_516·a_1_0 + c_2_3·c_2_4·c_2_515·a_1_2 − c_2_32·c_2_515·a_1_2
       + c_2_32·c_2_515·a_1_1 + c_2_32·c_2_515·a_1_0 − c_2_32·c_2_4·c_2_514·a_1_2
       + c_2_33·c_2_514·a_1_2 − c_2_33·c_2_514·a_1_1 − c_2_33·c_2_514·a_1_0
       + c_2_33·c_2_4·c_2_513·a_1_2 + c_2_34·c_2_513·a_1_2 + c_2_35·c_2_512·a_1_2
       + c_2_35·c_2_512·a_1_1 + c_2_35·c_2_512·a_1_0 − c_2_35·c_2_4·c_2_511·a_1_2
       + c_2_36·c_2_511·a_1_2 − c_2_36·c_2_511·a_1_1 − c_2_36·c_2_511·a_1_0
       + c_2_36·c_2_4·c_2_510·a_1_2 − c_2_37·c_2_510·a_1_2 + c_2_37·c_2_510·a_1_1
       + c_2_37·c_2_510·a_1_0 − c_2_37·c_2_4·c_2_59·a_1_2 − c_2_38·c_2_59·a_1_2
       + c_2_310·c_2_57·a_1_2 + c_2_310·c_2_57·a_1_1 + c_2_310·c_2_57·a_1_0
       − c_2_310·c_2_4·c_2_56·a_1_2 + c_2_311·c_2_56·a_1_2 − c_2_311·c_2_56·a_1_1
       − c_2_311·c_2_56·a_1_0 + c_2_311·c_2_4·c_2_55·a_1_2 − c_2_312·c_2_55·a_1_1
       − c_2_312·c_2_55·a_1_0 + c_2_312·c_2_4·c_2_54·a_1_2 − c_2_313·c_2_54·a_1_1
       − c_2_313·c_2_54·a_1_0 + c_2_313·c_2_4·c_2_53·a_1_2 + c_2_314·c_2_53·a_1_2
       − c_2_315·c_2_52·a_1_2 − c_2_315·c_2_52·a_1_1 − c_2_315·c_2_52·a_1_0
       + c_2_315·c_2_4·c_2_5·a_1_2 + c_2_316·c_2_5·a_1_2, an element of degree 35
  56. a_35_5c_2_517·a_1_2 − c_2_517·a_1_0 + c_2_3·c_2_516·a_1_0 − c_2_32·c_2_515·a_1_0
       + c_2_33·c_2_514·a_1_0 − c_2_34·c_2_513·a_1_2 + c_2_35·c_2_512·a_1_2
       − c_2_35·c_2_512·a_1_0 + c_2_36·c_2_511·a_1_0 − c_2_37·c_2_510·a_1_0
       + c_2_38·c_2_59·a_1_2 + c_2_310·c_2_57·a_1_2 − c_2_310·c_2_57·a_1_0
       + c_2_311·c_2_56·a_1_0 + c_2_312·c_2_55·a_1_2 + c_2_312·c_2_55·a_1_0
       + c_2_313·c_2_54·a_1_2 + c_2_313·c_2_54·a_1_0 − c_2_314·c_2_53·a_1_2
       − c_2_315·c_2_52·a_1_2 + c_2_315·c_2_52·a_1_0 − c_2_316·c_2_5·a_1_2, an element of degree 35
  57. a_35_70, an element of degree 35
  58. a_35_80, an element of degree 35
  59. c_36_5c_2_517·a_1_1·a_1_2 − c_2_517·a_1_0·a_1_2 + c_2_4·c_2_516·a_1_0·a_1_2
       − c_2_43·c_2_514·a_1_0·a_1_2 − c_2_3·c_2_516·a_1_1·a_1_2
       − c_2_3·c_2_516·a_1_0·a_1_2 + c_2_3·c_2_4·c_2_515·a_1_0·a_1_2
       − c_2_3·c_2_43·c_2_513·a_1_0·a_1_2 + c_2_32·c_2_515·a_1_1·a_1_2
       − c_2_33·c_2_514·a_1_1·a_1_2 − c_2_34·c_2_513·a_1_0·a_1_2
       + c_2_34·c_2_4·c_2_512·a_1_0·a_1_2 − c_2_34·c_2_43·c_2_510·a_1_0·a_1_2
       + c_2_35·c_2_512·a_1_1·a_1_2 − c_2_36·c_2_511·a_1_1·a_1_2
       + c_2_36·c_2_511·a_1_0·a_1_2 − c_2_36·c_2_4·c_2_510·a_1_0·a_1_2
       + c_2_36·c_2_43·c_2_58·a_1_0·a_1_2 + c_2_37·c_2_510·a_1_1·a_1_2
       + c_2_39·c_2_58·a_1_0·a_1_2 − c_2_39·c_2_4·c_2_57·a_1_0·a_1_2
       + c_2_39·c_2_43·c_2_55·a_1_0·a_1_2 + c_2_310·c_2_57·a_1_1·a_1_2
       + c_2_310·c_2_57·a_1_0·a_1_2 − c_2_310·c_2_4·c_2_56·a_1_0·a_1_2
       + c_2_310·c_2_43·c_2_54·a_1_0·a_1_2 − c_2_311·c_2_56·a_1_1·a_1_2
       − c_2_312·c_2_55·a_1_1·a_1_2 − c_2_312·c_2_55·a_1_0·a_1_2
       + c_2_312·c_2_4·c_2_54·a_1_0·a_1_2 − c_2_312·c_2_43·c_2_52·a_1_0·a_1_2
       − c_2_313·c_2_54·a_1_1·a_1_2 − c_2_315·c_2_52·a_1_1·a_1_2 + c_2_518
       − c_2_4·c_2_517 + c_2_43·c_2_515 − c_2_3·c_2_517 + c_2_3·c_2_4·c_2_516
       − c_2_3·c_2_43·c_2_514 + c_2_32·c_2_516 − c_2_32·c_2_4·c_2_515
       + c_2_32·c_2_43·c_2_513 − c_2_33·c_2_515 + c_2_33·c_2_4·c_2_514
       − c_2_33·c_2_43·c_2_512 + c_2_35·c_2_513 − c_2_35·c_2_4·c_2_512
       + c_2_35·c_2_43·c_2_510 − c_2_36·c_2_512 + c_2_36·c_2_4·c_2_511
       − c_2_36·c_2_43·c_2_59 + c_2_37·c_2_511 − c_2_37·c_2_4·c_2_510
       + c_2_37·c_2_43·c_2_58 + c_2_310·c_2_58 − c_2_310·c_2_4·c_2_57
       + c_2_310·c_2_43·c_2_55 − c_2_311·c_2_57 + c_2_311·c_2_4·c_2_56
       − c_2_311·c_2_43·c_2_54 − c_2_312·c_2_56 + c_2_312·c_2_4·c_2_55
       − c_2_312·c_2_43·c_2_53 − c_2_313·c_2_55 + c_2_313·c_2_4·c_2_54
       − c_2_313·c_2_43·c_2_52 − c_2_315·c_2_53 + c_2_315·c_2_4·c_2_52
       − c_2_315·c_2_43, an element of degree 36
  60. c_36_11 − c_2_517·a_1_1·a_1_2 − c_2_517·a_1_0·a_1_2 + c_2_3·c_2_516·a_1_1·a_1_2
       − c_2_3·c_2_516·a_1_0·a_1_2 − c_2_32·c_2_515·a_1_1·a_1_2
       + c_2_33·c_2_514·a_1_1·a_1_2 − c_2_34·c_2_513·a_1_0·a_1_2
       − c_2_35·c_2_512·a_1_1·a_1_2 + c_2_36·c_2_511·a_1_1·a_1_2
       + c_2_36·c_2_511·a_1_0·a_1_2 − c_2_37·c_2_510·a_1_1·a_1_2
       + c_2_39·c_2_58·a_1_0·a_1_2 − c_2_310·c_2_57·a_1_1·a_1_2
       + c_2_310·c_2_57·a_1_0·a_1_2 + c_2_311·c_2_56·a_1_1·a_1_2
       + c_2_312·c_2_55·a_1_1·a_1_2 − c_2_312·c_2_55·a_1_0·a_1_2
       + c_2_313·c_2_54·a_1_1·a_1_2 + c_2_315·c_2_52·a_1_1·a_1_2 − c_2_518
       − c_2_3·c_2_517 + c_2_32·c_2_516 + c_2_33·c_2_515 + c_2_35·c_2_513
       + c_2_37·c_2_511 + c_2_39·c_2_59 + c_2_310·c_2_58 − c_2_311·c_2_57
       − c_2_313·c_2_55 − c_2_315·c_2_53 + c_2_318, an element of degree 36
  61. a_39_18c_2_519·a_1_2 − c_2_33·c_2_516·a_1_2 + c_2_36·c_2_513·a_1_2
       + c_2_39·c_2_510·a_1_2 + c_2_312·c_2_57·a_1_2 + c_2_318·c_2_5·a_1_2, an element of degree 39
  62. a_39_190, an element of degree 39
  63. a_40_150, an element of degree 40
  64. a_40_16 − c_2_520 + c_2_33·c_2_517 − c_2_36·c_2_514 − c_2_39·c_2_511
       − c_2_312·c_2_58 − c_2_318·c_2_52, an element of degree 40
  65. a_47_140, an element of degree 47
  66. a_47_150, an element of degree 47
  67. c_48_13 − c_2_523·a_1_1·a_1_2 − c_2_523·a_1_0·a_1_2 + c_2_4·c_2_522·a_1_0·a_1_2
       − c_2_43·c_2_520·a_1_0·a_1_2 − c_2_3·c_2_522·a_1_1·a_1_2
       − c_2_3·c_2_522·a_1_0·a_1_2 − c_2_33·c_2_520·a_1_1·a_1_2
       − c_2_33·c_2_520·a_1_0·a_1_2 − c_2_33·c_2_4·c_2_519·a_1_0·a_1_2
       + c_2_33·c_2_43·c_2_517·a_1_0·a_1_2 + c_2_34·c_2_519·a_1_1·a_1_2
       + c_2_34·c_2_519·a_1_0·a_1_2 + c_2_36·c_2_517·a_1_1·a_1_2
       + c_2_36·c_2_517·a_1_0·a_1_2 + c_2_36·c_2_4·c_2_516·a_1_0·a_1_2
       − c_2_36·c_2_43·c_2_514·a_1_0·a_1_2 − c_2_37·c_2_516·a_1_1·a_1_2
       − c_2_37·c_2_516·a_1_0·a_1_2 + c_2_39·c_2_4·c_2_513·a_1_0·a_1_2
       − c_2_39·c_2_43·c_2_511·a_1_0·a_1_2 − c_2_310·c_2_513·a_1_1·a_1_2
       − c_2_310·c_2_513·a_1_0·a_1_2 + c_2_312·c_2_4·c_2_510·a_1_0·a_1_2
       − c_2_312·c_2_43·c_2_58·a_1_0·a_1_2 − c_2_313·c_2_510·a_1_1·a_1_2
       − c_2_313·c_2_510·a_1_0·a_1_2 + c_2_315·c_2_58·a_1_1·a_1_2
       + c_2_315·c_2_58·a_1_0·a_1_2 − c_2_318·c_2_55·a_1_1·a_1_2
       − c_2_318·c_2_55·a_1_0·a_1_2 + c_2_318·c_2_4·c_2_54·a_1_0·a_1_2
       − c_2_318·c_2_43·c_2_52·a_1_0·a_1_2 − c_2_319·c_2_54·a_1_1·a_1_2
       − c_2_319·c_2_54·a_1_0·a_1_2 + c_2_321·c_2_52·a_1_1·a_1_2
       + c_2_321·c_2_52·a_1_0·a_1_2 + c_2_4·c_2_523 − c_2_43·c_2_521
       + c_2_3·c_2_4·c_2_522 − c_2_3·c_2_43·c_2_520 + c_2_33·c_2_4·c_2_520
       − c_2_33·c_2_43·c_2_518 − c_2_34·c_2_4·c_2_519 + c_2_34·c_2_43·c_2_517
       − c_2_36·c_2_4·c_2_517 + c_2_36·c_2_43·c_2_515 + c_2_37·c_2_4·c_2_516
       − c_2_37·c_2_43·c_2_514 + c_2_310·c_2_4·c_2_513 − c_2_310·c_2_43·c_2_511
       + c_2_313·c_2_4·c_2_510 − c_2_313·c_2_43·c_2_58 − c_2_315·c_2_4·c_2_58
       + c_2_315·c_2_43·c_2_56 + c_2_318·c_2_4·c_2_55 − c_2_318·c_2_43·c_2_53
       + c_2_319·c_2_4·c_2_54 − c_2_319·c_2_43·c_2_52 − c_2_321·c_2_4·c_2_52
       + c_2_321·c_2_43, an element of degree 48
  68. c_48_18 − c_2_523·a_1_1·a_1_2 + c_2_523·a_1_0·a_1_2 − c_2_3·c_2_522·a_1_1·a_1_2
       + c_2_3·c_2_522·a_1_0·a_1_2 − c_2_33·c_2_520·a_1_1·a_1_2
       + c_2_33·c_2_520·a_1_0·a_1_2 + c_2_34·c_2_519·a_1_1·a_1_2
       − c_2_34·c_2_519·a_1_0·a_1_2 + c_2_36·c_2_517·a_1_1·a_1_2
       − c_2_36·c_2_517·a_1_0·a_1_2 − c_2_37·c_2_516·a_1_1·a_1_2
       + c_2_37·c_2_516·a_1_0·a_1_2 − c_2_310·c_2_513·a_1_1·a_1_2
       + c_2_310·c_2_513·a_1_0·a_1_2 − c_2_313·c_2_510·a_1_1·a_1_2
       + c_2_313·c_2_510·a_1_0·a_1_2 + c_2_315·c_2_58·a_1_1·a_1_2
       − c_2_315·c_2_58·a_1_0·a_1_2 − c_2_318·c_2_55·a_1_1·a_1_2
       + c_2_318·c_2_55·a_1_0·a_1_2 − c_2_319·c_2_54·a_1_1·a_1_2
       + c_2_319·c_2_54·a_1_0·a_1_2 + c_2_321·c_2_52·a_1_1·a_1_2
       − c_2_321·c_2_52·a_1_0·a_1_2, an element of degree 48


About the group Ring generators Ring relations Completion information Restriction maps




Simon King
Department of Mathematics and Computer Science
Friedrich-Schiller-Universität Jena
07737 Jena
GERMANY
E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46161
Fax: +49 (0)3641 9-46162
Office: Zi. 3529, Ernst-Abbe-Platz 2



Last change: 11.05.2013