Mod-2-Cohomology of MathieuGroup(12), a group of order 95040

About the group Ring generators Ring relations Completion information Restriction maps


General information on the group

  • MathieuGroup(12) is a group of order 95040.
  • The group order factors as 26 · 33 · 5 · 11.
  • The group is defined by Group([(1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6),(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)]).
  • It is non-abelian.
  • It has 2-Rank 3.
  • The centre of a Sylow 2-subgroup has rank 1.
  • Its Sylow 2-subgroup has 5 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

The computation was based on 4 stability conditions for H*(SmallGroup(192,1494); GF(2)).

General information

  • The cohomology ring is of dimension 3 and depth 3.
  • The depth exceeds the Duflot bound, which is 1.
  • The Poincaré series is
    ( − 1)·((1  −  t  +  t2)2)

    ( − 1  +  t)3 · (1  +  t2) · (1  +  t  +  t2)
  • The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].

About the group Ring generators Ring relations Completion information Restriction maps

Ring generators

The cohomology ring has 8 minimal generators of maximal degree 7:

  1. b_2_0, an element of degree 2
  2. b_3_2, an element of degree 3
  3. b_3_1, an element of degree 3
  4. b_3_0, an element of degree 3
  5. c_4_0, a Duflot element of degree 4
  6. b_5_0, an element of degree 5
  7. b_6_3, an element of degree 6
  8. b_7_1, an element of degree 7

About the group Ring generators Ring relations Completion information Restriction maps

Ring relations

There are 14 minimal relations of maximal degree 14:

  1. b_2_0·b_3_2
  2. b_3_0·b_3_2
  3. b_3_12 + b_3_0·b_3_1 + b_3_02 + b_2_03
  4. b_3_1·b_3_2
  5. b_2_0·b_5_0
  6. b_3_0·b_5_0
  7. b_3_1·b_5_0
  8. b_6_3·b_3_0
  9. b_6_3·b_3_1 + b_2_0·b_7_1
  10. b_3_0·b_7_1
  11. b_3_1·b_7_1 + b_2_02·b_6_3
  12. b_5_02 + b_3_2·b_7_1
  13. b_5_0·b_7_1 + b_6_3·b_3_22 + c_4_0·b_3_2·b_5_0
  14. b_7_12 + b_6_3·b_3_2·b_5_0 + b_2_0·b_6_32 + c_4_0·b_3_2·b_7_1


About the group Ring generators Ring relations Completion information Restriction maps

Data used for the Hilbert-Poincaré test

  • We proved completion in degree 14 using the Hilbert-Poincaré criterion.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. b_2_02 + c_4_0, an element of degree 4
    2. b_3_22 + b_3_02 + b_6_3 + b_2_0·c_4_0, an element of degree 6
    3. b_3_02 + b_6_3, an element of degree 6
  • A Duflot regular sequence is given by c_4_0.
  • The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 13].
  • Modifying the above filter regular HSOP, we obtained the following parameters:
    1. b_2_02 + c_4_0, an element of degree 4
    2. b_3_2 + b_3_1, an element of degree 3
    3. b_3_02 + b_6_3, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps

Restriction maps

Expressing the generators as elements of H*(SmallGroup(192,1494); GF(2))

  1. b_2_0b_2_0
  2. b_3_2b_3_0
  3. b_3_1b_3_1
  4. b_3_0b_3_2
  5. c_4_0b_1_0·b_3_0 + b_1_04 + b_2_22 + c_4_6
  6. b_5_0b_2_2·b_3_0 + c_4_6·b_1_0
  7. b_6_3b_2_22·b_1_02 + b_2_2·c_4_6
  8. b_7_1b_2_22·b_3_0 + c_4_6·b_3_4 + c_4_6·b_3_0 + c_4_6·b_1_03 + b_2_2·c_4_6·b_1_0

Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1

  1. b_2_00, an element of degree 2
  2. b_3_20, an element of degree 3
  3. b_3_10, an element of degree 3
  4. b_3_00, an element of degree 3
  5. c_4_0c_1_04, an element of degree 4
  6. b_5_00, an element of degree 5
  7. b_6_30, an element of degree 6
  8. b_7_10, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_2_00, an element of degree 2
  2. b_3_2c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
  3. b_3_10, an element of degree 3
  4. b_3_00, an element of degree 3
  5. c_4_0c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
       + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
  6. b_5_0c_1_0·c_1_14 + c_1_04·c_1_1, an element of degree 5
  7. b_6_3c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2
       + c_1_02·c_1_24 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
  8. b_7_1c_1_0·c_1_16 + c_1_02·c_1_15 + c_1_03·c_1_14 + c_1_04·c_1_13
       + c_1_05·c_1_12 + c_1_06·c_1_1, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_2_0c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
  2. b_3_20, an element of degree 3
  3. b_3_1c_1_23 + c_1_12·c_1_2 + c_1_13, an element of degree 3
  4. b_3_0c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  5. c_4_0c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
       + c_1_02·c_1_12 + c_1_04, an element of degree 4
  6. b_5_00, an element of degree 5
  7. b_6_30, an element of degree 6
  8. b_7_10, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_2_0c_1_12, an element of degree 2
  2. b_3_20, an element of degree 3
  3. b_3_1c_1_13, an element of degree 3
  4. b_3_00, an element of degree 3
  5. c_4_0c_1_24 + c_1_12·c_1_22 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
       + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
  6. b_5_00, an element of degree 5
  7. b_6_3c_1_0·c_1_1·c_1_24 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_24
       + c_1_02·c_1_13·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
  8. b_7_1c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_2_0c_1_12, an element of degree 2
  2. b_3_20, an element of degree 3
  3. b_3_1c_1_13, an element of degree 3
  4. b_3_00, an element of degree 3
  5. c_4_0c_1_24 + c_1_12·c_1_22 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
       + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
  6. b_5_00, an element of degree 5
  7. b_6_3c_1_0·c_1_1·c_1_24 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_24
       + c_1_02·c_1_13·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
  8. b_7_1c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_2_00, an element of degree 2
  2. b_3_2c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  3. b_3_10, an element of degree 3
  4. b_3_00, an element of degree 3
  5. c_4_0c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
       + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
  6. b_5_0c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  7. b_6_3c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_24
       + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2
       + c_1_04·c_1_12, an element of degree 6
  8. b_7_1c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23
       + c_1_15·c_1_22 + c_1_16·c_1_2, an element of degree 7


About the group Ring generators Ring relations Completion information Restriction maps




Simon King
Department of Mathematics and Computer Science
Friedrich-Schiller-Universität Jena
07737 Jena
GERMANY
E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46161
Fax: +49 (0)3641 9-46162
Office: Zi. 3529, Ernst-Abbe-Platz 2



Last change: 14.12.2010