Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of MathieuGroup(12), a group of order 95040
General information on the group
- MathieuGroup(12) is a group of order 95040.
- The group order factors as 26 · 33 · 5 · 11.
- The group is defined by Group([(1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6),(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)]).
- It is non-abelian.
- It has 2-Rank 3.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 5 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
The computation was based on 4 stability conditions for H*(SmallGroup(192,1494); GF(2)).
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·((1 − t + t2)2) |
| ( − 1 + t)3 · (1 + t2) · (1 + t + t2) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 7:
- b_2_0, an element of degree 2
- b_3_2, an element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- c_4_0, a Duflot element of degree 4
- b_5_0, an element of degree 5
- b_6_3, an element of degree 6
- b_7_1, an element of degree 7
Ring relations
There are 14 minimal relations of maximal degree 14:
- b_2_0·b_3_2
- b_3_0·b_3_2
- b_3_12 + b_3_0·b_3_1 + b_3_02 + b_2_03
- b_3_1·b_3_2
- b_2_0·b_5_0
- b_3_0·b_5_0
- b_3_1·b_5_0
- b_6_3·b_3_0
- b_6_3·b_3_1 + b_2_0·b_7_1
- b_3_0·b_7_1
- b_3_1·b_7_1 + b_2_02·b_6_3
- b_5_02 + b_3_2·b_7_1
- b_5_0·b_7_1 + b_6_3·b_3_22 + c_4_0·b_3_2·b_5_0
- b_7_12 + b_6_3·b_3_2·b_5_0 + b_2_0·b_6_32 + c_4_0·b_3_2·b_7_1
Data used for the Hilbert-Poincaré test
- We proved completion in degree 14 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- b_2_02 + c_4_0, an element of degree 4
- b_3_22 + b_3_02 + b_6_3 + b_2_0·c_4_0, an element of degree 6
- b_3_02 + b_6_3, an element of degree 6
- A Duflot regular sequence is given by c_4_0.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 13].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_2_02 + c_4_0, an element of degree 4
- b_3_2 + b_3_1, an element of degree 3
- b_3_02 + b_6_3, an element of degree 6
Restriction maps
- b_2_0 → b_2_0
- b_3_2 → b_3_0
- b_3_1 → b_3_1
- b_3_0 → b_3_2
- c_4_0 → b_1_0·b_3_0 + b_1_04 + b_2_22 + c_4_6
- b_5_0 → b_2_2·b_3_0 + c_4_6·b_1_0
- b_6_3 → b_2_22·b_1_02 + b_2_2·c_4_6
- b_7_1 → b_2_22·b_3_0 + c_4_6·b_3_4 + c_4_6·b_3_0 + c_4_6·b_1_03 + b_2_2·c_4_6·b_1_0
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_2_0 → 0, an element of degree 2
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_0 → c_1_04, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_6_3 → 0, an element of degree 6
- b_7_1 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_2_0 → 0, an element of degree 2
- b_3_2 → c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
- b_5_0 → c_1_0·c_1_14 + c_1_04·c_1_1, an element of degree 5
- b_6_3 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2
+ c_1_02·c_1_24 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- b_7_1 → c_1_0·c_1_16 + c_1_02·c_1_15 + c_1_03·c_1_14 + c_1_04·c_1_13
+ c_1_05·c_1_12 + c_1_06·c_1_1, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_2_0 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_23 + c_1_12·c_1_2 + c_1_13, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- c_4_0 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_6_3 → 0, an element of degree 6
- b_7_1 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_2_0 → c_1_12, an element of degree 2
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_6_3 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_24
+ c_1_02·c_1_13·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- b_7_1 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_2_0 → c_1_12, an element of degree 2
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_6_3 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_24
+ c_1_02·c_1_13·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- b_7_1 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_2_0 → 0, an element of degree 2
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
- b_5_0 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_6_3 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_24
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_7_1 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23
+ c_1_15·c_1_22 + c_1_16·c_1_2, an element of degree 7
|