Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of MathieuGroup(12), a group of order 95040
General information on the group
- MathieuGroup(12) is a group of order 95040.
- The group order factors as 26 · 33 · 5 · 11.
- The group is defined by Group([(1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6),(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)]).
- It is non-abelian.
- It has 3-Rank 2.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
The computation was based on 3 stability conditions for H*(SmallGroup(108,17); GF(3)).
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 − 2·t + 3·t2 − 3·t3 + 5·t4 − 6·t5 + 7·t6 − 7·t7 + 9·t8 − 9·t9 + 12·t10 − 11·t11 + 12·t12 − 11·t13 + 12·t14 − 9·t15 + 9·t16 − 7·t17 + 7·t18 − 6·t19 + 5·t20 − 3·t21 + 3·t22 − 2·t23 + t24 |
| ( − 1 + t)2 · (1 − t + t2) · (1 + t + t2) · (1 + t2)2 · (1 − t2 + t4) · (1 + t4) · (1 + t8) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 16:
- a_3_0, a nilpotent element of degree 3
- a_4_1, a nilpotent element of degree 4
- b_4_0, an element of degree 4
- a_5_0, a nilpotent element of degree 5
- a_9_0, a nilpotent element of degree 9
- a_10_2, a nilpotent element of degree 10
- a_10_1, a nilpotent element of degree 10
- b_10_0, an element of degree 10
- a_11_2, a nilpotent element of degree 11
- a_11_1, a nilpotent element of degree 11
- a_11_0, a nilpotent element of degree 11
- c_12_0, a Duflot element of degree 12
- a_15_2, a nilpotent element of degree 15
- a_15_0, a nilpotent element of degree 15
- b_16_3, an element of degree 16
- b_16_1, an element of degree 16
Ring relations
There are 8 "obvious" relations:
a_3_02, a_5_02, a_9_02, a_11_02, a_11_12, a_11_22, a_15_02, a_15_22
Apart from that, there are 96 minimal relations of maximal degree 32:
- a_4_1·a_3_0
- a_4_12
- a_4_1·b_4_0 + a_3_0·a_5_0
- a_4_1·a_5_0
- a_3_0·a_9_0
- a_4_1·a_9_0
- a_10_1·a_3_0
- a_10_2·a_3_0
- b_10_0·a_3_0 + b_4_0·a_9_0
- a_4_1·a_10_1
- a_4_1·a_10_2
- a_3_0·a_11_0
- a_3_0·a_11_2
- a_5_0·a_9_0 − a_3_0·a_11_1
- a_4_1·b_10_0 + a_3_0·a_11_1
- b_4_0·a_10_1 + a_3_0·a_11_1
- b_4_0·a_10_2
- a_4_1·a_11_0
- a_4_1·a_11_1
- a_4_1·a_11_2
- a_10_1·a_5_0
- a_10_2·a_5_0
- b_4_0·a_11_0
- b_4_0·a_11_2 + b_4_03·a_3_0
- b_10_0·a_5_0 − b_4_0·a_11_1
- a_5_0·a_11_0
- a_5_0·a_11_1
- a_5_0·a_11_2 − b_4_02·a_3_0·a_5_0
- a_3_0·a_15_0
- a_3_0·a_15_2
- a_4_1·a_15_0
- a_4_1·a_15_2
- a_10_1·a_9_0
- a_10_2·a_9_0
- b_4_0·a_15_0 − b_4_04·a_3_0 − b_4_0·c_12_0·a_3_0
- b_4_0·a_15_2 − b_4_04·a_3_0 − b_4_0·c_12_0·a_3_0
- b_10_0·a_9_0 − b_4_0·c_12_0·a_3_0
- b_16_1·a_3_0 − b_4_04·a_3_0 + b_4_0·c_12_0·a_3_0
- b_16_3·a_3_0 − b_4_0·c_12_0·a_3_0
- a_10_12
- a_10_1·a_10_2
- a_10_22
- a_5_0·a_15_0 + b_4_03·a_3_0·a_5_0 + c_12_0·a_3_0·a_5_0
- a_5_0·a_15_2 + b_4_03·a_3_0·a_5_0 + c_12_0·a_3_0·a_5_0
- a_9_0·a_11_0
- a_9_0·a_11_1 − c_12_0·a_3_0·a_5_0
- a_9_0·a_11_2
- a_4_1·b_16_1 + b_4_03·a_3_0·a_5_0 − c_12_0·a_3_0·a_5_0
- a_4_1·b_16_3 + c_12_0·a_3_0·a_5_0
- a_10_1·b_10_0 − c_12_0·a_3_0·a_5_0
- a_10_2·b_10_0
- b_4_0·b_16_1 − b_4_05 + b_4_02·c_12_0
- b_4_0·b_16_3 − b_4_02·c_12_0
- b_10_02 + b_4_02·c_12_0
- a_10_1·a_11_0
- a_10_1·a_11_1
- a_10_1·a_11_2
- a_10_2·a_11_0
- a_10_2·a_11_1
- a_10_2·a_11_2
- b_10_0·a_11_0
- b_10_0·a_11_1 + b_4_0·c_12_0·a_5_0
- b_10_0·a_11_2 − b_4_03·a_9_0
- b_16_1·a_5_0 − b_4_04·a_5_0 + b_4_0·c_12_0·a_5_0
- b_16_3·a_5_0 − b_4_0·c_12_0·a_5_0
- a_11_0·a_11_1
- a_11_0·a_11_2
- a_11_1·a_11_2 − b_4_02·a_3_0·a_11_1
- a_9_0·a_15_0
- a_9_0·a_15_2
- a_10_1·a_15_0
- a_10_1·a_15_2
- a_10_2·a_15_0
- a_10_2·a_15_2
- b_10_0·a_15_0 + b_4_04·a_9_0 + b_4_0·c_12_0·a_9_0
- b_10_0·a_15_2 + b_4_04·a_9_0 + b_4_0·c_12_0·a_9_0
- b_16_1·a_9_0 − b_4_04·a_9_0 + b_4_0·c_12_0·a_9_0
- b_16_3·a_9_0 − b_4_0·c_12_0·a_9_0
- a_11_0·a_15_2
- a_11_1·a_15_0 + a_11_0·a_15_0 + b_4_03·a_3_0·a_11_1 + c_12_0·a_3_0·a_11_1
- a_11_1·a_15_2 + b_4_03·a_3_0·a_11_1 + c_12_0·a_3_0·a_11_1
- a_11_2·a_15_2 − a_11_2·a_15_0 − a_11_0·a_15_0
- a_10_1·b_16_1 + b_4_03·a_3_0·a_11_1 − c_12_0·a_3_0·a_11_1
- a_10_1·b_16_3 + a_11_0·a_15_0 + c_12_0·a_3_0·a_11_1
- a_10_2·b_16_1 + a_11_2·a_15_0 + a_11_0·a_15_0
- a_10_2·b_16_3 + a_11_0·a_15_0
- b_10_0·b_16_1 − b_4_04·b_10_0 + b_4_0·b_10_0·c_12_0
- b_10_0·b_16_3 − b_4_0·b_10_0·c_12_0
- b_16_1·a_11_0
- b_16_1·a_11_1 − b_4_04·a_11_1 + b_4_0·c_12_0·a_11_1
- b_16_3·a_11_1 + b_16_3·a_11_0 − b_4_0·c_12_0·a_11_1
- b_16_3·a_11_2 + b_16_3·a_11_0 + b_4_03·c_12_0·a_3_0
- a_15_0·a_15_2
- b_16_1·a_15_2 − b_16_1·a_15_0
- b_16_3·a_15_2 − b_4_04·c_12_0·a_3_0 − b_4_0·c_12_02·a_3_0
- b_16_1·b_16_3 − b_4_05·c_12_0 + b_4_02·c_12_02
Data used for the Hilbert-Poincaré test
- We proved completion in degree 32 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_12_0, an element of degree 12
- b_16_3 + b_16_1, an element of degree 16
- A Duflot regular sequence is given by c_12_0.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 26].
Restriction maps
- a_3_0 → a_3_2 − a_3_1 − a_3_0
- a_4_1 → a_4_3
- b_4_0 → b_4_1 + b_4_0
- a_5_0 → a_5_0
- a_9_0 → a_9_1
- a_10_2 → a_10_0
- a_10_1 → a_10_2
- b_10_0 → b_10_1
- a_11_2 → a_11_1 + b_4_02·a_3_0
- a_11_1 → a_11_4
- a_11_0 → a_11_5
- c_12_0 → b_4_23 − c_12_4
- a_15_2 → b_4_0·a_11_1 − b_4_03·a_3_0 + c_12_4·a_3_0
- a_15_0 → b_4_2·a_11_1 − b_4_03·a_3_0 − c_12_4·a_3_1 + c_12_4·a_3_0
- b_16_3 → b_4_2·c_12_4 − b_4_0·c_12_4
- b_16_1 → b_4_04 + b_4_0·c_12_4
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_0 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_9_0 → 0, an element of degree 9
- a_10_2 → 0, an element of degree 10
- a_10_1 → 0, an element of degree 10
- b_10_0 → 0, an element of degree 10
- a_11_2 → 0, an element of degree 11
- a_11_1 → 0, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_0 → − c_2_06, an element of degree 12
- a_15_2 → 0, an element of degree 15
- a_15_0 → 0, an element of degree 15
- b_16_3 → 0, an element of degree 16
- b_16_1 → 0, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_9_0 → 0, an element of degree 9
- a_10_2 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_10_1 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- b_10_0 → 0, an element of degree 10
- a_11_2 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_1 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_0 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_0 → − c_2_26 − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
- a_15_2 → 0, an element of degree 15
- a_15_0 → c_2_1·c_2_26·a_1_0 − c_2_13·c_2_24·a_1_0 − c_2_14·c_2_23·a_1_1
+ c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_3 → − c_2_12·c_2_26 − c_2_14·c_2_24 − c_2_16·c_2_22, an element of degree 16
- b_16_1 → 0, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → − c_2_2·a_1_1, an element of degree 3
- a_4_1 → c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_0 → c_2_1·c_2_23·a_1_1 − c_2_13·c_2_2·a_1_1, an element of degree 9
- a_10_2 → 0, an element of degree 10
- a_10_1 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- b_10_0 → c_2_1·c_2_24 − c_2_13·c_2_22, an element of degree 10
- a_11_2 → c_2_25·a_1_1, an element of degree 11
- a_11_1 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_0 → − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
- a_15_2 → − c_2_27·a_1_1 + c_2_12·c_2_25·a_1_1 + c_2_14·c_2_23·a_1_1 + c_2_16·c_2_2·a_1_1, an element of degree 15
- a_15_0 → − c_2_27·a_1_1 + c_2_12·c_2_25·a_1_1 + c_2_14·c_2_23·a_1_1 + c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_3 → − c_2_12·c_2_26 − c_2_14·c_2_24 − c_2_16·c_2_22, an element of degree 16
- b_16_1 → c_2_28 + c_2_12·c_2_26 + c_2_14·c_2_24 + c_2_16·c_2_22, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → − c_2_2·a_1_1, an element of degree 3
- a_4_1 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → c_2_22·a_1_0 − c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_0 → − c_2_1·c_2_23·a_1_1 + c_2_13·c_2_2·a_1_1, an element of degree 9
- a_10_2 → 0, an element of degree 10
- a_10_1 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- b_10_0 → − c_2_1·c_2_24 + c_2_13·c_2_22, an element of degree 10
- a_11_2 → c_2_25·a_1_1, an element of degree 11
- a_11_1 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_0 → − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
- a_15_2 → − c_2_27·a_1_1 + c_2_12·c_2_25·a_1_1 + c_2_14·c_2_23·a_1_1 + c_2_16·c_2_2·a_1_1, an element of degree 15
- a_15_0 → − c_2_27·a_1_1 + c_2_12·c_2_25·a_1_1 + c_2_14·c_2_23·a_1_1 + c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_3 → − c_2_12·c_2_26 − c_2_14·c_2_24 − c_2_16·c_2_22, an element of degree 16
- b_16_1 → c_2_28 + c_2_12·c_2_26 + c_2_14·c_2_24 + c_2_16·c_2_22, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_9_0 → 0, an element of degree 9
- a_10_2 → − c_2_1·c_2_23·a_1_0·a_1_1 + c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_10_1 → 0, an element of degree 10
- b_10_0 → 0, an element of degree 10
- a_11_2 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_1 → 0, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_0 → − c_2_26 − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
- a_15_2 → c_2_1·c_2_26·a_1_0 − c_2_13·c_2_24·a_1_0 − c_2_14·c_2_23·a_1_1
+ c_2_16·c_2_2·a_1_1, an element of degree 15
- a_15_0 → c_2_1·c_2_26·a_1_0 − c_2_13·c_2_24·a_1_0 − c_2_14·c_2_23·a_1_1
+ c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_3 → 0, an element of degree 16
- b_16_1 → c_2_12·c_2_26 + c_2_14·c_2_24 + c_2_16·c_2_22, an element of degree 16
|