Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of N_Co3(4A), a group of order 46080
General information on the group
- N_Co3(4A), the Normalizer in Co3 of a 4A-element, is a group of order 46080.
- The group order factors as 210 · 32 · 5.
- The group is defined by Group([(1,15,200,138)(2,91,235,226)(3,120,183,173)(4,133,121,201)(5,190,37,67)(6,231,209,230)(7,272,242,155)(8,170,176,64)(9,84,55,154)(10,188,13,208)(11,243,47,276)(12,46,261,82)(14,185)(16,36,19,206)(17,135,140,38)(18,259,156,26)(20,199,116,102)(22,179,25,105)(23,229,66,57)(24,51,210,255)(27,194,166,98)(28,45,58,78)(29,132,158,48)(30,251,86,205)(31,192)(32,106,207,174)(33,223,44,195)(34,254,103,219)(35,152,172,101)(39,171)(41,141,234,107)(42,252,202,96)(43,216,177,163)(49,147,108,149)(50,88,169,126)(53,125,193,79)(54,175)(56,165,265,139)(59,273,186,248)(60,65,80,184)(61,109,214,191)(62,204,225,257)(63,213,85,263)(68,110,97,100)(69,113,196,123)(70,253,130,83)(71,81,244,232)(72,256,260,112)(73,215)(74,180,267,233)(75,118,203,131)(76,228,262,157)(77,99,136,119)(87,144,218,189)(89,250,94,274)(90,239,160,143)(92,238,269,151)(95,164,198,266)(104,145,240,182)(111,236,129,148)(115,270)(117,142,246,146)(122,181,249,264)(124,237,168,212)(127,211)(137,153)(150,247,222,271)(197,224,217,220)(221,241)(268,275),(1,200)(2,235)(3,183)(4,121)(5,37)(6,209)(7,242)(8,176)(9,55)(10,13)(11,47)(12,261)(15,138)(16,19)(17,140)(18,156)(20,116)(22,25)(23,66)(24,210)(26,259)(27,166)(28,58)(29,158)(30,86)(32,207)(33,44)(34,103)(35,172)(36,206)(38,135)(41,234)(42,202)(43,177)(45,78)(46,82)(48,132)(49,108)(50,169)(51,255)(53,193)(56,265)(57,229)(59,186)(60,80)(61,214)(62,225)(63,85)(64,170)(65,184)(67,190)(68,97)(69,196)(70,130)(71,244)(72,260)(74,267)(75,203)(76,262)(77,136)(79,125)(81,232)(83,253)(84,154)(87,218)(88,126)(89,94)(90,160)(91,226)(92,269)(95,198)(96,252)(98,194)(99,119)(100,110)(101,152)(102,199)(104,240)(105,179)(106,174)(107,141)(109,191)(111,129)(112,256)(113,123)(117,246)(118,131)(120,173)(122,249)(124,168)(133,201)(139,165)(142,146)(143,239)(144,189)(145,182)(147,149)(148,236)(150,222)(151,238)(155,272)(157,228)(163,216)(164,266)(180,233)(181,264)(188,208)(195,223)(197,217)(204,257)(205,251)(212,237)(213,263)(219,254)(220,224)(230,231)(243,276)(247,271)(248,273)(250,274),(2,116)(3,216)(5,247)(6,196)(7,242)(8,253)(9,85)(10,78)(11,117)(12,48)(13,45)(14,221)(16,108)(17,33)(18,191)(19,49)(20,235)(22,204)(23,74)(24,42)(25,257)(26,214)(27,193)(28,188)(29,46)(30,122)(31,115)(32,197)(34,218)(35,68)(36,149)(37,271)(38,195)(39,275)(40,128)(41,198)(43,173)(44,140)(47,246)(50,81)(51,252)(52,162)(53,166)(54,175)(55,63)(56,72)(57,233)(58,208)(59,111)(60,99)(61,259)(62,105)(64,70)(65,136)(66,267)(67,150)(69,209)(71,126)(73,211)(75,89)(76,168)(77,184)(79,194)(80,119)(82,158)(83,176)(84,263)(86,249)(87,103)(88,244)(90,182)(91,102)(92,269)(94,203)(95,234)(96,255)(97,172)(98,125)(100,101)(104,239)(106,224)(107,164)(109,156)(110,152)(112,139)(113,230)(118,250)(120,177)(123,231)(124,262)(127,215)(129,186)(130,170)(131,274)(132,261)(134,161)(135,223)(137,153)(141,266)(142,243)(143,240)(144,219)(145,160)(146,276)(147,206)(148,248)(151,238)(154,213)(155,272)(157,237)(159,227)(163,183)(165,256)(167,178)(169,232)(171,268)(174,220)(179,225)(180,229)(181,251)(185,241)(187,245)(189,254)(190,222)(192,270)(199,226)(202,210)(205,264)(207,217)(212,228)(236,273)(260,265),(2,157,42)(3,163,242)(4,48,12)(5,195,99)(6,152,203)(7,183,216)(9,87,13)(10,55,218)(11,182,126)(14,127,192)(16,141,109)(17,222,65)(18,164,49)(19,107,191)(20,210,212)(22,264,220)(23,193,148)(24,237,116)(25,181,224)(26,95,149)(27,74,248)(28,254,213)(29,46,133)(30,225,32)(31,185,211)(33,136,190)(34,63,78)(35,118,230)(36,234,214)(37,223,119)(38,247,60)(39,153,268)(40,128,258)(41,61,206)(43,155,120)(44,77,67)(45,103,85)(47,145,88)(50,243,104)(51,168,102)(52,162,114)(53,236,66)(56,260,269)(57,125,129)(58,219,263)(59,194,180)(62,207,86)(68,113,250)(69,89,100)(71,90,117)(72,92,265)(73,241,115)(75,209,101)(76,252,91)(79,111,229)(80,135,271)(81,239,142)(82,201,158)(84,144,208)(93,134,161)(94,110,196)(96,226,262)(97,123,274)(98,233,186)(105,249,217)(106,251,257)(108,156,266)(112,151,165)(121,132,261)(122,197,179)(124,199,255)(131,231,172)(137,275,171)(139,256,238)(140,150,184)(143,146,232)(147,259,198)(154,189,188)(159,167,245)(160,246,244)(166,267,273)(169,276,240)(173,177,272)(174,205,204)(178,227,187)(202,235,228)(215,221,270),(2,41,78,61,249,237,64,86)(3,272,173,7,183,155,120,242)(4,158,68,75,238,56,152,113)(5,142,60,240)(6,46,231,261,209,82,230,12)(8,205,91,141,28,109,264,168)(9,98,225,228,130,179,210,186)(10,147,206,198,218,42,79,217)(11,44,77,244,90,17,222,88)(13,149,36,95,87,202,125,197)(14,192,215,115,185,31,73,270)(16,266,189,252,53,220,188,108)(18,106,263,23,74,148,219,199)(19,164,144,96,193,224,208,49)(20,26,32,85,57,233,129,103)(21,40,161,167,162,245,128,93)(22,51,273,154,166,204,76,253)(24,59,55,194,62,157,70,105)(25,255,248,84,27,257,262,83)(29,97,203,151,265,101,123,121)(30,235,234,45,214,122,212,170)(33,136,71,160,140,150,126,47)(34,116,259,207,63,229,180,111)(35,69,201,132,100,131,92,139)(37,146,80,104)(38,247,50,276,223,119,81,143)(39,137,54,275)(43,163,177,216)(48,110,118,269,165,172,196,133)(52,227,159,178,114,134,187,258)(58,191,181,124,176,251,226,107)(65,182,190,246)(66,267,236,254,102,156,174,213)(67,117,184,145)(72,94,256,274,260,89,112,250)(99,232,239,135,271,169,243,195)(127,211)(153,175,268,171),(2,105)(3,216)(4,201)(5,222)(6,75)(7,242)(8,176)(9,13)(10,55)(11,240)(12,158)(14,127)(15,138)(16,191)(17,195)(18,108)(19,109)(20,225)(22,226)(23,53)(24,86)(25,91)(26,149)(27,267)(28,263)(29,261)(30,210)(32,212)(33,38)(36,214)(37,150)(39,268)(40,161)(42,249)(43,120)(44,135)(45,85)(46,132)(47,104)(48,82)(49,156)(50,88)(51,251)(52,162)(56,256)(57,125)(58,213)(60,136)(61,206)(62,116)(63,78)(65,99)(66,193)(67,271)(69,94)(71,232)(72,165)(73,241)(74,166)(76,224)(77,80)(79,229)(81,244)(83,253)(84,188)(89,196)(90,146)(92,151)(93,258)(96,264)(98,233)(100,110)(101,152)(102,257)(106,168)(107,141)(112,265)(113,250)(117,143)(118,230)(119,184)(121,133)(122,202)(123,274)(124,174)(126,169)(128,134)(131,231)(139,260)(140,223)(142,160)(144,189)(145,243)(147,259)(148,236)(154,208)(157,217)(159,245)(163,183)(164,266)(171,275)(173,177)(179,235)(180,194)(181,252)(182,276)(185,211)(187,227)(190,247)(197,228)(199,204)(203,209)(205,255)(207,237)(215,221)(219,254)(220,262)(238,269)(239,246)(248,273),(1,2,49,155,156,105)(3,74,252,173,180,42)(4,61,225,151,199,19)(5,112,189,56,150,141)(6,12,10,239,136,207)(7,259,22,138,91,149)(8,217,63,248,45,228)(9,29,203,212,80,117)(11,196,129,89,240,70)(13,143,77,32,209,261)(14,73,153,241,127,54)(15,226,147,242,26,25)(16,121,214,62,238,102)(17,223,172,140,195,35)(18,179,200,235,108,272)(20,206,201,109,204,92)(23,193,169,57,79,88)(24,232,205,255,71,86)(27,163,122,98,43,264)(28,262,64,220,263,59)(30,210,81,251,51,244)(31,268,171,192,275,39)(33,101,135)(34,198)(36,133,191,257,269,116)(37,256,144,265,222,107)(38,44,152)(40,161,162,159,245,52)(41,190,260,87,139,247)(46,208,160,99,174,230)(47,69,111,94,104,130)(48,131,168,184,146,84)(50,229,125,126,66,53)(55,158,75,237,60,246)(58,76,170,224,213,186)(65,142,154,132,118,124)(67,72,218,165,271,234)(78,157,176,197,85,273)(82,188,90,119,106,231)(83,243,113,148,274,182)(93,258,114)(95,103)(96,120,233,202,183,267)(100,110)(115,270)(123,236,250,145,253,276)(128,187,167,227,134,178)(137,221,211,175,185,215)(164,254)(166,216,249,194,177,181)(219,266)]).
- It is non-abelian.
- It has 2-Rank 4.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 20 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 and 4, respectively.
Structure of the cohomology ring
The computation was based on 2 stability conditions for H*(N_Co3(Z_2(SylowSubgroup(Co3,2))); GF(2)).
General information
- The cohomology ring is of dimension 4 and depth 4.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 − 2·t + 4·t2 − 3·t3 + 4·t4 − 2·t5 + t6 |
| ( − 1 + t)4 · (1 + t + t2) · (1 + t2)2 |
- The a-invariants are -∞,-∞,-∞,-∞,-4. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 8:
- b_1_0, an element of degree 1
- b_2_0, an element of degree 2
- b_3_5, an element of degree 3
- b_3_2, an element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- b_4_9, an element of degree 4
- b_4_6, an element of degree 4
- b_4_5, an element of degree 4
- b_5_11, an element of degree 5
- b_6_13, an element of degree 6
- b_7_1, an element of degree 7
- b_7_0, an element of degree 7
- b_8_10, an element of degree 8
- c_8_5, a Duflot element of degree 8
Ring relations
There are 59 minimal relations of maximal degree 16:
- b_2_0·b_3_5 + b_2_0·b_3_2 + b_2_0·b_3_0
- b_3_02 + b_1_03·b_3_0 + b_2_0·b_1_0·b_3_0
- b_3_0·b_3_1 + b_1_03·b_3_0 + b_2_0·b_1_0·b_3_0 + b_2_0·b_4_9
- b_3_0·b_3_2 + b_1_03·b_3_0 + b_2_0·b_1_0·b_3_0
- b_3_0·b_3_5
- b_3_1·b_3_5 + b_3_1·b_3_2 + b_1_03·b_3_0 + b_2_0·b_1_0·b_3_0 + b_2_0·b_4_9
- b_3_22 + b_3_1·b_3_2 + b_3_12 + b_1_0·b_5_11 + b_1_03·b_3_5 + b_1_03·b_3_2
+ b_4_5·b_1_02 + b_2_0·b_1_0·b_3_2 + b_2_0·b_1_0·b_3_1 + b_2_0·b_1_0·b_3_0 + b_2_0·b_1_04 + b_2_0·b_4_9 + b_2_0·b_4_6 + b_2_0·b_4_5 + b_2_02·b_1_02 + b_2_03
- b_3_2·b_3_5 + b_3_1·b_3_2 + b_3_12 + b_1_03·b_3_5 + b_2_0·b_1_0·b_3_2
+ b_2_0·b_1_0·b_3_1 + b_2_0·b_1_0·b_3_0 + b_2_0·b_1_04 + b_2_0·b_4_9 + b_2_0·b_4_6 + b_2_0·b_4_5 + b_2_02·b_1_02 + b_2_03
- b_3_52 + b_3_1·b_3_2 + b_3_12 + b_1_03·b_3_5 + b_2_0·b_1_0·b_3_2 + b_2_0·b_1_0·b_3_1
+ b_2_0·b_1_0·b_3_0 + b_2_0·b_1_04 + b_2_0·b_4_9 + b_2_0·b_4_6 + b_2_0·b_4_5 + b_2_02·b_1_02 + b_2_03
- b_2_0·b_5_11 + b_2_0·b_1_02·b_3_2 + b_2_0·b_1_02·b_3_0 + b_2_0·b_4_5·b_1_0
+ b_2_02·b_3_0
- b_4_6·b_3_0 + b_4_5·b_3_0 + b_2_0·b_1_02·b_3_0
- b_4_6·b_3_5 + b_4_6·b_3_2 + b_4_5·b_3_5 + b_4_5·b_3_2 + b_2_0·b_1_02·b_3_0
- b_4_9·b_3_0 + b_4_9·b_1_03 + b_2_0·b_4_9·b_1_0
- b_4_9·b_3_1 + b_4_9·b_1_03 + b_2_0·b_1_02·b_3_0 + b_2_02·b_3_0
- b_4_9·b_3_2 + b_4_9·b_1_03 + b_2_0·b_4_9·b_1_0
- b_4_9·b_3_5
- b_1_0·b_3_1·b_3_2 + b_1_04·b_3_0 + b_4_6·b_3_2 + b_4_5·b_3_5 + b_4_5·b_3_2
+ b_2_0·b_1_02·b_3_2 + b_2_0·b_1_02·b_3_0 + b_2_0·b_4_9·b_1_0
- b_4_6·b_4_9 + b_4_5·b_4_9 + b_2_0·b_4_9·b_1_02
- b_1_05·b_3_0 + b_4_9·b_1_04 + b_4_92 + b_2_0·b_4_9·b_1_02 + b_2_02·b_1_0·b_3_0
- b_1_02·b_3_12 + b_4_9·b_1_04 + b_4_92 + b_4_62 + b_4_5·b_1_0·b_3_5 + b_4_52
+ b_2_0·b_1_03·b_3_1 + b_2_0·b_4_9·b_1_02 + b_2_0·b_4_6·b_1_02 + b_2_0·b_4_5·b_1_02
- b_3_0·b_5_11 + b_4_5·b_1_0·b_3_0 + b_2_0·b_1_03·b_3_0 + b_2_02·b_1_0·b_3_0
- b_3_1·b_5_11 + b_4_6·b_1_0·b_3_2 + b_4_5·b_1_0·b_3_5 + b_4_5·b_1_0·b_3_2
+ b_4_5·b_1_0·b_3_1 + b_2_0·b_1_03·b_3_2 + b_2_0·b_1_03·b_3_0 + b_2_02·b_1_0·b_3_0 + b_2_02·b_4_9
- b_3_2·b_5_11 + b_6_13·b_1_02 + b_4_9·b_1_04 + b_4_92 + b_4_6·b_1_0·b_3_2
+ b_4_6·b_1_0·b_3_1 + b_4_5·b_1_0·b_3_5 + b_4_5·b_1_0·b_3_2 + b_4_5·b_1_0·b_3_1 + b_4_5·b_4_6 + b_4_52 + b_2_0·b_1_03·b_3_2 + b_2_0·b_1_03·b_3_1 + b_2_0·b_1_03·b_3_0 + b_2_0·b_6_13 + b_2_0·b_4_5·b_1_02 + b_2_02·b_1_0·b_3_0 + b_2_02·b_1_04 + b_2_03·b_1_02
- b_3_5·b_5_11 + b_1_05·b_3_5 + b_4_6·b_1_0·b_3_2 + b_4_62 + b_4_5·b_1_0·b_3_5
+ b_4_5·b_1_0·b_3_2 + b_4_52 + b_2_0·b_1_06 + b_2_02·b_1_0·b_3_0 + b_2_02·b_1_04 + b_2_03·b_1_02
- b_4_6·b_5_11 + b_4_6·b_1_02·b_3_2 + b_4_5·b_5_11 + b_4_5·b_1_02·b_3_2
+ b_4_5·b_4_6·b_1_0 + b_4_52·b_1_0 + b_2_0·b_1_04·b_3_0 + b_2_02·b_1_02·b_3_0
- b_4_9·b_5_11 + b_4_5·b_4_9·b_1_0 + b_2_0·b_4_9·b_1_03 + b_2_02·b_4_9·b_1_0
- b_6_13·b_3_0 + b_4_9·b_1_05 + b_4_92·b_1_0 + b_4_5·b_1_02·b_3_0
+ b_2_02·b_1_02·b_3_0
- b_6_13·b_3_1 + b_4_9·b_1_05 + b_4_92·b_1_0 + b_4_6·b_1_02·b_3_2
+ b_4_5·b_1_02·b_3_5 + b_4_5·b_1_02·b_3_2 + b_4_5·b_1_02·b_3_0 + b_2_0·b_7_1 + b_2_0·b_7_0 + b_2_0·b_1_0·b_3_12 + b_2_0·b_1_04·b_3_1 + b_2_0·b_1_04·b_3_0 + b_2_0·b_4_9·b_1_03 + b_2_0·b_4_6·b_3_1 + b_2_0·b_4_6·b_1_03 + b_2_02·b_1_05 + b_2_03·b_3_2 + b_2_03·b_1_03
- b_1_06·b_3_5 + b_6_13·b_3_5 + b_4_6·b_1_02·b_3_2 + b_4_62·b_1_0 + b_4_5·b_1_02·b_3_2
+ b_4_52·b_1_0 + b_2_0·b_1_04·b_3_2 + b_2_0·b_1_04·b_3_0 + b_2_0·b_1_07 + b_2_02·b_1_02·b_3_0 + b_2_02·b_1_05 + b_2_03·b_1_03
- b_4_6·b_1_03·b_3_2 + b_4_6·b_6_13 + b_4_5·b_1_03·b_3_2 + b_4_5·b_6_13
+ b_2_0·b_1_05·b_3_1 + b_2_0·b_4_9·b_1_04 + b_2_0·b_4_92 + b_2_0·b_4_6·b_1_0·b_3_1 + b_2_0·b_4_62 + b_2_0·b_4_5·b_1_0·b_3_1 + b_2_0·b_4_5·b_1_04 + b_2_0·b_4_5·b_4_6 + b_2_02·b_1_03·b_3_2 + b_2_02·b_1_03·b_3_0 + b_2_02·b_1_06 + b_2_02·b_6_13 + b_2_02·b_4_9·b_1_02 + b_2_02·b_4_6·b_1_02 + b_2_02·b_4_5·b_1_02 + b_2_03·b_1_0·b_3_0 + b_2_03·b_1_04
- b_4_9·b_1_06 + b_4_9·b_6_13 + b_4_5·b_4_9·b_1_02 + b_2_0·b_4_92
+ b_2_02·b_1_03·b_3_0 + b_2_02·b_4_9·b_1_02 + b_2_03·b_1_0·b_3_0
- b_3_0·b_7_0 + b_1_03·b_7_0 + b_4_6·b_6_13 + b_4_62·b_1_02 + b_4_5·b_6_13
+ b_4_52·b_1_02 + b_2_0·b_1_0·b_7_0 + b_2_0·b_4_9·b_1_04 + b_2_0·b_4_92 + b_2_0·b_4_6·b_1_0·b_3_2 + b_2_0·b_4_6·b_1_04 + b_2_0·b_4_62 + b_2_0·b_4_5·b_1_0·b_3_2 + b_2_0·b_4_5·b_1_0·b_3_0 + b_2_0·b_4_5·b_1_04 + b_2_0·b_4_52 + b_2_02·b_1_03·b_3_2 + b_2_02·b_6_13 + b_2_04·b_1_02
- b_3_0·b_7_1 + b_1_03·b_7_0 + b_4_6·b_6_13 + b_4_62·b_1_02 + b_4_5·b_6_13
+ b_4_5·b_4_9·b_1_02 + b_4_52·b_1_02 + b_2_0·b_1_0·b_7_0 + b_2_0·b_4_92 + b_2_0·b_4_6·b_1_0·b_3_2 + b_2_0·b_4_6·b_1_04 + b_2_0·b_4_62 + b_2_0·b_4_5·b_1_0·b_3_2 + b_2_0·b_4_5·b_1_04 + b_2_0·b_4_5·b_4_9 + b_2_0·b_4_52 + b_2_02·b_1_03·b_3_2 + b_2_02·b_1_03·b_3_0 + b_2_02·b_6_13 + b_2_04·b_1_02
- b_3_1·b_7_0 + b_1_03·b_7_0 + b_4_6·b_3_1·b_3_2 + b_4_6·b_3_12 + b_4_6·b_6_13
+ b_4_62·b_1_02 + b_4_5·b_6_13 + b_4_52·b_1_02 + b_2_0·b_1_05·b_3_1 + b_2_0·b_8_10 + b_2_0·b_4_92 + b_2_0·b_4_6·b_1_0·b_3_2 + b_2_0·b_4_62 + b_2_0·b_4_5·b_1_04 + b_2_0·b_4_5·b_4_6 + b_2_02·b_1_03·b_3_2 + b_2_02·b_1_03·b_3_0 + b_2_02·b_6_13 + b_2_02·b_4_9·b_1_02 + b_2_02·b_4_6·b_1_02 + b_2_03·b_1_0·b_3_1 + b_2_03·b_1_0·b_3_0
- b_3_1·b_7_1 + b_1_03·b_7_0 + b_4_6·b_3_1·b_3_2 + b_4_6·b_3_12 + b_4_5·b_1_03·b_3_5
+ b_4_5·b_1_03·b_3_1 + b_4_5·b_1_03·b_3_0 + b_4_5·b_4_9·b_1_02 + b_4_5·b_4_6·b_1_02 + b_4_52·b_1_02 + b_2_0·b_1_0·b_7_1 + b_2_0·b_1_0·b_7_0 + b_2_0·b_8_10 + b_2_0·b_4_9·b_1_04 + b_2_0·b_4_92 + b_2_0·b_4_6·b_1_0·b_3_2 + b_2_0·b_4_6·b_1_0·b_3_1 + b_2_0·b_4_6·b_1_04 + b_2_0·b_4_62 + b_2_0·b_4_5·b_1_0·b_3_2 + b_2_0·b_4_5·b_1_0·b_3_1 + b_2_0·b_4_5·b_1_04 + b_2_0·b_4_52 + b_2_02·b_3_1·b_3_2 + b_2_02·b_1_03·b_3_0 + b_2_02·b_1_06 + b_2_02·b_4_9·b_1_02 + b_2_03·b_1_0·b_3_2 + b_2_03·b_1_04 + b_2_03·b_4_6 + b_2_04·b_1_02
- b_3_2·b_7_0 + b_1_03·b_7_0 + b_4_6·b_3_12 + b_4_62·b_1_02 + b_4_5·b_1_03·b_3_5
+ b_4_5·b_1_03·b_3_0 + b_4_52·b_1_02 + b_2_0·b_1_0·b_7_0 + b_2_0·b_1_05·b_3_1 + b_2_0·b_4_6·b_1_0·b_3_2 + b_2_0·b_4_62 + b_2_0·b_4_5·b_1_0·b_3_1 + b_2_0·b_4_5·b_1_0·b_3_0 + b_2_0·b_4_52 + b_2_02·b_1_06 + b_2_02·b_4_9·b_1_02 + b_2_02·b_4_5·b_1_02 + b_2_03·b_1_0·b_3_2 + b_2_03·b_1_04 + b_2_03·b_4_6 + b_2_04·b_1_02
- b_3_5·b_7_0 + b_4_6·b_3_12 + b_4_6·b_6_13 + b_4_5·b_1_03·b_3_5 + b_4_5·b_1_03·b_3_0
+ b_4_5·b_6_13 + b_2_0·b_1_05·b_3_1 + b_2_0·b_4_9·b_1_04 + b_2_0·b_4_92 + b_2_0·b_4_6·b_1_04 + b_2_0·b_4_5·b_1_0·b_3_2 + b_2_0·b_4_5·b_1_0·b_3_1 + b_2_0·b_4_5·b_1_04 + b_2_02·b_1_03·b_3_2 + b_2_02·b_1_06 + b_2_02·b_6_13 + b_2_02·b_4_9·b_1_02 + b_2_02·b_4_5·b_1_02 + b_2_03·b_1_0·b_3_2 + b_2_03·b_1_04 + b_2_03·b_4_6
- b_3_5·b_7_1 + b_6_13·b_1_0·b_3_5 + b_4_6·b_3_12 + b_4_5·b_1_03·b_3_0
+ b_2_0·b_4_9·b_1_04 + b_2_0·b_4_92 + b_2_0·b_4_6·b_1_0·b_3_2 + b_2_0·b_4_6·b_1_0·b_3_1 + b_2_0·b_4_6·b_1_04 + b_2_0·b_4_62 + b_2_0·b_4_5·b_1_0·b_3_2 + b_2_0·b_4_5·b_1_0·b_3_0 + b_2_0·b_4_5·b_4_6 + b_2_02·b_3_1·b_3_2 + b_2_02·b_3_12 + b_2_02·b_1_03·b_3_2 + b_2_02·b_1_03·b_3_0 + b_2_02·b_4_9·b_1_02 + b_2_02·b_4_6·b_1_02 + b_2_03·b_1_0·b_3_1 + b_2_03·b_1_0·b_3_0 + b_2_03·b_1_04 + b_2_03·b_4_9 + b_2_03·b_4_5 + b_2_04·b_1_02 + b_2_05
- b_5_112 + b_6_13·b_1_0·b_3_5 + b_6_13·b_1_0·b_3_2 + b_6_13·b_1_04
+ b_4_6·b_1_03·b_3_1 + b_4_6·b_6_13 + b_4_5·b_1_0·b_5_11 + b_4_5·b_1_03·b_3_5 + b_4_5·b_1_03·b_3_1 + b_4_5·b_6_13 + b_4_5·b_4_6·b_1_02 + b_4_52·b_1_02 + b_2_0·b_4_9·b_1_04 + b_2_0·b_4_92 + b_2_02·b_1_03·b_3_1 + b_2_02·b_1_03·b_3_0 + b_2_02·b_1_06 + b_2_02·b_4_6·b_1_02
- b_4_6·b_7_0 + b_4_62·b_3_2 + b_4_62·b_3_1 + b_4_5·b_7_0 + b_4_5·b_4_6·b_3_2
+ b_4_5·b_4_6·b_3_1 + b_2_0·b_1_02·b_7_1 + b_2_0·b_6_13·b_1_03 + b_2_0·b_4_9·b_1_05 + b_2_0·b_4_92·b_1_0 + b_2_0·b_4_6·b_1_02·b_3_2 + b_2_0·b_4_6·b_1_05 + b_2_0·b_4_5·b_1_02·b_3_2 + b_2_0·b_4_5·b_4_9·b_1_0 + b_2_02·b_7_1 + b_2_02·b_7_0 + b_2_02·b_1_0·b_3_12 + b_2_02·b_1_04·b_3_0 + b_2_02·b_6_13·b_1_0 + b_2_02·b_4_9·b_1_03 + b_2_02·b_4_6·b_3_1 + b_2_02·b_4_5·b_3_0 + b_2_03·b_1_02·b_3_2 + b_2_03·b_1_02·b_3_1 + b_2_03·b_1_02·b_3_0 + b_2_03·b_4_9·b_1_0 + b_2_03·b_4_5·b_1_0 + b_2_04·b_3_2 + b_2_04·b_1_03
- b_4_6·b_7_1 + b_4_6·b_1_04·b_3_1 + b_4_6·b_6_13·b_1_0 + b_4_62·b_3_2 + b_4_62·b_3_1
+ b_4_5·b_7_1 + b_4_5·b_1_04·b_3_0 + b_4_5·b_6_13·b_1_0 + b_4_5·b_4_6·b_3_2 + b_4_5·b_4_6·b_1_03 + b_4_52·b_3_5 + b_4_52·b_3_1 + b_4_52·b_1_03 + b_2_0·b_1_02·b_7_0 + b_2_0·b_4_6·b_1_02·b_3_2 + b_2_0·b_4_6·b_1_02·b_3_1 + b_2_0·b_4_6·b_1_05 + b_2_0·b_4_5·b_1_02·b_3_1 + b_2_0·b_4_5·b_1_02·b_3_0 + b_2_02·b_7_1 + b_2_02·b_7_0 + b_2_02·b_1_0·b_3_12 + b_2_02·b_1_04·b_3_1 + b_2_02·b_1_04·b_3_0 + b_2_02·b_6_13·b_1_0 + b_2_02·b_4_9·b_1_03 + b_2_02·b_4_6·b_3_2 + b_2_02·b_4_6·b_3_1 + b_2_02·b_4_6·b_1_03 + b_2_02·b_4_5·b_3_2 + b_2_02·b_4_5·b_3_0 + b_2_03·b_1_02·b_3_0 + b_2_03·b_1_05 + b_2_03·b_4_6·b_1_0 + b_2_04·b_3_2
- b_4_9·b_7_1 + b_4_9·b_7_0 + b_4_5·b_1_04·b_3_0 + b_4_5·b_4_9·b_1_03
+ b_2_0·b_4_92·b_1_0 + b_2_02·b_1_04·b_3_0 + b_2_02·b_4_5·b_3_0 + b_2_03·b_1_02·b_3_0
- b_8_10·b_3_0 + b_8_10·b_1_03 + b_4_6·b_6_13·b_1_0 + b_4_5·b_6_13·b_1_0
+ b_4_5·b_4_6·b_3_1 + b_4_52·b_3_5 + b_4_52·b_3_1 + b_2_0·b_1_09 + b_2_0·b_8_10·b_1_0 + b_2_0·b_4_6·b_1_02·b_3_2 + b_2_0·b_4_6·b_1_02·b_3_1 + b_2_0·b_4_6·b_1_05 + b_2_0·b_4_62·b_1_0 + b_2_0·b_4_5·b_1_05 + b_2_0·b_4_52·b_1_0 + b_2_02·b_1_04·b_3_2 + b_2_02·b_1_04·b_3_1 + b_2_02·b_1_04·b_3_0 + b_2_02·b_1_07 + b_2_02·b_6_13·b_1_0 + b_2_02·b_4_9·b_1_03 + b_2_02·b_4_5·b_3_0 + b_2_02·b_4_5·b_1_03 + b_2_03·b_4_5·b_1_0
- b_8_10·b_3_1 + b_8_10·b_1_03 + b_4_6·b_6_13·b_1_0 + b_4_62·b_3_2 + b_4_5·b_6_13·b_1_0
+ b_4_5·b_4_6·b_3_1 + b_4_52·b_3_2 + b_4_52·b_3_1 + b_2_0·b_1_02·b_7_0 + b_2_0·b_1_06·b_3_1 + b_2_0·b_1_09 + b_2_0·b_8_10·b_1_0 + b_2_0·b_4_6·b_1_02·b_3_2 + b_2_0·b_4_6·b_1_05 + b_2_0·b_4_62·b_1_0 + b_2_0·b_4_5·b_1_02·b_3_2 + b_2_0·b_4_5·b_1_02·b_3_0 + b_2_0·b_4_5·b_1_05 + b_2_0·b_4_5·b_4_6·b_1_0 + b_2_02·b_7_0 + b_2_02·b_1_04·b_3_2 + b_2_02·b_1_07 + b_2_02·b_6_13·b_1_0 + b_2_02·b_4_9·b_1_03 + b_2_02·b_4_6·b_3_2 + b_2_02·b_4_6·b_3_1 + b_2_02·b_4_5·b_3_0 + b_2_03·b_1_05 + b_2_03·b_4_6·b_1_0 + b_2_04·b_1_03 + b_2_05·b_1_0
- b_8_10·b_3_2 + b_8_10·b_1_03 + b_4_62·b_3_2 + b_4_62·b_3_1 + b_4_5·b_4_6·b_3_2
+ b_4_52·b_3_1 + b_2_0·b_1_02·b_7_1 + b_2_0·b_1_02·b_7_0 + b_2_0·b_1_06·b_3_1 + b_2_0·b_1_09 + b_2_0·b_8_10·b_1_0 + b_2_0·b_4_6·b_1_02·b_3_2 + b_2_0·b_4_6·b_1_05 + b_2_0·b_4_62·b_1_0 + b_2_0·b_4_5·b_1_02·b_3_1 + b_2_0·b_4_5·b_1_02·b_3_0 + b_2_0·b_4_5·b_1_05 + b_2_0·b_4_5·b_4_9·b_1_0 + b_2_0·b_4_5·b_4_6·b_1_0 + b_2_02·b_7_1 + b_2_02·b_7_0 + b_2_02·b_1_0·b_3_12 + b_2_02·b_1_04·b_3_2 + b_2_02·b_1_07 + b_2_02·b_4_6·b_3_1 + b_2_02·b_4_6·b_1_03 + b_2_02·b_4_5·b_3_0 + b_2_02·b_4_5·b_1_03 + b_2_03·b_1_02·b_3_2 + b_2_03·b_1_05 + b_2_03·b_4_6·b_1_0 + b_2_04·b_3_2 + b_2_04·b_1_03
- b_8_10·b_3_5 + b_4_6·b_6_13·b_1_0 + b_4_62·b_3_2 + b_4_62·b_3_1 + b_4_5·b_6_13·b_1_0
+ b_4_5·b_4_6·b_3_2 + b_4_5·b_4_6·b_3_1 + b_4_52·b_3_5 + b_2_0·b_1_02·b_7_1 + b_2_0·b_1_02·b_7_0 + b_2_0·b_1_06·b_3_1 + b_2_0·b_4_6·b_1_02·b_3_1 + b_2_0·b_4_5·b_1_02·b_3_1 + b_2_0·b_4_5·b_1_02·b_3_0 + b_2_0·b_4_5·b_4_9·b_1_0 + b_2_0·b_4_5·b_4_6·b_1_0 + b_2_0·b_4_52·b_1_0 + b_2_02·b_7_1 + b_2_02·b_7_0 + b_2_02·b_1_0·b_3_12 + b_2_02·b_1_04·b_3_1 + b_2_02·b_1_04·b_3_0 + b_2_02·b_6_13·b_1_0 + b_2_02·b_4_9·b_1_03 + b_2_02·b_4_6·b_3_1 + b_2_02·b_4_6·b_1_03 + b_2_03·b_1_02·b_3_2 + b_2_03·b_1_05 + b_2_03·b_4_6·b_1_0 + b_2_03·b_4_5·b_1_0 + b_2_04·b_3_2 + b_2_04·b_1_03
- b_1_04·b_7_0 + b_8_10·b_1_03 + b_4_9·b_7_0 + b_4_92·b_1_03 + b_4_62·b_1_03
+ b_4_5·b_1_04·b_3_0 + b_4_5·b_4_9·b_1_03 + b_4_5·b_4_6·b_3_1 + b_4_52·b_3_5 + b_4_52·b_3_1 + b_4_52·b_1_03 + b_2_0·b_1_02·b_7_0 + b_2_0·b_1_09 + b_2_0·b_8_10·b_1_0 + b_2_0·b_4_9·b_1_05 + b_2_0·b_4_6·b_1_02·b_3_1 + b_2_0·b_4_5·b_1_02·b_3_2 + b_2_02·b_1_04·b_3_1 + b_2_02·b_1_04·b_3_0 + b_2_02·b_1_07 + b_2_02·b_4_9·b_1_03 + b_2_02·b_4_5·b_1_03 + b_2_03·b_1_02·b_3_0 + b_2_03·b_4_9·b_1_0 + b_2_03·b_4_5·b_1_0 + b_2_04·b_1_03
- b_4_6·b_8_10 + b_4_62·b_1_0·b_3_2 + b_4_5·b_8_10 + b_4_5·b_4_6·b_1_0·b_3_1
+ b_4_5·b_4_62 + b_4_52·b_1_0·b_3_2 + b_4_52·b_1_0·b_3_1 + b_4_53 + b_2_0·b_1_03·b_7_1 + b_2_0·b_1_03·b_7_0 + b_2_0·b_1_07·b_3_1 + b_2_0·b_8_10·b_1_02 + b_2_0·b_6_13·b_1_04 + b_2_0·b_4_6·b_1_06 + b_2_0·b_4_6·b_6_13 + b_2_0·b_4_5·b_1_03·b_3_1 + b_2_0·b_4_5·b_1_03·b_3_0 + b_2_0·b_4_5·b_1_06 + b_2_0·b_4_5·b_6_13 + b_2_0·b_4_5·b_4_9·b_1_02 + b_2_02·b_1_0·b_7_1 + b_2_02·b_1_0·b_7_0 + b_2_02·b_1_05·b_3_1 + b_2_02·b_6_13·b_1_02 + b_2_02·b_4_9·b_1_04 + b_2_02·b_4_5·b_1_0·b_3_0 + b_2_02·b_4_5·b_4_9 + b_2_03·b_1_03·b_3_0 + b_2_03·b_1_06 + b_2_03·b_6_13 + b_2_03·b_4_9·b_1_02 + b_2_03·b_4_6·b_1_02 + b_2_04·b_1_0·b_3_2 + b_2_04·b_1_0·b_3_0 + b_2_04·b_1_04
- b_8_10·b_1_04 + b_4_9·b_1_0·b_7_0 + b_4_9·b_8_10 + b_4_92·b_1_04 + b_4_93
+ b_4_6·b_6_13·b_1_02 + b_4_5·b_6_13·b_1_02 + b_4_5·b_4_9·b_1_04 + b_4_5·b_4_6·b_1_0·b_3_1 + b_4_52·b_1_0·b_3_5 + b_4_52·b_1_0·b_3_1 + b_2_0·b_1_03·b_7_0 + b_2_0·b_1_010 + b_2_0·b_8_10·b_1_02 + b_2_0·b_4_92·b_1_02 + b_2_0·b_4_6·b_1_03·b_3_1 + b_2_0·b_4_6·b_1_06 + b_2_0·b_4_5·b_1_03·b_3_2 + b_2_0·b_4_5·b_1_06 + b_2_0·b_4_5·b_4_9·b_1_02 + b_2_02·b_1_0·b_7_0 + b_2_02·b_1_08 + b_2_02·b_4_92 + b_2_02·b_4_6·b_1_0·b_3_2 + b_2_02·b_4_6·b_1_04 + b_2_02·b_4_62 + b_2_02·b_4_5·b_1_0·b_3_2 + b_2_02·b_4_5·b_1_04 + b_2_02·b_4_5·b_4_9 + b_2_02·b_4_52 + b_2_03·b_1_03·b_3_2 + b_2_03·b_1_03·b_3_1 + b_2_03·b_1_03·b_3_0 + b_2_03·b_6_13 + b_2_03·b_4_6·b_1_02 + b_2_03·b_4_5·b_1_02 + b_2_04·b_1_0·b_3_0 + b_2_04·b_1_04 + b_2_05·b_1_02
- b_5_11·b_7_0 + b_4_6·b_6_13·b_1_02 + b_4_63 + b_4_5·b_1_0·b_7_0
+ b_4_5·b_6_13·b_1_02 + b_4_5·b_4_62 + b_4_52·b_4_6 + b_4_53 + b_2_0·b_1_03·b_7_0 + b_2_0·b_1_07·b_3_1 + b_2_0·b_4_6·b_1_03·b_3_1 + b_2_0·b_4_6·b_1_06 + b_2_0·b_4_6·b_6_13 + b_2_0·b_4_5·b_1_03·b_3_1 + b_2_0·b_4_5·b_6_13 + b_2_0·b_4_5·b_4_6·b_1_02 + b_2_0·b_4_52·b_1_02 + b_2_02·b_1_0·b_7_0 + b_2_02·b_1_08 + b_2_02·b_4_9·b_1_04 + b_2_02·b_4_92 + b_2_02·b_4_6·b_1_0·b_3_2 + b_2_02·b_4_6·b_1_0·b_3_1 + b_2_02·b_4_6·b_1_04 + b_2_02·b_4_5·b_1_0·b_3_2 + b_2_02·b_4_5·b_1_0·b_3_1 + b_2_02·b_4_5·b_1_04 + b_2_02·b_4_5·b_4_6 + b_2_02·b_4_52 + b_2_03·b_1_03·b_3_2 + b_2_03·b_1_03·b_3_1 + b_2_03·b_4_9·b_1_02 + b_2_03·b_4_6·b_1_02 + b_2_05·b_1_02
- b_6_13·b_7_0 + b_4_9·b_8_10·b_1_0 + b_4_93·b_1_0 + b_4_6·b_6_13·b_1_03
+ b_4_63·b_1_0 + b_4_5·b_1_02·b_7_0 + b_4_5·b_6_13·b_1_03 + b_4_5·b_4_9·b_1_05 + b_4_5·b_4_92·b_1_0 + b_4_5·b_4_6·b_1_02·b_3_1 + b_4_5·b_4_62·b_1_0 + b_4_52·b_1_02·b_3_1 + b_4_52·b_4_6·b_1_0 + b_4_53·b_1_0 + b_2_0·b_1_04·b_7_1 + b_2_0·b_8_10·b_1_03 + b_2_0·b_6_13·b_1_05 + b_2_0·b_4_92·b_1_03 + b_2_0·b_4_6·b_1_04·b_3_1 + b_2_0·b_4_6·b_1_07 + b_2_0·b_4_6·b_6_13·b_1_0 + b_2_0·b_4_62·b_1_03 + b_2_0·b_4_5·b_1_04·b_3_0 + b_2_0·b_4_5·b_6_13·b_1_0 + b_2_0·b_4_5·b_4_6·b_3_1 + b_2_0·b_4_52·b_3_2 + b_2_0·b_4_52·b_3_1 + b_2_02·b_1_02·b_7_0 + b_2_02·b_1_06·b_3_1 + b_2_02·b_1_09 + b_2_02·b_4_92·b_1_0 + b_2_02·b_4_6·b_1_02·b_3_2 + b_2_02·b_4_6·b_1_02·b_3_1 + b_2_02·b_4_6·b_1_05 + b_2_02·b_4_52·b_1_0 + b_2_03·b_7_1 + b_2_03·b_7_0 + b_2_03·b_1_0·b_3_12 + b_2_03·b_1_04·b_3_1 + b_2_03·b_1_07 + b_2_03·b_6_13·b_1_0 + b_2_03·b_4_9·b_1_03 + b_2_03·b_4_6·b_3_1 + b_2_03·b_4_5·b_1_03 + b_2_04·b_1_02·b_3_1 + b_2_04·b_1_05 + b_2_04·b_4_9·b_1_0 + b_2_04·b_4_6·b_1_0 + b_2_04·b_4_5·b_1_0 + b_2_05·b_3_2 + b_2_05·b_1_03
- b_8_10·b_5_11 + b_4_6·b_6_13·b_1_03 + b_4_62·b_1_02·b_3_2 + b_4_63·b_1_0
+ b_4_5·b_8_10·b_1_0 + b_4_5·b_6_13·b_1_03 + b_4_5·b_4_62·b_1_0 + b_4_52·b_1_02·b_3_5 + b_4_52·b_1_02·b_3_2 + b_4_52·b_4_6·b_1_0 + b_4_53·b_1_0 + b_2_0·b_1_08·b_3_1 + b_2_0·b_8_10·b_1_03 + b_2_0·b_6_13·b_1_05 + b_2_0·b_4_9·b_6_13·b_1_0 + b_2_0·b_4_92·b_1_03 + b_2_0·b_4_6·b_1_07 + b_2_0·b_4_6·b_6_13·b_1_0 + b_2_0·b_4_5·b_1_04·b_3_0 + b_2_0·b_4_5·b_6_13·b_1_0 + b_2_0·b_4_5·b_4_9·b_1_03 + b_2_0·b_4_5·b_4_6·b_3_1 + b_2_0·b_4_52·b_3_2 + b_2_0·b_4_52·b_3_1 + b_2_0·b_4_52·b_3_0 + b_2_02·b_1_06·b_3_1 + b_2_02·b_1_09 + b_2_02·b_8_10·b_1_0 + b_2_02·b_4_9·b_1_05 + b_2_02·b_4_6·b_1_02·b_3_2 + b_2_02·b_4_6·b_1_02·b_3_1 + b_2_02·b_4_6·b_1_05 + b_2_02·b_4_62·b_1_0 + b_2_02·b_4_52·b_1_0 + b_2_03·b_1_04·b_3_2 + b_2_03·b_1_04·b_3_1 + b_2_03·b_6_13·b_1_0 + b_2_03·b_4_9·b_1_03 + b_2_03·b_4_6·b_1_03 + b_2_03·b_4_5·b_3_0 + b_2_04·b_4_5·b_1_0
- b_6_13·b_8_10 + b_4_9·b_1_03·b_7_0 + b_4_9·b_8_10·b_1_02 + b_4_92·b_6_13
+ b_4_93·b_1_02 + b_4_6·b_6_13·b_1_04 + b_4_62·b_6_13 + b_4_63·b_1_02 + b_4_5·b_8_10·b_1_02 + b_4_5·b_6_13·b_1_04 + b_4_5·b_4_9·b_6_13 + b_4_5·b_4_92·b_1_02 + b_4_5·b_4_6·b_6_13 + b_4_5·b_4_62·b_1_02 + b_4_52·b_4_9·b_1_02 + b_4_52·b_4_6·b_1_02 + b_4_53·b_1_02 + b_2_0·b_1_09·b_3_1 + b_2_0·b_6_13·b_1_06 + b_2_0·b_4_9·b_1_0·b_7_0 + b_2_0·b_4_9·b_8_10 + b_2_0·b_4_6·b_1_08 + b_2_0·b_4_6·b_6_13·b_1_02 + b_2_0·b_4_62·b_1_04 + b_2_0·b_4_5·b_1_0·b_7_1 + b_2_0·b_4_5·b_1_0·b_7_0 + b_2_0·b_4_5·b_1_05·b_3_1 + b_2_0·b_4_5·b_1_08 + b_2_0·b_4_5·b_4_92 + b_2_0·b_4_5·b_4_6·b_1_0·b_3_1 + b_2_0·b_4_5·b_4_6·b_1_04 + b_2_0·b_4_52·b_1_0·b_3_2 + b_2_0·b_4_52·b_1_0·b_3_1 + b_2_0·b_4_52·b_1_04 + b_2_0·b_4_52·b_4_9 + b_2_02·b_1_03·b_7_1 + b_2_02·b_1_010 + b_2_02·b_8_10·b_1_02 + b_2_02·b_6_13·b_1_04 + b_2_02·b_4_92·b_1_02 + b_2_02·b_4_6·b_1_06 + b_2_02·b_4_62·b_1_02 + b_2_02·b_4_5·b_1_03·b_3_2 + b_2_02·b_4_5·b_1_03·b_3_0 + b_2_02·b_4_5·b_1_06 + b_2_02·b_4_5·b_6_13 + b_2_02·b_4_5·b_4_9·b_1_02 + b_2_02·b_4_5·b_4_6·b_1_02 + b_2_02·b_4_52·b_1_02 + b_2_03·b_1_0·b_7_0 + b_2_03·b_1_08 + b_2_03·b_4_6·b_1_0·b_3_2 + b_2_03·b_4_6·b_1_0·b_3_1 + b_2_03·b_4_5·b_1_0·b_3_1 + b_2_03·b_4_5·b_1_0·b_3_0 + b_2_03·b_4_5·b_4_9 + b_2_03·b_4_5·b_4_6 + b_2_03·b_4_52 + b_2_04·b_1_03·b_3_2 + b_2_04·b_1_03·b_3_0 + b_2_04·b_4_9·b_1_02 + b_2_04·b_4_6·b_1_02 + b_2_05·b_1_04 + b_2_06·b_1_02
- b_7_02 + b_4_9·b_1_03·b_7_0 + b_4_9·b_8_10·b_1_02 + b_4_62·b_3_1·b_3_2
+ b_4_62·b_6_13 + b_4_5·b_1_03·b_7_0 + b_4_5·b_4_92·b_1_02 + b_4_5·b_4_6·b_6_13 + b_4_5·b_4_62·b_1_02 + b_4_52·b_1_03·b_3_5 + b_4_53·b_1_02 + b_2_0·b_4_92·b_1_04 + b_2_0·b_4_93 + b_2_0·b_4_6·b_1_05·b_3_1 + b_2_0·b_4_62·b_1_0·b_3_2 + b_2_0·b_4_62·b_1_04 + b_2_0·b_4_5·b_1_0·b_7_0 + b_2_0·b_4_5·b_1_05·b_3_1 + b_2_0·b_4_5·b_4_62 + b_2_0·b_4_52·b_1_0·b_3_0 + b_2_0·b_4_52·b_1_04 + b_2_0·b_4_52·b_4_9 + b_2_0·b_4_53 + b_2_02·b_1_07·b_3_1 + b_2_02·b_4_62·b_1_02 + b_2_02·b_4_5·b_1_03·b_3_0 + b_2_02·b_4_5·b_1_06 + b_2_02·b_4_5·b_6_13 + b_2_02·b_4_5·b_4_9·b_1_02 + b_2_03·b_1_05·b_3_1 + b_2_03·b_1_08 + b_2_03·b_4_92 + b_2_03·b_4_6·b_1_0·b_3_1 + b_2_03·b_4_6·b_1_04 + b_2_03·b_4_5·b_1_0·b_3_1 + b_2_03·b_4_5·b_1_0·b_3_0 + b_2_03·b_4_5·b_1_04 + b_2_03·b_4_5·b_4_6 + b_2_04·b_1_03·b_3_2 + b_2_04·b_1_06 + b_2_04·b_6_13 + b_2_04·b_4_6·b_1_02 + b_2_04·b_4_5·b_1_02 + b_2_05·b_1_04 + b_2_06·b_1_02 + c_8_5·b_1_03·b_3_0 + b_2_0·c_8_5·b_1_0·b_3_0
- b_7_0·b_7_1 + b_4_9·b_1_03·b_7_0 + b_4_9·b_8_10·b_1_02 + b_4_6·b_6_13·b_1_04
+ b_4_62·b_3_1·b_3_2 + b_4_5·b_8_10·b_1_02 + b_4_5·b_6_13·b_1_04 + b_4_5·b_4_62·b_1_02 + b_4_52·b_1_03·b_3_0 + b_4_52·b_4_9·b_1_02 + b_4_53·b_1_02 + b_2_0·b_1_05·b_7_1 + b_2_0·b_1_09·b_3_1 + b_2_0·b_6_13·b_1_06 + b_2_0·b_4_9·b_1_0·b_7_0 + b_2_0·b_4_9·b_8_10 + b_2_0·b_4_92·b_1_04 + b_2_0·b_4_93 + b_2_0·b_4_6·b_1_05·b_3_1 + b_2_0·b_4_63 + b_2_0·b_4_5·b_1_0·b_7_0 + b_2_0·b_4_5·b_1_05·b_3_1 + b_2_0·b_4_5·b_1_08 + b_2_0·b_4_5·b_8_10 + b_2_0·b_4_5·b_4_6·b_1_0·b_3_1 + b_2_0·b_4_5·b_4_6·b_1_04 + b_2_0·b_4_5·b_4_62 + b_2_0·b_4_52·b_1_0·b_3_2 + b_2_0·b_4_52·b_1_0·b_3_1 + b_2_0·b_4_52·b_1_0·b_3_0 + b_2_0·b_4_52·b_1_04 + b_2_0·b_4_52·b_4_9 + b_2_0·b_4_52·b_4_6 + b_2_0·b_4_53 + b_2_02·b_1_03·b_7_1 + b_2_02·b_1_03·b_7_0 + b_2_02·b_1_07·b_3_1 + b_2_02·b_1_010 + b_2_02·b_8_10·b_1_02 + b_2_02·b_6_13·b_1_04 + b_2_02·b_4_9·b_6_13 + b_2_02·b_4_92·b_1_02 + b_2_02·b_4_6·b_3_12 + b_2_02·b_4_6·b_1_06 + b_2_02·b_4_62·b_1_02 + b_2_02·b_4_5·b_1_03·b_3_0 + b_2_02·b_4_5·b_1_06 + b_2_02·b_4_5·b_4_9·b_1_02 + b_2_02·b_4_52·b_1_02 + b_2_03·b_1_0·b_7_0 + b_2_03·b_4_92 + b_2_03·b_4_6·b_1_0·b_3_2 + b_2_03·b_4_6·b_1_0·b_3_1 + b_2_03·b_4_62 + b_2_03·b_4_5·b_1_0·b_3_2 + b_2_03·b_4_5·b_1_0·b_3_0 + b_2_03·b_4_5·b_4_6 + b_2_04·b_1_03·b_3_0 + b_2_04·b_6_13 + b_2_04·b_4_9·b_1_02 + b_2_05·b_1_0·b_3_2 + b_2_05·b_1_0·b_3_0 + b_2_05·b_1_04 + b_2_05·b_4_6 + c_8_5·b_1_03·b_3_0 + b_2_0·c_8_5·b_1_0·b_3_0
- b_7_12 + b_6_13·b_1_0·b_7_1 + b_6_13·b_1_03·b_5_11 + b_6_13·b_1_05·b_3_5
+ b_4_9·b_1_03·b_7_0 + b_4_93·b_1_02 + b_4_62·b_3_1·b_3_2 + b_4_62·b_1_06 + b_4_62·b_6_13 + b_4_63·b_1_02 + b_4_5·b_1_05·b_5_11 + b_4_5·b_1_07·b_3_2 + b_4_52·b_1_03·b_3_5 + b_4_52·b_1_03·b_3_2 + b_4_52·b_1_03·b_3_0 + b_4_52·b_6_13 + b_4_53·b_1_02 + b_2_0·b_1_05·b_7_1 + b_2_0·b_6_13·b_1_06 + b_2_0·b_4_9·b_1_0·b_7_0 + b_2_0·b_4_9·b_8_10 + b_2_0·b_4_93 + b_2_0·b_4_6·b_1_08 + b_2_0·b_4_6·b_6_13·b_1_02 + b_2_0·b_4_62·b_1_0·b_3_2 + b_2_0·b_4_5·b_1_0·b_7_1 + b_2_0·b_4_5·b_1_05·b_3_1 + b_2_0·b_4_5·b_4_6·b_1_04 + b_2_0·b_4_52·b_1_0·b_3_2 + b_2_0·b_4_52·b_4_9 + b_2_0·b_4_52·b_4_6 + b_2_0·b_4_53 + b_2_02·b_1_07·b_3_1 + b_2_02·b_8_10·b_1_02 + b_2_02·b_6_13·b_1_04 + b_2_02·b_4_92·b_1_02 + b_2_02·b_4_6·b_1_03·b_3_1 + b_2_02·b_4_6·b_1_06 + b_2_02·b_4_5·b_1_03·b_3_1 + b_2_02·b_4_5·b_6_13 + b_2_02·b_4_5·b_4_9·b_1_02 + b_2_02·b_4_5·b_4_6·b_1_02 + b_2_03·b_1_0·b_7_0 + b_2_03·b_6_13·b_1_02 + b_2_03·b_4_6·b_1_0·b_3_2 + b_2_03·b_4_6·b_1_0·b_3_1 + b_2_03·b_4_62 + b_2_03·b_4_5·b_1_0·b_3_2 + b_2_03·b_4_5·b_1_0·b_3_1 + b_2_03·b_4_5·b_1_0·b_3_0 + b_2_03·b_4_5·b_1_04 + b_2_03·b_4_5·b_4_9 + b_2_03·b_4_5·b_4_6 + b_2_04·b_3_1·b_3_2 + b_2_04·b_3_12 + b_2_04·b_1_03·b_3_2 + b_2_04·b_1_03·b_3_0 + b_2_04·b_4_6·b_1_02 + b_2_04·b_4_5·b_1_02 + b_2_05·b_1_0·b_3_2 + b_2_05·b_1_0·b_3_1 + b_2_05·b_4_9 + b_2_05·b_4_6 + b_2_05·b_4_5 + b_2_06·b_1_02 + b_2_07 + c_8_5·b_1_0·b_5_11 + c_8_5·b_1_03·b_3_2 + b_4_5·c_8_5·b_1_02
- b_8_10·b_7_0 + b_4_9·b_8_10·b_1_03 + b_4_92·b_6_13·b_1_0 + b_4_93·b_1_03
+ b_4_62·b_6_13·b_1_0 + b_4_63·b_3_1 + b_4_5·b_4_92·b_1_03 + b_4_52·b_1_04·b_3_0 + b_4_52·b_6_13·b_1_0 + b_4_52·b_4_9·b_1_03 + b_4_52·b_4_6·b_3_2 + b_4_52·b_4_6·b_3_1 + b_4_53·b_3_2 + b_2_0·b_4_9·b_8_10·b_1_0 + b_2_0·b_4_93·b_1_0 + b_2_0·b_4_6·b_6_13·b_1_03 + b_2_0·b_4_62·b_1_05 + b_2_0·b_4_63·b_1_0 + b_2_0·b_4_5·b_1_02·b_7_0 + b_2_0·b_4_5·b_1_06·b_3_1 + b_2_0·b_4_5·b_8_10·b_1_0 + b_2_0·b_4_5·b_4_6·b_1_02·b_3_1 + b_2_0·b_4_5·b_4_6·b_1_05 + b_2_0·b_4_52·b_1_02·b_3_2 + b_2_0·b_4_52·b_1_02·b_3_1 + b_2_0·b_4_52·b_4_9·b_1_0 + b_2_0·b_4_53·b_1_0 + b_2_02·b_1_04·b_7_1 + b_2_02·b_1_08·b_3_1 + b_2_02·b_8_10·b_1_03 + b_2_02·b_6_13·b_1_05 + b_2_02·b_4_9·b_7_0 + b_2_02·b_4_6·b_1_07 + b_2_02·b_4_5·b_7_0 + b_2_02·b_4_5·b_1_07 + b_2_02·b_4_5·b_6_13·b_1_0 + b_2_02·b_4_5·b_4_6·b_3_2 + b_2_02·b_4_5·b_4_6·b_1_03 + b_2_02·b_4_52·b_3_2 + b_2_02·b_4_52·b_3_1 + b_2_02·b_4_52·b_3_0 + b_2_02·b_4_52·b_1_03 + b_2_03·b_1_02·b_7_0 + b_2_03·b_1_06·b_3_1 + b_2_03·b_4_5·b_1_02·b_3_0 + b_2_03·b_4_5·b_4_6·b_1_0 + b_2_03·b_4_52·b_1_0 + b_2_04·b_7_1 + b_2_04·b_7_0 + b_2_04·b_1_0·b_3_12 + b_2_04·b_1_04·b_3_2 + b_2_04·b_1_04·b_3_1 + b_2_04·b_1_04·b_3_0 + b_2_04·b_6_13·b_1_0 + b_2_04·b_4_6·b_3_1 + b_2_04·b_4_5·b_3_0 + b_2_04·b_4_5·b_1_03 + b_2_05·b_1_02·b_3_1 + b_2_05·b_1_02·b_3_0 + b_2_05·b_4_9·b_1_0 + b_2_05·b_4_6·b_1_0 + b_2_06·b_3_2 + b_2_06·b_1_03 + c_8_5·b_1_04·b_3_0 + b_4_9·c_8_5·b_1_03 + b_2_0·c_8_5·b_1_02·b_3_0 + b_2_0·b_4_9·c_8_5·b_1_0
- b_8_10·b_7_1 + b_4_9·b_8_10·b_1_03 + b_4_92·b_6_13·b_1_0 + b_4_93·b_1_03
+ b_4_6·b_6_13·b_1_05 + b_4_62·b_6_13·b_1_0 + b_4_63·b_3_1 + b_4_63·b_1_03 + b_4_5·b_8_10·b_1_03 + b_4_5·b_6_13·b_1_05 + b_4_5·b_4_9·b_7_0 + b_4_5·b_4_9·b_6_13·b_1_0 + b_4_5·b_4_92·b_1_03 + b_4_5·b_4_62·b_3_1 + b_4_5·b_4_62·b_1_03 + b_4_52·b_1_04·b_3_0 + b_4_52·b_6_13·b_1_0 + b_4_52·b_4_9·b_1_03 + b_4_52·b_4_6·b_1_03 + b_4_53·b_3_5 + b_4_53·b_1_03 + b_2_0·b_1_06·b_7_1 + b_2_0·b_1_010·b_3_1 + b_2_0·b_4_9·b_8_10·b_1_0 + b_2_0·b_4_6·b_1_09 + b_2_0·b_4_6·b_6_13·b_1_03 + b_2_0·b_4_62·b_1_02·b_3_2 + b_2_0·b_4_63·b_1_0 + b_2_0·b_4_5·b_1_09 + b_2_0·b_4_5·b_8_10·b_1_0 + b_2_0·b_4_5·b_4_9·b_1_05 + b_2_0·b_4_5·b_4_6·b_1_02·b_3_1 + b_2_0·b_4_5·b_4_62·b_1_0 + b_2_0·b_4_52·b_1_02·b_3_1 + b_2_0·b_4_52·b_1_02·b_3_0 + b_2_0·b_4_52·b_1_05 + b_2_02·b_1_04·b_7_1 + b_2_02·b_1_011 + b_2_02·b_8_10·b_1_03 + b_2_02·b_6_13·b_1_05 + b_2_02·b_4_6·b_1_04·b_3_1 + b_2_02·b_4_6·b_1_07 + b_2_02·b_4_6·b_6_13·b_1_0 + b_2_02·b_4_62·b_3_2 + b_2_02·b_4_62·b_3_1 + b_2_02·b_4_62·b_1_03 + b_2_02·b_4_5·b_1_04·b_3_1 + b_2_02·b_4_5·b_1_07 + b_2_02·b_4_5·b_4_6·b_3_2 + b_2_02·b_4_52·b_3_1 + b_2_02·b_4_52·b_1_03 + b_2_03·b_1_02·b_7_1 + b_2_03·b_1_02·b_7_0 + b_2_03·b_1_06·b_3_1 + b_2_03·b_1_09 + b_2_03·b_8_10·b_1_0 + b_2_03·b_6_13·b_1_03 + b_2_03·b_4_9·b_1_05 + b_2_03·b_4_6·b_1_02·b_3_1 + b_2_03·b_4_6·b_1_05 + b_2_03·b_4_62·b_1_0 + b_2_03·b_4_5·b_1_02·b_3_2 + b_2_03·b_4_5·b_1_02·b_3_1 + b_2_03·b_4_5·b_1_02·b_3_0 + b_2_03·b_4_5·b_4_9·b_1_0 + b_2_04·b_7_1 + b_2_04·b_7_0 + b_2_04·b_1_0·b_3_12 + b_2_04·b_1_04·b_3_1 + b_2_04·b_4_6·b_3_1 + b_2_04·b_4_6·b_1_03 + b_2_04·b_4_5·b_3_0 + b_2_04·b_4_5·b_1_03 + b_2_05·b_1_02·b_3_2 + b_2_05·b_1_02·b_3_0 + b_2_05·b_1_05 + b_2_05·b_4_9·b_1_0 + b_2_05·b_4_6·b_1_0 + b_2_06·b_3_2 + b_2_06·b_1_03 + c_8_5·b_1_04·b_3_0 + b_4_9·c_8_5·b_1_03 + b_2_0·c_8_5·b_1_02·b_3_0 + b_2_0·b_4_9·c_8_5·b_1_0
- b_8_102 + b_4_92·b_1_0·b_7_0 + b_4_92·b_8_10 + b_4_94 + b_4_62·b_6_13·b_1_02
+ b_4_63·b_1_0·b_3_2 + b_4_64 + b_4_5·b_4_9·b_1_0·b_7_0 + b_4_5·b_4_93 + b_4_52·b_6_13·b_1_02 + b_4_52·b_4_6·b_1_0·b_3_1 + b_4_53·b_1_0·b_3_5 + b_4_53·b_1_0·b_3_2 + b_4_53·b_1_0·b_3_1 + b_4_54 + b_2_0·b_4_9·b_1_03·b_7_0 + b_2_0·b_4_6·b_1_07·b_3_1 + b_2_0·b_4_62·b_1_06 + b_2_0·b_4_5·b_1_03·b_7_1 + b_2_0·b_4_5·b_4_9·b_6_13 + b_2_0·b_4_5·b_4_6·b_1_06 + b_2_0·b_4_5·b_4_6·b_6_13 + b_2_0·b_4_52·b_1_03·b_3_2 + b_2_0·b_4_52·b_1_06 + b_2_0·b_4_52·b_6_13 + b_2_0·b_4_52·b_4_9·b_1_02 + b_2_02·b_1_09·b_3_1 + b_2_02·b_1_012 + b_2_02·b_4_9·b_1_0·b_7_0 + b_2_02·b_4_92·b_1_04 + b_2_02·b_4_62·b_1_04 + b_2_02·b_4_5·b_1_0·b_7_1 + b_2_02·b_4_5·b_4_6·b_1_0·b_3_1 + b_2_02·b_4_5·b_4_6·b_1_04 + b_2_02·b_4_5·b_4_62 + b_2_02·b_4_52·b_1_0·b_3_2 + b_2_02·b_4_52·b_1_0·b_3_1 + b_2_02·b_4_52·b_1_0·b_3_0 + b_2_02·b_4_52·b_1_04 + b_2_02·b_4_52·b_4_6 + b_2_03·b_1_07·b_3_1 + b_2_03·b_1_010 + b_2_03·b_4_9·b_6_13 + b_2_03·b_4_6·b_1_03·b_3_1 + b_2_03·b_4_6·b_1_06 + b_2_03·b_4_5·b_1_03·b_3_1 + b_2_03·b_4_5·b_1_03·b_3_0 + b_2_03·b_4_5·b_6_13 + b_2_03·b_4_5·b_4_9·b_1_02 + b_2_03·b_4_5·b_4_6·b_1_02 + b_2_03·b_4_52·b_1_02 + b_2_04·b_1_05·b_3_1 + b_2_04·b_1_08 + b_2_04·b_4_9·b_1_04 + b_2_04·b_4_92 + b_2_04·b_4_6·b_1_0·b_3_1 + b_2_04·b_4_62 + b_2_04·b_4_5·b_1_0·b_3_2 + b_2_04·b_4_5·b_1_0·b_3_1 + b_2_04·b_4_5·b_1_04 + b_2_04·b_4_5·b_4_6 + b_2_05·b_1_03·b_3_2 + b_2_05·b_1_03·b_3_1 + b_2_05·b_1_06 + b_2_05·b_6_13 + b_2_05·b_4_5·b_1_02 + b_4_9·c_8_5·b_1_04 + b_2_0·c_8_5·b_1_03·b_3_0 + b_2_0·b_4_9·c_8_5·b_1_02 + b_2_02·c_8_5·b_1_0·b_3_0
Data used for the Hilbert-Poincaré test
- We proved completion in degree 24 using the Hilbert-Poincaré criterion.
- However, the last relation was already found in degree 16 and the last generator in degree 8.
- The following is a filter regular homogeneous system of parameters:
- b_1_03·b_5_11 + b_1_05·b_3_5 + b_1_05·b_3_1 + b_1_08 + b_8_10 + b_4_6·b_1_04
+ b_4_5·b_1_0·b_3_2 + b_4_5·b_1_0·b_3_1 + b_4_5·b_1_0·b_3_0 + b_4_5·b_1_04 + b_4_5·b_4_9 + b_4_5·b_4_6 + b_2_0·b_3_1·b_3_2 + b_2_0·b_3_12 + b_2_0·b_1_03·b_3_1 + b_2_0·b_1_06 + b_2_0·b_4_9·b_1_02 + b_2_0·b_4_5·b_1_02 + b_2_02·b_1_0·b_3_1 + b_2_02·b_1_0·b_3_0 + b_2_02·b_4_5 + b_2_03·b_1_02 + c_8_5, an element of degree 8
- b_3_13·b_3_2 + b_1_09·b_3_2 + b_1_09·b_3_1 + b_6_132 + b_4_93 + b_4_6·b_1_08
+ b_4_62·b_1_04 + b_4_5·b_1_03·b_5_11 + b_4_5·b_1_05·b_3_1 + b_4_5·b_8_10 + b_4_5·b_4_6·b_1_0·b_3_1 + b_4_5·b_4_6·b_1_04 + b_4_5·b_4_62 + b_4_52·b_1_0·b_3_2 + b_4_52·b_1_0·b_3_0 + b_4_52·b_1_04 + b_4_52·b_4_9 + b_4_52·b_4_6 + b_2_0·b_1_03·b_7_0 + b_2_0·b_1_07·b_3_1 + b_2_0·b_1_010 + b_2_0·b_6_13·b_1_04 + b_2_0·b_4_92·b_1_02 + b_2_0·b_4_6·b_3_1·b_3_2 + b_2_0·b_4_6·b_3_12 + b_2_0·b_4_5·b_3_12 + b_2_0·b_4_5·b_1_03·b_3_2 + b_2_0·b_4_5·b_1_03·b_3_1 + b_2_0·b_4_5·b_1_03·b_3_0 + b_2_0·b_4_5·b_4_6·b_1_02 + b_2_02·b_1_0·b_7_0 + b_2_02·b_8_10 + b_2_02·b_6_13·b_1_02 + b_2_02·b_4_9·b_1_04 + b_2_02·b_4_92 + b_2_02·b_4_6·b_1_0·b_3_1 + b_2_02·b_4_6·b_1_04 + b_2_02·b_4_62 + b_2_02·b_4_5·b_1_0·b_3_1 + b_2_02·b_4_52 + b_2_03·b_3_1·b_3_2 + b_2_03·b_1_03·b_3_1 + b_2_03·b_1_06 + b_2_03·b_4_9·b_1_02 + b_2_03·b_4_5·b_1_02 + b_2_04·b_1_0·b_3_2 + b_2_04·b_4_9 + b_2_04·b_4_5 + c_8_5·b_1_0·b_3_2 + c_8_5·b_1_0·b_3_1 + c_8_5·b_1_0·b_3_0 + c_8_5·b_1_04 + b_4_6·c_8_5 + b_2_02·c_8_5, an element of degree 12
- b_1_09·b_5_11 + b_1_011·b_3_2 + b_6_13·b_1_05·b_3_5 + b_6_13·b_1_05·b_3_2
+ b_6_132·b_1_02 + b_4_9·b_1_03·b_7_0 + b_4_9·b_8_10·b_1_02 + b_4_92·b_6_13 + b_4_6·b_6_13·b_1_04 + b_4_62·b_3_12 + b_4_62·b_6_13 + b_4_63·b_1_02 + b_4_5·b_1_05·b_5_11 + b_4_5·b_1_07·b_3_2 + b_4_5·b_1_010 + b_4_5·b_6_13·b_1_0·b_3_2 + b_4_5·b_4_92·b_1_02 + b_4_5·b_4_62·b_1_02 + b_4_52·b_3_1·b_3_2 + b_4_52·b_3_12 + b_4_52·b_1_03·b_3_2 + b_4_52·b_1_03·b_3_1 + b_4_52·b_6_13 + b_2_0·b_3_13·b_3_2 + b_2_0·b_1_05·b_7_1 + b_2_0·b_1_09·b_3_1 + b_2_0·b_4_9·b_1_0·b_7_0 + b_2_0·b_4_9·b_8_10 + b_2_0·b_4_93 + b_2_0·b_4_6·b_1_05·b_3_1 + b_2_0·b_4_62·b_1_0·b_3_2 + b_2_0·b_4_62·b_1_04 + b_2_0·b_4_63 + b_2_0·b_4_5·b_1_05·b_3_1 + b_2_0·b_4_5·b_8_10 + b_2_0·b_4_5·b_4_6·b_1_0·b_3_1 + b_2_0·b_4_5·b_4_6·b_1_04 + b_2_0·b_4_5·b_4_62 + b_2_0·b_4_52·b_1_0·b_3_1 + b_2_0·b_4_52·b_1_0·b_3_0 + b_2_0·b_4_52·b_4_9 + b_2_02·b_1_03·b_7_0 + b_2_02·b_1_07·b_3_1 + b_2_02·b_1_010 + b_2_02·b_6_13·b_1_04 + b_2_02·b_4_6·b_3_12 + b_2_02·b_4_6·b_1_03·b_3_1 + b_2_02·b_4_62·b_1_02 + b_2_02·b_4_5·b_3_12 + b_2_02·b_4_5·b_1_03·b_3_1 + b_2_02·b_4_5·b_1_06 + b_2_02·b_4_52·b_1_02 + b_2_03·b_1_0·b_7_1 + b_2_03·b_1_0·b_7_0 + b_2_03·b_6_13·b_1_02 + b_2_03·b_4_92 + b_2_03·b_4_6·b_1_0·b_3_2 + b_2_03·b_4_6·b_1_0·b_3_1 + b_2_03·b_4_6·b_1_04 + b_2_03·b_4_62 + b_2_03·b_4_5·b_1_0·b_3_1 + b_2_03·b_4_5·b_4_9 + b_2_04·b_3_12 + b_2_04·b_1_03·b_3_2 + b_2_04·b_1_06 + b_2_04·b_4_5·b_1_02 + b_2_05·b_1_0·b_3_2 + b_2_05·b_1_0·b_3_1 + b_2_05·b_1_0·b_3_0 + b_2_05·b_4_9 + b_2_07 + c_8_5·b_3_1·b_3_2 + c_8_5·b_3_12 + c_8_5·b_1_03·b_3_2 + c_8_5·b_1_03·b_3_1 + b_6_13·c_8_5 + b_4_6·c_8_5·b_1_02 + b_2_0·c_8_5·b_1_0·b_3_0 + b_2_0·b_4_9·c_8_5 + b_2_0·b_4_5·c_8_5 + b_2_02·c_8_5·b_1_02 + b_2_03·c_8_5, an element of degree 14
- b_1_0, an element of degree 1
- A Duflot regular sequence is given by c_8_5.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, -1, 31].
- We found that there exists some filter regular HSOP over a finite extension field, formed by the first 2 terms of the above HSOP, together with 2 elements of degree 4.
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_1_03·b_5_11 + b_1_05·b_3_5 + b_1_05·b_3_1 + b_1_08 + b_8_10 + b_4_6·b_1_04
+ b_4_5·b_1_0·b_3_2 + b_4_5·b_1_0·b_3_1 + b_4_5·b_1_0·b_3_0 + b_4_5·b_1_04 + b_4_5·b_4_9 + b_4_5·b_4_6 + b_2_0·b_3_1·b_3_2 + b_2_0·b_3_12 + b_2_0·b_1_03·b_3_1 + b_2_0·b_1_06 + b_2_0·b_4_9·b_1_02 + b_2_0·b_4_5·b_1_02 + b_2_02·b_1_0·b_3_1 + b_2_02·b_1_0·b_3_0 + b_2_02·b_4_5 + b_2_03·b_1_02 + c_8_5, an element of degree 8
- b_3_13·b_3_2 + b_1_09·b_3_2 + b_1_09·b_3_1 + b_6_132 + b_4_93 + b_4_6·b_1_08
+ b_4_62·b_1_04 + b_4_5·b_1_03·b_5_11 + b_4_5·b_1_05·b_3_1 + b_4_5·b_8_10 + b_4_5·b_4_6·b_1_0·b_3_1 + b_4_5·b_4_6·b_1_04 + b_4_5·b_4_62 + b_4_52·b_1_0·b_3_2 + b_4_52·b_1_0·b_3_0 + b_4_52·b_1_04 + b_4_52·b_4_9 + b_4_52·b_4_6 + b_2_0·b_1_03·b_7_0 + b_2_0·b_1_07·b_3_1 + b_2_0·b_1_010 + b_2_0·b_6_13·b_1_04 + b_2_0·b_4_92·b_1_02 + b_2_0·b_4_6·b_3_1·b_3_2 + b_2_0·b_4_6·b_3_12 + b_2_0·b_4_5·b_3_12 + b_2_0·b_4_5·b_1_03·b_3_2 + b_2_0·b_4_5·b_1_03·b_3_1 + b_2_0·b_4_5·b_1_03·b_3_0 + b_2_0·b_4_5·b_4_6·b_1_02 + b_2_02·b_1_0·b_7_0 + b_2_02·b_8_10 + b_2_02·b_6_13·b_1_02 + b_2_02·b_4_9·b_1_04 + b_2_02·b_4_92 + b_2_02·b_4_6·b_1_0·b_3_1 + b_2_02·b_4_6·b_1_04 + b_2_02·b_4_62 + b_2_02·b_4_5·b_1_0·b_3_1 + b_2_02·b_4_52 + b_2_03·b_3_1·b_3_2 + b_2_03·b_1_03·b_3_1 + b_2_03·b_1_06 + b_2_03·b_4_9·b_1_02 + b_2_03·b_4_5·b_1_02 + b_2_04·b_1_0·b_3_2 + b_2_04·b_4_9 + b_2_04·b_4_5 + c_8_5·b_1_0·b_3_2 + c_8_5·b_1_0·b_3_1 + c_8_5·b_1_0·b_3_0 + c_8_5·b_1_04 + b_4_6·c_8_5 + b_2_02·c_8_5, an element of degree 12
- b_4_5 + b_2_02, an element of degree 4
- b_1_0, an element of degree 1
Restriction maps
- b_1_0 → b_1_1 + b_1_0
- b_2_0 → b_1_22 + b_1_0·b_1_1 + b_2_2
- b_3_5 → b_1_02·b_1_2 + b_1_02·b_1_1 + b_2_2·b_1_2
- b_3_2 → b_3_0 + b_1_02·b_1_1 + b_2_6·b_1_2 + b_2_6·b_1_1 + b_2_6·b_1_0
- b_3_1 → b_3_1 + b_1_23 + b_1_02·b_1_1 + b_2_2·b_1_2
- b_3_0 → b_3_11
- b_4_9 → b_4_20
- b_4_6 → b_1_0·b_1_23 + b_4_10 + b_2_6·b_1_12 + b_2_6·b_1_0·b_1_1 + b_2_6·b_1_02 + b_2_62
+ b_2_2·b_1_12 + b_2_2·b_1_0·b_1_2 + b_2_2·b_1_02
- b_4_5 → b_1_0·b_3_0 + b_4_10 + b_2_6·b_1_12 + b_2_6·b_1_0·b_1_2 + b_2_6·b_1_0·b_1_1
+ b_2_6·b_1_02 + b_2_62 + b_2_2·b_1_12 + b_2_2·b_1_0·b_1_2 + b_2_2·b_1_02 + b_2_2·b_2_6 + b_2_22
- b_5_11 → b_4_10·b_1_0 + b_2_6·b_3_0 + b_2_6·b_1_02·b_1_2 + b_2_6·b_1_02·b_1_1 + b_2_62·b_1_2
+ b_2_2·b_1_02·b_1_2 + b_2_2·b_1_02·b_1_1 + b_2_2·b_1_03 + b_2_2·b_2_6·b_1_2 + b_2_2·b_2_6·b_1_1 + b_2_2·b_2_6·b_1_0 + b_2_22·b_1_0
- b_6_13 → b_2_6·b_1_1·b_3_0 + b_2_6·b_1_0·b_3_1 + b_2_6·b_1_03·b_1_1 + b_2_6·b_4_10
+ b_2_62·b_1_0·b_1_1 + b_2_2·b_1_0·b_3_1 + b_2_2·b_4_10 + b_2_2·b_2_6·b_1_0·b_1_1 + b_2_22·b_1_0·b_1_1 + b_2_22·b_2_6 + b_2_23
- b_7_1 → b_7_0 + b_1_06·b_1_1 + b_6_0·b_1_1 + b_2_6·b_1_0·b_1_24 + b_2_6·b_1_02·b_3_1
+ b_2_6·b_1_04·b_1_1 + b_2_6·b_4_10·b_1_2 + b_2_6·b_4_10·b_1_1 + b_2_62·b_3_1 + b_2_62·b_1_13 + b_2_62·b_1_03 + b_2_2·b_1_22·b_3_1 + b_2_2·b_1_0·b_1_24 + b_2_2·b_1_02·b_3_1 + b_2_2·b_1_02·b_1_23 + b_2_2·b_1_05 + b_2_2·b_4_10·b_1_0 + b_2_2·b_2_6·b_3_1 + b_2_2·b_2_6·b_1_23 + b_2_2·b_2_6·b_1_03 + b_2_2·b_2_62·b_1_1 + b_2_22·b_1_0·b_1_22 + b_2_22·b_1_02·b_1_2 + b_2_22·b_2_6·b_1_2 + b_2_22·b_2_6·b_1_1 + b_2_23·b_1_2 + b_2_23·b_1_1
- b_7_0 → b_7_28 + b_2_6·b_1_0·b_1_24 + b_2_6·b_1_04·b_1_1 + b_2_62·b_1_23
+ b_2_62·b_1_02·b_1_1 + b_2_2·b_1_02·b_1_23 + b_2_2·b_1_03·b_1_22 + b_2_2·b_1_04·b_1_2 + b_2_2·b_1_05 + b_2_2·b_4_10·b_1_2 + b_2_2·b_2_6·b_1_23 + b_2_2·b_2_6·b_1_13 + b_2_2·b_2_6·b_1_02·b_1_1 + b_2_2·b_2_62·b_1_1 + b_2_22·b_1_23 + b_2_22·b_1_13 + b_2_22·b_1_0·b_1_22 + b_2_22·b_1_02·b_1_2 + b_2_22·b_2_6·b_1_1 + b_2_23·b_1_2 + b_2_23·b_1_1 + b_2_23·b_1_0
- b_8_10 → b_8_52 + b_2_6·b_4_10·b_1_22 + b_2_6·b_4_10·b_1_0·b_1_2 + b_2_62·b_1_2·b_3_1
+ b_2_62·b_1_0·b_3_1 + b_2_62·b_1_0·b_1_23 + b_2_62·b_1_03·b_1_1 + b_2_2·b_1_23·b_3_1 + b_2_2·b_1_06 + b_2_2·b_4_10·b_1_22 + b_2_2·b_2_6·b_1_2·b_3_1 + b_2_2·b_2_6·b_1_24 + b_2_2·b_2_6·b_1_14 + b_2_2·b_2_6·b_1_0·b_3_1 + b_2_2·b_2_6·b_1_0·b_1_23 + b_2_2·b_2_6·b_1_02·b_1_22 + b_2_2·b_2_6·b_1_03·b_1_2 + b_2_2·b_2_6·b_1_04 + b_2_2·b_2_6·b_4_10 + b_2_2·b_2_62·b_1_22 + b_2_2·b_2_62·b_1_12 + b_2_2·b_2_62·b_1_0·b_1_2 + b_2_2·b_2_62·b_1_02 + b_2_22·b_1_24 + b_2_22·b_1_14 + b_2_22·b_1_02·b_1_22 + b_2_22·b_1_03·b_1_2 + b_2_22·b_1_04 + b_2_22·b_4_10 + b_2_22·b_2_6·b_1_0·b_1_2 + b_2_22·b_2_6·b_1_0·b_1_1 + b_2_23·b_1_22 + b_2_23·b_1_02
- c_8_5 → b_1_0·b_7_0 + b_6_0·b_1_12 + b_6_0·b_1_02 + b_2_6·b_1_23·b_3_1 + b_2_6·b_1_26
+ b_2_6·b_1_05·b_1_1 + b_2_6·b_6_0 + b_2_6·b_4_10·b_1_12 + b_2_6·b_4_10·b_1_0·b_1_2 + b_2_6·b_4_10·b_1_02 + b_2_62·b_1_24 + b_2_62·b_1_0·b_1_23 + b_2_63·b_1_22 + b_2_63·b_1_12 + b_2_63·b_1_02 + b_2_2·b_1_23·b_3_1 + b_2_2·b_1_26 + b_2_2·b_1_0·b_1_25 + b_2_2·b_1_03·b_1_23 + b_2_2·b_6_0 + b_2_2·b_4_10·b_1_0·b_1_2 + b_2_2·b_4_10·b_1_02 + b_2_2·b_2_6·b_1_24 + b_2_2·b_2_6·b_1_0·b_3_1 + b_2_2·b_2_6·b_1_03·b_1_1 + b_2_2·b_2_6·b_1_04 + b_2_2·b_2_6·b_4_10 + b_2_2·b_2_62·b_1_12 + b_2_2·b_2_62·b_1_0·b_1_2 + b_2_2·b_2_62·b_1_02 + b_2_2·b_2_63 + b_2_22·b_1_24 + b_2_22·b_1_02·b_1_22 + b_2_22·b_1_03·b_1_2 + b_2_22·b_1_03·b_1_1 + b_2_22·b_1_04 + b_2_22·b_4_10 + b_2_22·b_2_62 + b_2_23·b_1_22 + b_2_23·b_1_02 + b_2_23·b_2_6 + c_8_11
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- b_4_5 → 0, an element of degree 4
- b_5_11 → 0, an element of degree 5
- b_6_13 → 0, an element of degree 6
- b_7_1 → 0, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_5 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → 0, an element of degree 5
- b_6_13 → c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_7_1 → 0, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_1, an element of degree 1
- b_2_0 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → c_1_23, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_9 → c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
- b_4_6 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_14, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_5_11 → c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22, an element of degree 5
- b_6_13 → c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_13·c_1_2·c_1_32
+ c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_16, an element of degree 6
- b_7_1 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_2·c_1_34
+ c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25 + c_1_13·c_1_34 + c_1_13·c_1_22·c_1_32 + c_1_14·c_1_23 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_17 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_0 → c_1_23·c_1_34 + c_1_25·c_1_32 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_25·c_1_3
+ c_1_1·c_1_26 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_23·c_1_3 + c_1_13·c_1_24 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_10 → c_1_1·c_1_27 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32
+ c_1_12·c_1_26 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_17·c_1_2 + c_1_18 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_13·c_1_2, an element of degree 8
- c_8_5 → c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3
+ c_1_1·c_1_27 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_2_0 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → c_1_23, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_9 → c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
- b_4_6 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_14, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_5_11 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_25 + c_1_1·c_1_34 + c_1_1·c_1_23·c_1_3
+ c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22, an element of degree 5
- b_6_13 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_26 + c_1_1·c_1_23·c_1_32
+ c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34 + c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- b_7_1 → c_1_23·c_1_34 + c_1_25·c_1_32 + c_1_27 + c_1_1·c_1_22·c_1_34
+ c_1_1·c_1_25·c_1_3 + c_1_1·c_1_26 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_23·c_1_32 + c_1_13·c_1_34 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_24 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22 + c_1_16·c_1_2 + c_1_17 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_0 → c_1_12·c_1_2·c_1_34 + c_1_12·c_1_23·c_1_32 + c_1_12·c_1_25
+ c_1_13·c_1_22·c_1_32 + c_1_13·c_1_23·c_1_3 + c_1_13·c_1_24 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_10 → c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32
+ c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_18 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2, an element of degree 8
- c_8_5 → c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_28 + c_1_1·c_1_25·c_1_32
+ c_1_1·c_1_26·c_1_3 + c_1_1·c_1_27 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_1, an element of degree 1
- b_2_0 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_5_11 → c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22, an element of degree 5
- b_6_13 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
+ c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- b_7_1 → c_1_13·c_1_34 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_24
+ c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22 + c_1_17, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24
+ c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18, an element of degree 8
- c_8_5 → c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24
+ c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_2_0 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_1·c_1_22, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_14, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3, an element of degree 4
- b_5_11 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_23·c_1_3
+ c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3, an element of degree 5
- b_6_13 → c_1_1·c_1_2·c_1_34 + c_1_1·c_1_23·c_1_32 + c_1_12·c_1_34
+ c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_16, an element of degree 6
- b_7_1 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_26
+ c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25 + c_1_13·c_1_34 + c_1_13·c_1_23·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_16·c_1_2 + c_1_17, an element of degree 7
- b_7_0 → c_1_12·c_1_2·c_1_34 + c_1_12·c_1_23·c_1_32 + c_1_12·c_1_25
+ c_1_13·c_1_22·c_1_32 + c_1_13·c_1_23·c_1_3 + c_1_13·c_1_24 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_14·c_1_23 + c_1_15·c_1_22, an element of degree 7
- b_8_10 → c_1_12·c_1_26 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32
+ c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18, an element of degree 8
- c_8_5 → c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3
+ c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3, an element of degree 1
- b_2_0 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_1·c_1_32 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32
+ c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_3, an element of degree 4
- b_4_5 → c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_5_11 → c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3, an element of degree 5
- b_6_13 → c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34
+ c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3, an element of degree 6
- b_7_1 → c_1_1·c_1_36 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_35
+ c_1_12·c_1_2·c_1_34 + c_1_12·c_1_22·c_1_33 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_22·c_1_32 + c_1_15·c_1_32, an element of degree 7
- b_7_0 → c_1_12·c_1_35 + c_1_12·c_1_22·c_1_33 + c_1_12·c_1_24·c_1_3
+ c_1_13·c_1_2·c_1_33 + c_1_13·c_1_24 + c_1_14·c_1_33 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22, an element of degree 7
- b_8_10 → c_1_12·c_1_36 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_24·c_1_3
+ c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3, an element of degree 8
- c_8_5 → c_1_22·c_1_36 + c_1_24·c_1_34 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35
+ c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_13·c_1_35 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_24 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_17·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3, an element of degree 1
- b_2_0 → c_1_32 + c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_33 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_3, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_5_11 → c_1_35 + c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_1·c_1_2·c_1_33
+ c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3, an element of degree 5
- b_6_13 → c_1_36 + c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34
+ c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3, an element of degree 6
- b_7_1 → c_1_37 + c_1_22·c_1_35 + c_1_24·c_1_33 + c_1_1·c_1_2·c_1_35
+ c_1_1·c_1_22·c_1_34 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_24·c_1_3 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_22·c_1_32 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32, an element of degree 7
- b_7_0 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_35
+ c_1_12·c_1_2·c_1_34 + c_1_12·c_1_22·c_1_33 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_24 + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22, an element of degree 7
- b_8_10 → c_1_12·c_1_36 + c_1_14·c_1_34, an element of degree 8
- c_8_5 → c_1_38 + c_1_22·c_1_36 + c_1_24·c_1_34 + c_1_1·c_1_2·c_1_36
+ c_1_1·c_1_22·c_1_35 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_24·c_1_32 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_22·c_1_33 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_17·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3 + c_1_2, an element of degree 1
- b_2_0 → c_1_32 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_5 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_12·c_1_2 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3, an element of degree 4
- b_5_11 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_2·c_1_33
+ c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_1·c_1_24 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23, an element of degree 5
- b_6_13 → c_1_36 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33
+ c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_23·c_1_3, an element of degree 6
- b_7_1 → c_1_37 + c_1_2·c_1_36 + c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33
+ c_1_26·c_1_3 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_26 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_16·c_1_2, an element of degree 7
- b_7_0 → c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33 + c_1_25·c_1_32
+ c_1_1·c_1_2·c_1_35 + c_1_1·c_1_25·c_1_3 + c_1_12·c_1_35 + c_1_12·c_1_22·c_1_33 + c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32, an element of degree 7
- b_8_10 → c_1_22·c_1_36 + c_1_26·c_1_32 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35
+ c_1_1·c_1_26·c_1_3 + c_1_1·c_1_27 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_24 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_23, an element of degree 8
- c_8_5 → c_1_38 + c_1_22·c_1_36 + c_1_25·c_1_33 + c_1_26·c_1_32 + c_1_1·c_1_2·c_1_36
+ c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_27 + c_1_12·c_1_36 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_17·c_1_3 + c_1_17·c_1_2 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2, an element of degree 1
- b_2_0 → c_1_32 + c_1_2·c_1_3 + c_1_1·c_1_3 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_5 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3
+ c_1_12·c_1_2, an element of degree 3
- b_3_2 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3
+ c_1_12·c_1_2, an element of degree 3
- b_3_1 → c_1_33 + c_1_22·c_1_3 + c_1_1·c_1_2·c_1_3 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_4_5 → 0, an element of degree 4
- b_5_11 → c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24
+ c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23, an element of degree 5
- b_6_13 → c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_23·c_1_3, an element of degree 6
- b_7_1 → c_1_2·c_1_36 + c_1_23·c_1_34 + c_1_24·c_1_33 + c_1_25·c_1_32 + c_1_1·c_1_36
+ c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3 + c_1_1·c_1_26 + c_1_12·c_1_35 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25 + c_1_13·c_1_34 + c_1_13·c_1_24 + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32 + c_1_15·c_1_32 + c_1_16·c_1_3 + c_1_16·c_1_2, an element of degree 7
- b_7_0 → c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3 + c_1_12·c_1_2·c_1_34
+ c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_32, an element of degree 7
- b_8_10 → c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32 + c_1_27·c_1_3
+ c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_27 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_24·c_1_32 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23, an element of degree 8
- c_8_5 → c_1_2·c_1_37 + c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_27·c_1_3
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_26·c_1_3 + c_1_1·c_1_27 + c_1_12·c_1_36 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_24·c_1_32 + c_1_13·c_1_35 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_25 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_16·c_1_32 + c_1_17·c_1_2 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_1, an element of degree 1
- b_2_0 → c_1_32 + c_1_22 + c_1_1·c_1_3 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_23, an element of degree 3
- b_3_0 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2, an element of degree 3
- b_4_9 → c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23
+ c_1_12·c_1_32 + c_1_12·c_1_22, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3 + c_1_14, an element of degree 4
- b_4_5 → c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_23 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_5_11 → c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24 + c_1_12·c_1_33
+ c_1_12·c_1_23 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22, an element of degree 5
- b_6_13 → c_1_12·c_1_22·c_1_32 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3
+ c_1_14·c_1_2·c_1_3 + c_1_16, an element of degree 6
- b_7_1 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_35 + c_1_12·c_1_25
+ c_1_13·c_1_22·c_1_32 + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_14·c_1_23 + c_1_15·c_1_2·c_1_3 + c_1_17 + c_1_0·c_1_12·c_1_34 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_32 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_34 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_32 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_3 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_0 → c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33 + c_1_25·c_1_32
+ c_1_1·c_1_36 + c_1_1·c_1_2·c_1_35 + c_1_1·c_1_25·c_1_3 + c_1_1·c_1_26 + c_1_13·c_1_34 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_23·c_1_3 + c_1_13·c_1_24 + c_1_0·c_1_12·c_1_34 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_32 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_34 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_32 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_3 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_10 → c_1_1·c_1_37 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35
+ c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_1·c_1_27 + c_1_12·c_1_36 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_2·c_1_3 + c_1_17·c_1_3 + c_1_17·c_1_2 + c_1_18 + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_32 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_1·c_1_35 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_3 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_1·c_1_33 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_13·c_1_2, an element of degree 8
- c_8_5 → c_1_22·c_1_36 + c_1_26·c_1_32 + c_1_1·c_1_37 + c_1_1·c_1_23·c_1_34
+ c_1_1·c_1_24·c_1_33 + c_1_1·c_1_27 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_32 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_35 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_15·c_1_3 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_33 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_1, an element of degree 1
- b_2_0 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_5_11 → c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22, an element of degree 5
- b_6_13 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
+ c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- b_7_1 → c_1_13·c_1_34 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_24
+ c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22 + c_1_17, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24
+ c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18, an element of degree 8
- c_8_5 → c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24
+ c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3 + c_1_2 + c_1_1, an element of degree 1
- b_2_0 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_1·c_1_32 + c_1_1·c_1_22, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3 + c_1_14, an element of degree 4
- b_4_5 → c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_2·c_1_3, an element of degree 4
- b_5_11 → c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
+ c_1_1·c_1_23·c_1_3 + c_1_13·c_1_2·c_1_3, an element of degree 5
- b_6_13 → c_1_1·c_1_22·c_1_33 + c_1_1·c_1_23·c_1_32 + c_1_12·c_1_34
+ c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_14·c_1_2·c_1_3 + c_1_16, an element of degree 6
- b_7_1 → c_1_1·c_1_36 + c_1_1·c_1_26 + c_1_12·c_1_35 + c_1_12·c_1_22·c_1_33
+ c_1_12·c_1_23·c_1_32 + c_1_12·c_1_25 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_23·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_2·c_1_3 + c_1_16·c_1_3 + c_1_16·c_1_2 + c_1_17, an element of degree 7
- b_7_0 → c_1_12·c_1_35 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_22·c_1_33
+ c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25 + c_1_13·c_1_34 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_23·c_1_3 + c_1_13·c_1_24 + c_1_14·c_1_33 + c_1_14·c_1_23 + c_1_15·c_1_32 + c_1_15·c_1_22, an element of degree 7
- b_8_10 → c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32
+ c_1_12·c_1_26 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18, an element of degree 8
- c_8_5 → c_1_22·c_1_36 + c_1_26·c_1_32 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35
+ c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2, an element of degree 1
- b_2_0 → c_1_32 + c_1_22 + c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_33 + c_1_23 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_4_5 → c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_5_11 → c_1_23·c_1_32 + c_1_25 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23, an element of degree 5
- b_6_13 → c_1_24·c_1_32 + c_1_26 + c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3
+ c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3, an element of degree 6
- b_7_1 → c_1_22·c_1_35 + c_1_27 + c_1_1·c_1_23·c_1_33 + c_1_1·c_1_24·c_1_32
+ c_1_1·c_1_25·c_1_3 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_22·c_1_33 + c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_23·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_15·c_1_22, an element of degree 7
- b_7_0 → c_1_23·c_1_34 + c_1_25·c_1_32 + c_1_1·c_1_2·c_1_35 + c_1_1·c_1_22·c_1_34
+ c_1_1·c_1_23·c_1_33 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_35 + c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25 + c_1_13·c_1_34 + c_1_13·c_1_23·c_1_3 + c_1_14·c_1_33 + c_1_14·c_1_22·c_1_3 + c_1_14·c_1_23 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3, an element of degree 7
- b_8_10 → c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_12·c_1_26 + c_1_14·c_1_24, an element of degree 8
- c_8_5 → c_1_2·c_1_37 + c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34
+ c_1_26·c_1_32 + c_1_28 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_24 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3 + c_1_2 + c_1_1, an element of degree 1
- b_2_0 → c_1_32 + c_1_22 + c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_23 + c_1_1·c_1_32 + c_1_1·c_1_22
+ c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_25
+ c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_1·c_1_24 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22 + c_1_14·c_1_3 + c_1_14·c_1_2 + c_1_15, an element of degree 5
- b_6_13 → c_1_36 + c_1_26 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
+ c_1_12·c_1_22·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_16, an element of degree 6
- b_7_1 → c_1_37 + c_1_2·c_1_36 + c_1_26·c_1_3 + c_1_27 + c_1_1·c_1_36
+ c_1_1·c_1_2·c_1_35 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3 + c_1_1·c_1_26 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_22·c_1_33 + c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_13·c_1_22·c_1_32 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_2·c_1_3 + c_1_16·c_1_3 + c_1_16·c_1_2 + c_1_17, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_38 + c_1_22·c_1_36 + c_1_26·c_1_32 + c_1_28 + c_1_1·c_1_2·c_1_36
+ c_1_1·c_1_22·c_1_35 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_14·c_1_22·c_1_32 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_1, an element of degree 1
- b_2_0 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22 + c_1_15, an element of degree 5
- b_6_13 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
+ c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- b_7_1 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_2·c_1_34
+ c_1_12·c_1_24·c_1_3 + c_1_13·c_1_34 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_24 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22 + c_1_17, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24
+ c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3 + c_1_2 + c_1_1, an element of degree 1
- b_2_0 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_23 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_4_5 → c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
+ c_1_1·c_1_23·c_1_3 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22 + c_1_14·c_1_3 + c_1_14·c_1_2 + c_1_15, an element of degree 5
- b_6_13 → c_1_1·c_1_22·c_1_33 + c_1_1·c_1_23·c_1_32 + c_1_12·c_1_34
+ c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_14·c_1_2·c_1_3 + c_1_16, an element of degree 6
- b_7_1 → c_1_1·c_1_36 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_26
+ c_1_12·c_1_22·c_1_33 + c_1_12·c_1_23·c_1_32 + c_1_13·c_1_34 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_23·c_1_3 + c_1_13·c_1_24 + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_14·c_1_23 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22 + c_1_16·c_1_3 + c_1_16·c_1_2 + c_1_17, an element of degree 7
- b_7_0 → c_1_12·c_1_35 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_22·c_1_33
+ c_1_12·c_1_23·c_1_32 + c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25 + c_1_13·c_1_34 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_23·c_1_3 + c_1_13·c_1_24 + c_1_14·c_1_33 + c_1_14·c_1_23 + c_1_15·c_1_32 + c_1_15·c_1_22, an element of degree 7
- b_8_10 → c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32
+ c_1_12·c_1_26 + c_1_16·c_1_32 + c_1_16·c_1_22, an element of degree 8
- c_8_5 → c_1_22·c_1_36 + c_1_26·c_1_32 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35
+ c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_25 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_1, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_5_11 → c_1_1·c_1_22·c_1_32 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3
+ c_1_13·c_1_2·c_1_3, an element of degree 5
- b_6_13 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
+ c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3, an element of degree 6
- b_7_1 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_2·c_1_34
+ c_1_12·c_1_24·c_1_3 + c_1_13·c_1_34 + c_1_13·c_1_24 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_22 + c_1_0·c_1_12·c_1_34 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_32 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_34 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_32 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_3 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_12·c_1_36 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_25
+ c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3 + c_1_2 + c_1_1, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_23 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_4_5 → c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_23 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_13·c_1_2, an element of degree 4
- b_5_11 → c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
+ c_1_1·c_1_23·c_1_3 + c_1_13·c_1_2·c_1_3, an element of degree 5
- b_6_13 → c_1_1·c_1_22·c_1_33 + c_1_1·c_1_23·c_1_32 + c_1_12·c_1_2·c_1_33
+ c_1_12·c_1_23·c_1_3 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3, an element of degree 6
- b_7_1 → c_1_12·c_1_35 + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_24·c_1_3 + c_1_12·c_1_25
+ c_1_13·c_1_34 + c_1_13·c_1_24 + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_14·c_1_23 + c_1_15·c_1_32 + c_1_15·c_1_22 + c_1_0·c_1_12·c_1_34 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_32 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_34 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_32 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_3 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_22·c_1_36 + c_1_26·c_1_32 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_23·c_1_34
+ c_1_1·c_1_24·c_1_33 + c_1_1·c_1_26·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_25 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_5 → c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_14·c_1_3, an element of degree 5
- b_6_13 → c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33
+ c_1_12·c_1_24 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22, an element of degree 6
- b_7_1 → c_1_22·c_1_35 + c_1_24·c_1_33 + c_1_0·c_1_22·c_1_34 + c_1_0·c_1_24·c_1_32
+ c_1_02·c_1_2·c_1_34 + c_1_02·c_1_24·c_1_3 + c_1_04·c_1_2·c_1_32 + c_1_04·c_1_22·c_1_3, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33 + c_1_26·c_1_32
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_24·c_1_33 + c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_2 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_6 → c_1_34 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_5 → c_1_34 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- b_6_13 → c_1_1·c_1_2·c_1_34 + c_1_1·c_1_23·c_1_32 + c_1_12·c_1_34
+ c_1_12·c_1_23·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3, an element of degree 6
- b_7_1 → c_1_23·c_1_34 + c_1_25·c_1_32 + c_1_0·c_1_22·c_1_34 + c_1_0·c_1_24·c_1_32
+ c_1_02·c_1_2·c_1_34 + c_1_02·c_1_24·c_1_3 + c_1_04·c_1_2·c_1_32 + c_1_04·c_1_22·c_1_3, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_10 → 0, an element of degree 8
- c_8_5 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33
+ c_1_1·c_1_23·c_1_34 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_26 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|