Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of SL(4,3), a group of order 12130560
General information on the group
- SL(4,3) is a group of order 12130560.
- The group order factors as 28 · 36 · 5 · 13.
- The group is defined by Group([(2,3,5)(4,7,12)(6,10,17)(8,14,23)(11,19,31)(16,26,40)(18,29,44)(21,32,45)(24,37,52)(25,33,42)(35,48,59)(36,50,51)(38,46,56)(39,49,41)(47,55,60)(53,54,58)(65,70,69)(74,76,77),(1,2,4,8,15,25,39,54)(3,6,11,20,33,47,52,63)(5,9,16,27,42,57,65,71)(7,13,22,35,49,61,68,74)(10,18,30,40,55,50,62,69)(12,21,34,26,41,56,64,70)(14,24,38,45,58,19,32,46)(17,28,43,48,60,67,73,76)(23,36,51,37,53,44,29,31)(59,66,72,75,77,78,79,80)]).
- It is non-abelian.
- It has 2-Rank 3.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
The computation was based on 85 stability conditions for H*(SmallGroup(256,6671); GF(2)).
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·((1 − t + t2 − t3 + t4) · (1 − t + t2 − t3 + t4 − t5 + t6)) |
| ( − 1 + t)3 · (1 + t + t2) · (1 + t2)2 · (1 + t4) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 5 minimal generators of maximal degree 8:
- b_3_0, an element of degree 3
- b_4_0, an element of degree 4
- b_5_0, an element of degree 5
- b_7_0, an element of degree 7
- c_8_2, a Duflot element of degree 8
Ring relations
There are 2 minimal relations of maximal degree 14:
- b_5_02 + b_4_0·b_3_02
- b_7_02 + c_8_2·b_3_02
Data used for the Hilbert-Poincaré test
- We proved completion in degree 14 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_2, an element of degree 8
- b_4_0, an element of degree 4
- b_3_0, an element of degree 3
- A Duflot regular sequence is given by c_8_2.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 12].
- We found that there exists some HSOP over a finite extension field, in degrees 8,4,3.
Restriction maps
- b_3_0 → b_3_8 + b_1_1·b_1_22 + b_1_12·b_1_2 + a_2_4·a_1_0 + a_1_03
- b_4_0 → b_1_24 + b_1_12·b_1_22 + b_1_14 + b_4_11
- b_5_0 → b_1_1·b_1_24 + b_1_12·b_3_8 + b_1_14·b_1_2 + b_4_11·b_1_1
- b_7_0 → b_7_21 + b_1_14·b_3_8 + b_6_17·b_1_1 + b_4_11·b_1_13 + a_1_02·a_5_12
- c_8_2 → b_6_17·b_1_22 + b_4_112 + a_2_5·b_1_26 + a_2_4·b_1_16 + a_2_42·b_1_14
+ a_1_03·a_5_12 + c_8_25
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_3_0 → 0, an element of degree 3
- b_4_0 → 0, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_7_0 → 0, an element of degree 7
- c_8_2 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_0 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_7_0 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- c_8_2 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_0 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_7_0 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- c_8_2 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|