Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of SymmetricGroup(9), a group of order 362880
General information on the group
- SymmetricGroup(9) is a group of order 362880.
- The group order factors as 27 · 34 · 5 · 7.
- The group is defined by Group([(1,2,3,4,5,6,7,8,9),(1,2)]).
- It is non-abelian.
- It has 3-Rank 3.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
Structure of the cohomology ring
The computation was based on 3 stability conditions for H*(SmallGroup(324,39); GF(3)).
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·(1 − 3·t + 6·t2 − 9·t3 + 12·t4 − 15·t5 + 18·t6 − 20·t7 + 22·t8 − 24·t9 + 28·t10 − 31·t11 + 33·t12 − 34·t13 + 34·t14 − 32·t15 + 29·t16 − 25·t17 + 22·t18 − 20·t19 + 18·t20 − 15·t21 + 12·t22 − 9·t23 + 6·t24 − 3·t25 + t26) |
| ( − 1 + t)3 · (1 − t + t2) · (1 + t + t2) · (1 + t2)3 · (1 − t2 + t4) · (1 + t4) · (1 + t8) |
- The a-invariants are -∞,-∞,-12,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 10 minimal generators of maximal degree 16:
- a_3_0, a nilpotent element of degree 3
- b_4_0, an element of degree 4
- a_7_0, a nilpotent element of degree 7
- b_8_0, an element of degree 8
- a_10_0, a nilpotent element of degree 10
- a_11_1, a nilpotent element of degree 11
- a_11_0, a nilpotent element of degree 11
- c_12_0, a Duflot element of degree 12
- a_15_0, a nilpotent element of degree 15
- b_16_4, an element of degree 16
Ring relations
There are 5 "obvious" relations:
a_3_02, a_7_02, a_11_02, a_11_12, a_15_02
Apart from that, there are 24 minimal relations of maximal degree 27:
- a_10_0·a_3_0
- a_3_0·a_11_0
- b_4_0·a_10_0
- b_4_0·a_11_0
- a_10_0·a_7_0
- a_3_0·a_15_0
- a_7_0·a_11_0
- b_8_0·a_10_0
- b_4_0·a_15_0
- b_8_0·a_11_0
- b_16_4·a_3_0
- a_10_02
- b_4_0·b_16_4
- a_10_0·a_11_0
- a_10_0·a_11_1
- a_7_0·a_15_0
- a_11_0·a_11_1
- b_8_0·a_15_0
- b_16_4·a_7_0
- b_8_0·b_16_4
- a_10_0·a_15_0
- a_11_1·a_15_0
- a_10_0·b_16_4 + a_11_0·a_15_0
- b_16_4·a_11_1
Data used for the Hilbert-Poincaré test
- We proved completion in degree 34 using the Hilbert-Poincaré criterion.
- However, the last relation was already found in degree 27 and the last generator in degree 16.
- The following is a filter regular homogeneous system of parameters:
- − b_4_0·b_8_04 − b_4_03·b_8_03 − b_4_09 + b_8_03·c_12_0 + b_4_02·b_8_02·c_12_0
+ c_12_03, an element of degree 36
- b_16_43 − b_8_06 + b_4_02·b_8_05 + b_4_04·b_8_04 + b_4_06·b_8_03
+ b_4_03·b_8_03·c_12_0 − b_4_05·b_8_02·c_12_0 − b_8_03·c_12_02 + b_4_02·b_8_02·c_12_02 − b_4_03·c_12_03, an element of degree 48
- b_8_0, an element of degree 8
- A Duflot regular sequence is given by c_12_0.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 72, 89].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_4_03 + c_12_0, an element of degree 12
- b_16_4 + b_4_0·c_12_0, an element of degree 16
- b_8_0, an element of degree 8
Restriction maps
- a_3_0 → a_3_0
- b_4_0 → b_4_0
- a_7_0 → a_7_6 + a_7_1 + b_4_1·a_3_0 + b_4_0·a_3_1
- b_8_0 → b_8_4 − b_4_0·b_4_1
- a_10_0 → a_10_6
- a_11_1 → a_11_9 − b_4_1·a_7_1 + b_4_12·a_3_0 − b_4_0·b_4_1·a_3_1
- a_11_0 → a_11_13
- c_12_0 → b_4_23 + b_4_1·b_8_4 + b_4_13 + b_4_0·b_4_12 + c_12_7
- a_15_0 → b_4_2·a_11_13 + c_12_7·a_3_2
- b_16_4 → b_4_2·c_12_7
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_0 → 0, an element of degree 3
- b_4_0 → 0, an element of degree 4
- a_7_0 → 0, an element of degree 7
- b_8_0 → 0, an element of degree 8
- a_10_0 → 0, an element of degree 10
- a_11_1 → 0, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_0 → c_2_06, an element of degree 12
- a_15_0 → 0, an element of degree 15
- b_16_4 → 0, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → 0, an element of degree 3
- b_4_0 → 0, an element of degree 4
- a_7_0 → 0, an element of degree 7
- b_8_0 → 0, an element of degree 8
- a_10_0 → − c_2_1·c_2_23·a_1_0·a_1_1 + c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_1 → 0, an element of degree 11
- a_11_0 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_0 → c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_15_0 → c_2_1·c_2_26·a_1_0 − c_2_13·c_2_24·a_1_0 − c_2_14·c_2_23·a_1_1
+ c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_4 → c_2_12·c_2_26 + c_2_14·c_2_24 + c_2_16·c_2_22, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- a_3_0 → − c_2_5·a_1_1 + c_2_5·a_1_0 − c_2_4·a_1_2 − c_2_4·a_1_1 + c_2_3·a_1_2, an element of degree 3
- b_4_0 → c_2_4·c_2_5 − c_2_42 − c_2_3·c_2_5, an element of degree 4
- a_7_0 → − c_2_53·a_1_1 + c_2_53·a_1_0 − c_2_4·c_2_52·a_1_1 + c_2_4·c_2_52·a_1_0
− c_2_42·c_2_5·a_1_2 − c_2_42·c_2_5·a_1_0 + c_2_3·c_2_52·a_1_1 − c_2_3·c_2_52·a_1_0 − c_2_3·c_2_4·c_2_5·a_1_2 + c_2_3·c_2_4·c_2_5·a_1_1 − c_2_3·c_2_42·a_1_2 − c_2_32·c_2_5·a_1_2 + c_2_33·a_1_2, an element of degree 7
- b_8_0 → − c_2_4·c_2_53 + c_2_42·c_2_52 + c_2_3·c_2_53 + c_2_3·c_2_4·c_2_52
− c_2_3·c_2_42·c_2_5 + c_2_32·c_2_52 + c_2_33·c_2_5, an element of degree 8
- a_10_0 → 0, an element of degree 10
- a_11_1 → − c_2_55·a_1_1 + c_2_55·a_1_0 + c_2_4·c_2_54·a_1_2 − c_2_4·c_2_54·a_1_1
− c_2_4·c_2_54·a_1_0 + c_2_42·c_2_53·a_1_2 + c_2_42·c_2_53·a_1_0 − c_2_3·c_2_54·a_1_2 − c_2_3·c_2_54·a_1_1 + c_2_3·c_2_54·a_1_0 − c_2_3·c_2_4·c_2_53·a_1_2 − c_2_3·c_2_4·c_2_53·a_1_1 + c_2_3·c_2_42·c_2_52·a_1_0 + c_2_3·c_2_43·c_2_5·a_1_0 + c_2_3·c_2_44·a_1_0 − c_2_32·c_2_53·a_1_2 + c_2_32·c_2_4·c_2_52·a_1_1 + c_2_32·c_2_42·c_2_5·a_1_2 − c_2_32·c_2_43·a_1_2 − c_2_32·c_2_43·a_1_1 + c_2_33·c_2_52·a_1_1 − c_2_33·c_2_52·a_1_0 − c_2_33·c_2_4·c_2_5·a_1_2 + c_2_33·c_2_4·c_2_5·a_1_1 + c_2_33·c_2_4·c_2_5·a_1_0 − c_2_33·c_2_42·a_1_2 − c_2_33·c_2_42·a_1_0 + c_2_34·c_2_5·a_1_2 + c_2_34·c_2_5·a_1_1 − c_2_34·c_2_5·a_1_0 + c_2_34·c_2_4·a_1_2 + c_2_34·c_2_4·a_1_1 + c_2_35·a_1_2, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_0 → c_2_56 + c_2_4·c_2_55 − c_2_42·c_2_54 − c_2_3·c_2_55 + c_2_3·c_2_4·c_2_54
− c_2_3·c_2_42·c_2_53 + c_2_32·c_2_54 + c_2_32·c_2_42·c_2_52 + c_2_32·c_2_43·c_2_5 + c_2_32·c_2_44 + c_2_33·c_2_53 − c_2_33·c_2_4·c_2_52 + c_2_33·c_2_42·c_2_5 + c_2_34·c_2_52 − c_2_34·c_2_4·c_2_5 + c_2_34·c_2_42 − c_2_35·c_2_5 + c_2_36, an element of degree 12
- a_15_0 → 0, an element of degree 15
- b_16_4 → 0, an element of degree 16
|